
AST1100 Lecture Notes

5 The virial theorem

1 The virial theorem

We have seen that we can solve the equation of motion for the two-body
problem analytically and thus obtain expressions describing the future mo-
tion of these two bodies. Adding just one body to this problem, the situation
is considerably more difficult. There is no general analytic solution to the
three-body problem. In astrophysics we are often interested in systems of
millions or billions of bodies. For instance, a galaxy may have more than
2 × 1011 stars. To describe exactly the motion of stars in galaxies we would
need to solve the 2 × 1011-body problem. This is of course impossible, but
we can still make some simple considerations about the general properties
of such a system. We have already encountered one such general property,
the fact that the center of mass maintains a constant velocity in the absence
of external forces. A second law governing a large system is the virial the-

orem which we will deduce here. The virial theorem has a wide range of
applications in astrophysics, from the formation of stars (in which case the
bodies of the system are the atoms of the gas) to the formation of the largest
structures in the universe, the clusters of galaxies. We will then apply the
virial theorem to some of these problems in the coming lectures. Here we
will show how to prove the theorem.

The virial theorem is a relation between the total kinetic energy and the
total potential energy of a system in equilibrium. We will come back to the
exact definition of the equilibrium state at the end of the proof.

We will consider a system of N particles (or bodies) with mass mi, posi-
tion vector ~ri, velocity vector ~vi and momentum ~pi = mi~vi (see figure 1). For
this system, the total moment of inertia is given by (remember from your
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Figure 1: The N-body system.

mechanics classes?)

I =
N∑

i=1

mi|~ri|
2 =

N∑

i=1

mi~ri · ~ri.

The time derivative of the moment of inertia is called the virial,

Q =
1

2

dI

dt
=

N∑

i=1

~pi · ~ri.

To deduce the virial theorem we need to take the time derivative of the virial

dQ

dt
=

N∑

i=1

d~pi

dt
· ~ri +

N∑

i=1

~pi · ~vi,

where Newton’s second law gives

d~pi/dt = ~Fi
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~Fi being the sum of all forces acting on particle i. We may write this as

dQ

dt
=

N∑

i=1

~Fi · ~ri +
N∑

i=1

miv
2

i ,

where the last term may be expressed in terms of the total kinetic energy of
the system K =

∑

i 1/2miv
2

i

dQ

dt
=

N∑

i=1

~Fi · ~ri + 2K. (1)

We will now try to simplify the first term on the right hand side,

N∑

i=1

~Fi · ~ri =
N∑

i=1

∑

j 6=i

~fij · ~ri,

where ~fij is the gravitational force on particle i from particle j. The last
sum is a sum over all particles j except particle j = i. The double sum thus
expresses a sum over all possible combinations of two particles i and j, except
the combination where i = j. We may view this as an N × N matrix where
we sum over all elements ij in the matrix, except the diagonal elements ii.
We divide this sum into two parts separated by the diagonal (see figure 2),

N∑

i=1

~Fi · ~ri =
N∑

i=1

∑

j<i

~fij · ~ri

︸ ︷︷ ︸

≡A

+
N∑

i=1

∑

j>i

~fij · ~ri

︸ ︷︷ ︸

≡B

We now rewrite the sum B as

B =
N∑

i=1

∑

j>i

~fij · ~ri =
N∑

j=1

∑

i<j

~fij · ~ri,

where the sums have been interchanged (you can easily convince yourself
that this is the same sum by looking at the matrix in figure 2). We can also
interchange the name of the indices i and j (this is just renaming the indices,
nothing else)

B =
N∑

i=1

∑

j<i

~fji · ~rj.
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Figure 2: The matrix visualizing the summation

From Newton’s third law, we have ~fij = −~fji,

B = −
N∑

i=1

∑

j<i

~fij · ~rj.

