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Chapter 

Fundamental formalism

Suggested reading for this chapter: Raimes [], sections .–., and Gross/Runge/Heinonen [], section I..
Chapter  of Szabo/Ostlund [] contains a nice refresher on mathematical topics, including linear algebra.

. Many-particle systems

.. Hilbert space and Hamiltonian
We discuss the non-relativistic quantum mechanical description of a system of many particles. For sim-
plicity, we consider N identical particles.
Whereas the classical state of such a system is a point in phase space, the quantum state is a wavefunc-

tion depending on all the coordinates:

Ψ = Ψ(x , x ,⋯, xN), (.)

where x i is a point in the con�guration space X, the space where each particle “lives”. �e con�guration
space for all N particles is thus XN , and

Ψ ∶ XN Ð→ C. (.)

Example: �e con�guration space for an electron is R × {− 
 ,+


}. A single electron’s con�guration

is x = (r⃗, α), where α = ± 
 is the projection of the electron spin along some axis. �e one-electron

wavefunction can thus be considered a two-componentwavefunction. �eN-electronwavefunction is thus
a function ofN coordinates r⃗ i andN spin variables α i , in total N components for each of the combinations
of the spins.
Example: A nucleon has two discrete degrees of freedom: spin and isospin. �us, X = R ×{− 

 ,+

}×

{− 
 ,+


}, x = (r⃗, α, τ). A single nonrelativistic nucleon thus has a four-component wavefunction, and N

nucleons N components.
Remark, for orientation only: Mathematically, X is a measure space, which means that a function

ψ ∶ X → C can be integrated over subsets of X. For subsets of Rn , the standard measure is Lebesgue
measure, which gives an integral slightly more general than the Riemann integral encountered in intro-
ductory analysis courses. For discrete sets, the standard measure is counting measure, where the integral

Since the particles are identical, the con�guration space is actually the quotient space XN/SN , where SN is the permutation
group of N objects. �is means that we identify points in XN that di�er only by a permutation. Suppose X = R . �en XN is a at
space. But XN/SN is actually a curved space! For low-dimensional systems, X = R or X = R , one can show that particle statistics
is not con�ned to only bosons or fermions. See [].





is simply a sum. See also the small section on �nite dimensional spaces further down. �is remark is for
orientation only. For us, we simply state that we integrate over continuous degrees of freedom and sum over
discrete degrees of freedom. For X = Rd × S with S = {s , s ,⋯, sn} a discrete set, we de�ne

∫
X
f (x)dx =∑

s∈S
∫
Rd

f (r⃗, s)dd r⃗.

�ewavefunction has a probabilistic interpretation: P(x ,⋯, xN) = ∣Ψ(x , x ,⋯, xN)∣ is the probabil-
ity density for locating all particles at the point (x ,⋯, xN) ∈ XN . �erefore, Ψ must be square integrable,
i.e., be in the Hilbert space L(XN),

Ψ ∈ L(XN). (.)

All physics can be obtained from the state Ψ.
�e governing equation in non-relativistic quantum mechanics is the time-dependent Schrödinger

equation (TDSE):

ĤΨ(x , x ,⋯, xN , t) = iħ
∂
∂t
Ψ(x , x ,⋯, xN , t). (.)

�e system Hamiltonian Ĥ is obtained from its classical counterpart (if such exists) by a procedure called
Weyl quantization NB: Add reference. If Ĥ does not explicitly depend on time, the TDSE can be “solved”
by instead considering the time-independent Schrödinger equation (TISE),

ĤΨ(x , x ,⋯, xN) = EΨ(x , x ,⋯, xN). (.)

�e reason is well-known: the evolution operator is diagonal in the eigenbasis.
�e time-independent Schödinger equation is the main focus in this course, and we will only scratch

the surface. Ψ is a very, very, very complicated function. Intuitively, onemight think that solving forΨ is N
times as hard as solving for anN = wavefunction. However,Ψ is a function of allN coordinates. Resolving
each coordinate on a grid with, say, K points requires KN points in total. For K =  (which is rather coarse)
and N =  (e.g., a Ca nucleus), we need  ≈  data points! Describing the correlated motion of
N quantum particles is harder than the pioneers of quantum mechanics thought! Literally thousands of
researchersworldwide aremake a living out of devisingmore or less clever schemes for �nding approximate
solutions.

.. �e manybody Hamiltonian
Having introduced the wavefunction, we now consider the Hamiltonian. In this course, we shall consider
only Hamiltonians on the following generic form:

Ĥ =
N

∑
i=
ĥ(i) + 



N

∑
i , j=
i≠ j

ŵ(i , j)

= Ĥ + Ŵ .

