Parallel programming in R

Bjørn-Helge Mevik

Research Infrastructure Services Group, USIT, UiO

RIS Course Week spring 2013
Introduction

Simple example

Practical use

The end...
Introduction

Background

- R is single-threaded
- There are several packages for parallel computation in R, some of which have existed a long time, e.g. Rmpi, nws, snow, sprint, foreach, multicore
- As of 2.14.0, R ships with a package parallel
- R can also be compiled against multi-threaded linear algebra libraries (BLAS, LAPACK) which can speed up calculations

Today’s focus is the parallel package.
Overview of `parallel`

- Introduced in 2.14.0
- Based on packages `multicore` and `snow` (slightly modified)
- Includes a parallel random number generator (RNG); important for simulations
- Particularly suitable for 'single program, multiple data' (SPMD) problems
- Main interface is parallel versions of `lapply` and similar
- Can use the CPUs/cores on a single machine (`multicore`), or several machines, using MPI (`snow`)
- MPI support depends on the `Rmpi` package (installed on Abel)
Simple example: serial

- parallel provides substitutes for lapply, etc.
- 'Silly' example for illustration: calculate \((1:100)^2\)

Serial version:

```r
## The worker function to do the calculation:
workerFunc <- function(n) { return(n^2) }

## The values to apply the calculation to:
values <- 1:100

## Serial calculation:
res <- lapply(values, workerFunc)

print(unlist(res))
```

Bjørn-Helge Mevik (RIS) Parallel programming in R Course Week spring 2013
Simple example: `mclapply`

- Performs the calculations in parallel on the local machine
- (+) Very easy to use; no set-up
- (+) Low overhead
- (-) Can only use the cores of one machine
- (-) Uses fork, so it will not work on MS Windows

```r
workerFunc <- function(n) { return(n^2) }
values <- 1:100

library(parallel)

## Number of workers (R processes) to use:
numWorkers <- 8

## Parallel calculation (mclapply):
res <- mclapply(values, workerFunc, mc.cores = numWorkers)

print(unlist(res))
```
Simple example: \texttt{parLapply}

- Performs the calculations in parallel, possibly on several nodes
- Can use several types of communications, including \texttt{PSOCK} and \texttt{MPI}

- \texttt{PSOCK}:
 - (+) Can be used interactively
 - (-) Not good for running on several nodes
 - (+) Portable; works 'everywhere'
 - \Rightarrow Good for testing

- \texttt{MPI}:
 - (-) Needs the \texttt{Rmpi} package (installed on Abel)
 - (-) Cannot be used interactively
 - (+) Good for running on several nodes
 - (+) Works everywhere where \texttt{Rmpi} does
 - \Rightarrow Good for production
Simple example: **parLapply (PSOCK)**

```r
workerFunc <- function(n) { return(n^2) }
values <- 1:100

library(parallel)

## Number of workers (R processes) to use:
numWorkers <- 8

## Set up the 'cluster'
cl <- makeCluster(numWorkers, type = "PSOCK")

## Parallel calculation (parLapply):
res <- parLapply(cl, values, workerFunc)

## Shut down cluster
stopCluster(cl)

print(unlist(res))
```
Simple example: **parLapply (MPI)**

`simple_mpi.R`:

```r
workerFunc <- function(n) { return(n^2) }
values <- 1:100
library(parallel)
numWorkers <- 8
cl <- makeCluster(numWorkers, type = "MPI")
res <- parLapply(cl, values, workerFunc)
stopCluster(cl)
mpi.exit()  # or mpi.quit(), which quits R as well
print(unlist(res))
```

Running:

```bash
mpirun -n 1 R --slave -f simple_mpi.R
```

Note: Use R \(\geq 2.15.2 \) for MPI, due to a bug in earlier versions of parallel.
Practical use

Preparation for calculations

- Write your calculations as a function that can be called with `lapply`
- Test interactively with `lapply` serially, and `mclapply` or `parLapply` (PSOCK) in parallel
- Deploy with `mclapply` on single node or `parLapply` (MPI) on one or more nodes
- For `parLapply`, the worker processes must be prepared with any loaded packages with `clusterEvalQ` or `clusterCall`.
- For `parLapply`, large data sets can be exported to workers with `clusterExport`.
Extended example

(Notes to self:)

- Submit jobs
- Go through scripts
- Look at results
Efficiency

- The time spent in each invocation of the worker function should not be too short.
- If the time spent in each invocation of the worker function vary very much, try the load balancing versions of the functions.
- Avoid copying large things back and forth:
 - Export large datasets up front with `clusterExport` (for `parLapply`)
 - Let the values to iterate over be indices or similar small things
 - Write the worker function to return as little as possible.
- Reduce waiting time in queue by not asking for whole nodes; if possible, use `--ntask` instead of `--ntasks-per-node + --nodes`.
Other topics

There are several things we haven’t touched in this lecture:

- Parallel random number generation
- Alternatives to *apply (e.g. mcparallel + mccollect)
- Lower level functions
- Using multi-threaded libraries
- Other packages and techniques

Resources:

- The documentation for parallel: help(parallel)
- The book Parallel R, McCallum & Weston, O’Reilly
- The HPC Task view on CRAN:
 http://cran.r-project.org/web/views/HighPerformanceComputing.html