Totally, we have,

N∑

i=1

~Fi · ~ri = A + B =
N∑

i=1

∑

j<i

~fij · ~ri −
N∑

i=1

∑

j<i

~fij · ~rj =
N∑

i=1

∑

j<i

~fij · (~ri − ~rj). (2)

Did you follow all steps so far? Here, the force ~fij is nothing else than the
well known gravitational force,

~fij = G
mimj

r3
ij

(~rj − ~ri),

where rij = |~rj − ~ri|. Note that the force points in the direction of particle
j. Inserting this into equation (2) gives

N∑

i=1

~Fi · ~ri = −
N∑

i=1

∑

j<i

G
mimj

r3
ij

r2

ij =
N∑

i=1

∑

j<i

Uij ,
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where Uij is the gravitational potential energy between particle i and j. This
sum is the total potential energy of the system (do you see this?), the sum
of the potential between all possible pairs of particles (note that one pair of
particle should be counted only once, this is why there is a j < i in the latter
sum). Thus, we have obtained an expressions for the two terms in equation
(1) expressing the time derivative of the virial

dQ

dt
= U + 2K.

Finally we will use the equilibrium condition. We will take the mean value
of this expression over a long period of time,

〈
dQ

dt
〉 = 〈U〉 + 2〈K〉,

where

〈〉 = lim
τ→∞

1

τ

∫ τ

0

dt.

For the term on the left hand side, we find

lim
τ→∞

1

τ

∫ τ

0

dQ

dt
dt = lim

τ→∞

Q(τ) − Q(0)

τ
≡ 0,

for a system in equilibrium. This is the definition of the equilibrium state in
which the system needs to be for the virial theorem to hold. In order for this
to be fulfilled, the quantities Q(τ) and Q(0) need to have finite values. If,
for instance, the system is bound and the particles go in regular orbits, the
virial Q will oscillate regularly between two finite values. In this case, the
last expression above will go to zero as τ → 0. If Q had not been limited,
which could happen for a system which is not bound, then Q could attain
large values with time and it would not be clear that this expression would
approach zero as τ → ∞. So a bound system in equilibrium obeys

〈K〉 = −
1

2
〈U〉.

This is the virial theorem. In order to obtain 〈K〉 and 〈U〉 we need to take
the average of the kinetic and potential energy over a long time period. In
the case of the solar system, this is easy: The orbits are periodic so it suffices
to take the average over the longest orbital period.
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Averaging a system over a long time period may be equal to averaging the
system over the ensemble. This is the ergodic hypothesis. Mathematically it
can be written as

lim
τ→∞

1

τ

∫ τ

0

dt → lim
N→∞

1

N

N∑

i=1

.

If a bound system has a huge number of particles (N → ∞), it is equivalent
to seeing the system over a long period of time (τ → ∞). Thus, we can
apply the virial theorem to a galaxy by taking the mean of the kinetic and
potential energy of all stars in the galaxy in a given instant. According to
the ergodic hypothesis, it is not necessary in this case to take the mean of
the kinetic and potential energy over a very long period of time. Since the
time scales for changes for such huge systems is very long, it is much easier
to simply take the average over all stars. The ergodic theorem thus says that
we can replace the mean value from being a time average to be an average
over all bodies in the system.

2 Applying the virial theorem to a collapsing

cloud of gas

To show the power of the virial theorem we will apply it to a system with
very many particles and show how properties of this complex system may be
calculated. In the exercises you will find two more examples of applications
of the virial theorem to problems of a very different nature. The example
presented in this section is also an appetiser for the lectures on stellar evo-
lution coming later.

Before the advent of the theory of relativity, the source of the energy
that powers stars was sought. One suggestion was that the stellar energy
was gravitational energy that is being radiated away as the cloud of gas re-
tracts. A star starts out as a huge cloud of gas which starts collapsing due
to its own force of gravity. Gas falls towards the center of the cloud and
releases gravitational energy in the form of electromagnetic radiation as it
falls. As long as the cloud keeps collapsing, energy is radiated away and
could possibly explain the energy production in stars. To check if this is a
plausible explanation, we will need to calculate the total energy, kinetic plus
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potential, that the star could possibly radiate away during its collapse and
compare this with the energy output from the Sun. To calculate the total
energy of such a cloud, we need to invoke the virial theorem. A collapsing
cloud of gas is a bound many-body system and the virial theorem should
apply.