(.)

where ĥ(i) denotes a single-particle operator acting only on the degrees of freedom of particle i, and
ŵ(i , j) = ŵ( j, i) denotes a two-body operator that acts only on the degrees of freedom of the pair (i , j),
i ≠ j.
Of course, one could consider three-body forces aswell, and even higher. Such occur in nuclear physics.

We will rarely have occasion to work with such operators in this course.
Let us take the Hamiltonian of an atom in the Born–Oppenheimer approximation as an example.





�eHamiltonian for a free electron is just its kinetic energy,

t̂ = 
me

p = 
me

(−iħ∇) = − ħ

me
∇ . (.)

If it is moving in an external �eld, such as the Coulomb �eld set up by an atomic nucleus of charge +Ze at
the location R⃗, we obtain the total single-particle Hamiltonian

ĥ = t̂ + v̂ = − ħ

me
∇ − Ze

∥R⃗ − r⃗∥
. (.)

�e Hamiltonian for a system of N electrons, neglecting inter-electronic interactions, becomes

Ĥ =
N

∑
i=
ĥ(i) =

N

∑
i=

[− ħ

me
∇
i −

Ze

∣r⃗ i − R⃗∣
] . (.)

�e electron pair (i , j) interacts via the Coulomb force:

w(i , j) = e

∣r⃗ i − r⃗ j ∣
. (.)

�us,

Ŵ = 


N

∑
i , j=
i≠ j

w(i , j) = 


N

∑
i , j=
i≠ j

e

∣r⃗ i − r⃗ j ∣
. (.)

.. Separation of variables
If we neglect the two-body part Ŵ of the Hamiltonian, we may “solve” the TISE by separation of vari-
ables. We do this now as a preliminary step, before we discuss the consequences of the particles being
indistinguishable.
We seek an eigenfunction Ψ ∈ L(XN) to the non-interacting Hamiltonian Ĥ. Write

Ψ(x ,⋯, xN) = ψ(x)ψ(x)⋯ψN(xN). (.)

Plug in to the TISE and divide by Ψ to get

∑
i
ψ−i [h(i)ψ i] = E . (.)

�e right hand side is a constant. �e le� hand side is a sum of functions f + f +⋯ fN , f i = f i(x i). �is
can only sum to a constant if f i(x i) is a constant,

ĥψ i(x) = є iψ i(x), (.)

which is just the TISE for a single particle! �us, for any collection of N eigenvalues of the single-particle
problem, we get a solution of the N particle problem. We obtain that the total eigenfunction is

Ψ(x , x ,⋯, xN) = ψ i(x)ψ i(x)⋯ψ iN (xN) (.)

with eigenvalue
E = є i +⋯ + є iN . (.)

One can also show that the converse is true: any eigenfunction Ψ can be taken on the above form.





.. Particle statistics
Our particles are identical, or indistinguishable. �ere is abundant evidence that all elementary particles
must be treated as such. �at means that our probability density must be permutation invariant in the
following sense: let σ ∈ SN be a permutation of N indices, and let (x ,⋯, xN) ∈ XN be a con�guration of
the N particles. �en we must have

∣Ψ(x , x ,⋯, xN)∣ = ∣Ψ(xσ() , xσ() ,⋯, xσ(N))∣ . (.)

�is is equivalent to
Ψ(x ,⋯, xN) = e iαΨ(xσ() , xσ() ,⋯, xσ(N)) (.)

for some real α, that may depend on σ . (Clearly, our separation of variables eigenfunctions do not satisfy
this!)
De�ne a linear operator P̂σ via

(P̂σΨ)(x ,⋯, xN) = Ψ(xσ() , xσ() ,⋯, xσ(N)), (.)

that is, the operator that evaluates Ψ at permuted coordinates. We have reformulated particle indistin-
guishability as: Ψ is an eigenfunction of P̂σ for every σ ∈ SN , with eigenvalue possibly depending on σ .
One can show (see the exercises), that either PσΨ = Ψ for every σ ∈ SN , or PσΨ = (−)∣σ ∣Ψ for every

σ ∈ SN , where ∣σ ∣ is the number of transpositions in σ , and thus (−)∣σ ∣ is the sign of the permutation.
In the former case, Ψ is “totally symmetric with respect to permutations”, and in the latter case, “totally
anti-symmetric”.
It is a postulate that particles occuring in quantum theory (in three-dimensional space) are of one of two

types: bosons or fermions. Bosons have totally symmetric wavefunctions only, and fermions have totally
anti-symmetric wavefunctions only. To cite Leinaas and Myrheim [], “�e physical consequences of this
postulate seem to be in good agreement with experimental data.” Wolfgang Pauli proved (using relativistic
considerations) that wavefunctions of half-integral spin must be anti-symmetric, and wavefunctions of
particles with integral spinmust be symmetric, connecting the postulate with the intrinsic spin of particles.
To this day, no particles with other spin values have been found.
In this course, we focus on fermions. See, e.g., [] for the general case.

Exercise .. In this exercise, we prove that ifΨ ∈ L(XN) is an eigenfunction for all P̂σ , then the eigenvalue
is either  or (−)∣σ ∣.
We introdice transpositions: τ ∈ SN is transposition if it exhanges only a single pair (i , j), i ≠ j. Write

P̂i j ≡ P̂τ .
Assume that Ψ ∈ L(XN) is such that, for all σ ∈ SN ,

P̂σΨ = sσΨ, sσ = e iα(σ) .

Show that P̂i j = , and �nd all the possible eigenvalues of P̂i j .
Under the assumption on Ψ, show that if s i j is the eigenvalue of P̂i j ,

P̂i jΨ = s i jΨ,

then, for any other pair (i′ , j′), the eigenvalue is s i j = s i′ j′ . You will probably need to use the group
theoretical properties of permutations.
We have established that the eigenvalue of a transposition is a characteristic of Ψ, let s = s i j . Compute

the eigenvalue of Pσ for arbitrary σ in terms of s. △





Exercise .. Let

Ĥ =
N

∑
i=
ĥ(i) + ∑

(i , j)
ŵ(i , j).

Show that Ĥ commutes with Pσ for any permutation σ ∈ SN , i.e., show that for any wavefunction Ψ ∈
L(XN),

ĤPσΨ = Pσ ĤΨ. (.)

△

Exercise .. In this exercise, we consider X = R, i.e., no spin. Consider each of the below functions.

. Ψ(r⃗ , r⃗) = e−α∣r⃗−r⃗ ∣.

. Ψ(r⃗ , r⃗) = sin(e⃗z ⋅ (r⃗ − r⃗)), where e⃗z is the unit vector in the z-direction.

. Ψ(r⃗ , r⃗ , r⃗) = sin[r⃗ ⋅ (r⃗ × r⃗)]e−∣r⃗ ∣

e−∣r⃗ ∣


e−∣r⃗ ∣



Answer the following questions, per function:
Is the function totally symmetric with respect to particle permutations?
Is the function totally antisymmetric with respect to particle permutations?
Is the function square integrable?

△

.. Slater determinants
�e set of totally antisymmetric wavefunctions L(XN)AS in L(XN) form a closed subspace of Hilbert
space: it is a linear space which is complete. �us L(XN)AS is a Hilbert space in its own right, and from
our perspective it is the “true” Hilbert space of N identical fermions.
�e antisymmetry of a wavefunction of N coordinates is a quite complicated constraint. We are also

used to orthonormal bases, and it may seem daunting to come up with such a basis which is also antisym-
metric. Slater determinants are the solution.

Exercise .. Prove that L(XN)AS is a linear space. Additionally, if you have the mathematical back-
ground, prove that it is a closed subspace using the Hilbert space metric. △

�e original space has a tensor product representation:

L(XN) = L(X)⊗ L(X)⊗⋯⊗ L(X) (N factors). (.)

Here, L(X) is the Hilbert space of a single fermion. Let us assume that we have an orthonormal basis
(ONB) ϕ, ϕ,⋯, for this space, such that we can expand any ψ ∈ L(X) as

ψ(x) =∑
µ
cµϕµ(x), (.)

with
⟨ϕµ ∣ϕν⟩ = δµ ,ν (.)





and
∥ψ∥ =∑

µ
∣cµ ∣ . (.)

�us, ψ(x) is represented by an (in�nite) vector [cµ] = (c , c ,⋯). Because of Eq. (.), we may construct
a basis for L(XN) by tensor products,

Φ̃µ ,⋯,µN (x ,⋯, xN) = ϕµ(x)ϕµ(x)⋯ϕµN (xN). (.)

Any Ψ ∈ L(XN) can be written

Ψ(x ,⋯, xN) =∑
µ
⋯∑

µN
cµ ,⋯,µN Φ̃µ ,⋯,µN (x ,⋯, xN), (.)

with
⟨Φ̃µ ,⋯,µN ∣Φ̃ν ,⋯,νN ⟩ = δµ ,ν⋯δµN ,νN . (.)