We will assume that the cloud is spherically symmetric with radius R
and mass M . We need to calculate the total energy, kinetic plus potential,
of such a cloud. Thanks to the virial theorem, it suffices to calculate only
the potential energy. The total energy is given by

E = K + U = −
1

2
U + U =

1

2
U,

where K is kinetic energy and U is potential energy. Using the virial theo-
rem 2K = −U , we replace K by U and obtain an expression for the total
energy given only in terms of the total potential energy. I have skipped time
average here since this is a system with very many particles and we can use
the ergodic hypothesis. Thus, if we are able to calculate the total poten-
tial energy of the cloud, we would also obtain the total mechanical energy
(kinetic+potential). To obtain the total potential energy, we will start by
considering the potential du of a tiny particle of mass dm inside the cloud at
a distance r from the center. We have learned (see the lectures on dark mat-
ter) that the gravitational forces from a spherical shell of matter add to zero
inside this shell. Thus we need only to consider the gravitational attraction
on the mass dm from the sphere of matter inside the position of the mass.
This is a sphere of radius r with mass M(r). Being a sphere, Newton’s law
of gravitation applies as if it were a point mass located at the center with
mass M(r). Thus the potential energy between the particle dm and the rest
of the cloud (the part inside the particle) is

du = −G
M(r)dm

r
.

We integrate this equation over all masses dm in the shell of thickness dr at
distance r from the center. We assume that the mass density in the shell is
given by ρ(r). We then obtain the potential energy dU between the shell and
the spherical mass M(r) inside the shell.

dU = −G
M(r)4πr2ρ(r)dr

r
.
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To obtain the total potential energy U, we need to integrate this expression
over all radii r out to the edge of the cloud at r = R,

U = −4πG
∫ R

0

M(r)ρ(r)rdr.

We would generally need to know the density ρ(r) in order to obtain M(r)
and to integrate this equation. The scope here is to obtain an approximate
expression giving us an idea about the mass and radius dependence of the
energy and to obtain an order of magnitude estimate. For this purpose, we
assume that the density is constant with a value equal to the mean density
of the cloud,

ρ =
M

4/3πR3
.

This gives M(r) = 4/3πr3ρ and we can integrate the equation

U = −4πG

(

M

4/3πR3

)2

4/3π
∫ R

0

r4dr

= −
3GM2

5R

From the virial theorem, the total energy is then (check!)

E =
1

2
U = −

3GM2

10R
.

This is the total energy of a cloud of gas with mass M and radius R. The
energy that the Sun has radiated away during its lifetime can be written as

Eradiated = E(bigR) − E(R⊙),

where ’big R’ refers to the radius of the cloud when it started collapsing and
R⊙ is the current radius of the Sun. The total energy of the cloud goes as
∝ 1/R, so for the initial cloud this quantity can be approximated to zero.
Thus we are left with

Eradiated =
3GM2

⊙

10R⊙

,

where M⊙ is the mass of the Sun. Inserting numbers for the mass and radius
of the Sun we obtain Eradiated ≈ 1.1 × 1041J . Assuming that the Sun has
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been radiating with the same luminosity L⊙ (dE/dt) during its full lifetime,
we can calculate the age of the Sun,

∆t =
Eradiated

L⊙

≈ 107years.

If gravitational collapse was indeed the source of solar energy, the Sun couldn’t
have lived longer than about 10 millions years. Several geological findings
have shown that the Earth and therefore also the Sun has existed for about
500 times as long. Thus using the virial theorem we have shown (using some
assumptions) that gravitational collapse cannot satisfactory explain the gen-
eration of energy in the Sun.

3 Problems

Problem 1 (10 min. - 20 min.)

In a way we can look at the virial theorem as a generalization of Kepler’s
third law to a many-body system. Show that for the two-body problem, the
virial theorem is identical to Kepler’s third law in the Newtonian form (as
deduced in the exercises in lecture notes 1-2). Assume circular orbits. Start
with the virial theorem, insert expressions for the energies and show Kepler’s
third law. (you won’t get more help here...).

Problem 2 (2 - 2.5 hours)

Fritz Zwicky was the first to note that there is some missing matter in the
universe. In 1933, several years before the discovery of the flat rotation curves
in the galaxies, he used the virial theorem to calculate the mass of galaxies
in the Coma Cluster. A cluster of galaxies is a cluster of a few hundred
galaxies orbiting a common center of mass. The Coma Cluster is one of our
neigbouring clusters of galaxies. He found that the mass of the Coma Cluster
calculated using the virial theorem was much larger than the mass expected
from the visible luminous matter. In this problem we will try to follow his
example and estimate the mass of galaxies in a cluster of galaxies. We will
consider a simulated cluster of about 100 galaxies. We will assume that the
cluster consists of these 100 brightest galaxies and assume that the remaining
galaxies are too small to affect our calculations significantly.
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1. Looking in the telescope we see that the cluster is spherical, the galaxies
are evenly distributed inside a spherical volume. The distance to the
cluster is 85 Mpc. You observe the radius of the cluster to be 32′. What
is the radius of the cluster in Mpc?

2. All galaxies in the cluster appear to be very similar to the Milky Way,
both in the number of stars and the type of stars. The galaxies look
so similar to each other that we can assume that all the galaxies have
the same mass m. We know that the Milky Way has about 2 × 1011

stars. Assuming that the mean mass of a star equals the mass of the
Sun, what is the estimated total luminous mass m of these galaxies?

3. Use the virial theorem to show that the mass m of a galaxy in the
cluster can be written as

m =

∑N
i=1

v2

i

G
∑N

i=1

∑

j>i 1/rij

,

where rij is the distance between galaxy i and galaxy j.

4. You will find a file with data for each of the galaxies here:

http://folk.uio.no/frodekh/AST1100/lecture5/galaxies.txt

The first column in the file is the observed angular distance (in ar-
cminutes) from the center of the cluster along an x-axis. The second
column in the file is the observed angular distance (in arcminutes) from
the center of the cluster along an y-axis. (the x-y coordinate system is
chosen with an arbitrary orientation on the plane of observation (which
is perpendicular to the line of sight)). The third column is the mea-
sured distance to the galaxy (from Earth) in Mpc. The fourth column
is the position of the spectral line at 21.2cm for the given galaxy in
units of m.

(a) Using these data, what is the radial velocity of the cluster with
respect to us ? Remember than the velocity of a galaxy can be
written as

v(gal) = v(cluster) + v(rel),

where v(gal) is the total velocity of the galaxy with respect to us,
v(cluster) is the velocity of the cluster (of the center of mass of
the cluster) with respect to us and v(rel) is the relative velocity
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of a galaxy with respect to the center of mass of the cluster. The
relative velocities with respect to the center of mass are random,
so for a large number of galaxies the mean

1

N

N∑

i=1

vi(rel) → 0

goes to zero.

(b) Make a plot showing how this cluster appears in the telescope:
draw the x-y axes (using arcminutes as units on the axes) and
make a dot at the position for each galaxy. Remember that in
Python you can plot for instance a circle at each data point by
using plot(x,y,’o’).

(c) Use these data and the expression above for the mass of a galaxy
from the virial theorem to obtain a minimum estimate of the total
mass of a galaxy in the cluster. How does it compare to the
estimate you obtained for luminous matter above ? hint 1: To
make the double sum in Python you can construct two FOR-loops,
one over the index i and one over the index j. Inside the two FOR-
loops, you add the expression inside the sum for indices i and j to
the final result. hint 2: To find the distance between two galaxies
i and j, it is convenient to find the x, y and z coordinates of each
galaxy in meters.

(d) Because the inclinations of the velocities with the line of sight
is not 90◦, your estimate is a minimum estimate of the mass.
What is the expected mean value taken over many galaxies of
the expression sin2 i where i is inclination? We assume that the
inclination is random (with a uniform distribution). Remember
that the mean value of a function f(x) is given generally by

〈f(x)〉 =

∫

dxf(x)P (x)
∫

dxP (x)
,

where P (x) is the statistical distribution, i.e. the probability of
having a value x. In this case, the distribution is uniform, meaning
that there is an equal probability for getting any value of the
inclination i. We may thus set P (x) = 1. The integration in this
general expression is done over all possible values of x.
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(e) Can you use this to obtain a more accurate estimate of the mass
?
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