In the N =  case, we see that Ψ(x , x) can be represented by an in�nitematrix [cµ µ], and in the N = 
case a D matrix, and so on.
Remark: Compare this with the separation-of-variables treatment. If the set of eigenfunctions ψ i ∈

L(X) of ĥ is complete, our separation of variables eigenfunctions Ψ = ψψ⋯ψN form a complete set too.
Another remark: For arbitrary N , the tensor product basis described can be counted. For arbitrary N ,

let us introduce a generic index, a multiindex, k = (µ ,⋯, µN). �ere is a one-to-one mapping between
multiindices and the natural numbers N = {, , , . . .}. �us, writing ξ = (x ,⋯, xN)

Ψ(ξ) =∑
k
ckΦ̃(ξ), ⟨Φ̃k ∣Φ̃ℓ⟩ = δk ,ℓ (.)

all the various N are represented with the same formula. �ere is nothing special about c being a vector, a
matrix, a D matrix, etc. �ey are all fundamentally equivalent, since the basis set can be counted.
Important message so far: a single-particle basis set {ϕµ} can be used to construct a basis for L(XN).
What about or “actual” Hilbert space, L(XN)AS? Can we construct a basis for this using our single-

particle basis? Yes, this is the role of Slater determinants.
What is the simplest totally antisymmetric wavefunction we can create, starting with some single-

particle functions? If we start with N = , and consider the product ϕ(x)ϕ(x), this is not anti-
symmetric. But if we consider the linear combination

Φ(x , x) = ϕ(x)ϕ(x) − ϕ(x)ϕ(x), (.)

this is antisymmetric if we exchange x and x. Continuing with N = , we quickly realize that in order to
obtain something antisymmetric out of ϕ(x)ϕ(x)ϕ(x), we must take the linear combination

Φ(x , x , x) = ϕ(x)ϕ(x)ϕ(x) − ϕ(x)ϕ(x)ϕ(x) − ϕ(x)ϕ(x)ϕ(x)−
ϕ(x)ϕ(x)ϕ(x) + ϕ(x)ϕ(x)ϕ(x) + ϕ(x)ϕ(x)ϕ(x),

(.)

each term representing a permutation of the indices (). �ere is nothing special about () of course,
(µµµ) also works. Note that if one of these indices are equal, then the whole linear combniation is zero
as well.
�e generalization to N indices is in fact a determinant, and we make a de�nition:

De�nition .. Let ϕ, ϕ, . . . , ϕN be arbitrary single-particle functions in L(X) (not necessarily orthonor-
mal). �e Slater determinant de�ned by these functions is denoted by [ϕϕ⋯ϕN], and is de�ned via the





formula

[ϕ , ϕ ,⋯, ϕN](x ,⋯, xN) =
√
N!

RRRRRRRRRRRRRRRRRR

ϕ(x) ϕ(x) ⋯ ϕ(xN)
ϕ(x) ϕ(x) ⋯ ϕ(xN)

⋮ ⋮ ⋱ ⋮
ϕN(x) ϕN(x) ⋯ ϕN(xN)

RRRRRRRRRRRRRRRRRR

= √
N!
∑
σ∈SN

(−)∣σ ∣
N

∏
i=

ϕσ(i)(x i)

= √
N!
∑
σ∈SN

(−)∣σ ∣
N

∏
i=

ϕ i(xσ(i))

(.)

Note: the /
√
N! is there for normalization purposes, see later. �e second formula in the de�nition

follows from the theory of matrix determinants.

Exercise .. Show that the two last lines in Eq. (.) are equivalent. �is requires some manipulation of
permutations. △

Exercise .. Let A be an N × N matrix. Let ϕ j , j = ,⋯,N be given single-particle functions, and let ψk ,
k = ,⋯,N be de�ned by

ψk =∑
j
ϕ jA jk . (.)

Prove that
[ψ ,ψ ,⋯,ψN] = det(A)[ϕ , ϕ ,⋯, ϕN]. (.)

(Hint: use antisymmetry of Slater determinants with respect to permutations of single-particle functions,
and the expression det(A) = ∑σ∈SN (−)

∣σ ∣Aσ()Aσ()⋯ANσ(N) .) △

Exercise .. NB:�is exercise has been updated since it was given as part of Problem set  (H). �e
assumption that the indices were sorted was added. Suppose that {ϕµ}, µ = , ,⋯ are orthonormal. Prove
that Φµ ,⋯,µN = [ϕµϕµ ,⋯, ϕµN ] is normalized,

⟨Φµ µ⋯µN ∣Φµ µ⋯µN ⟩ = .

Prove that
⟨Φµ µ⋯µN ∣Φνν⋯νN ⟩ = δµν⋯δµN νN ,

under the assumption that µ⃗ and ν⃗ are sorted in increasing order. What do you get for the inner product
if the indices are not sorted? △

Observation: Determinant properties imply that permutation of particle indices gives sign change.
Permutation of function indices gives sign change:

[ϕ ,⋯, ϕ i ,⋯, ϕ j ,⋯, ϕN] = −[ϕ ,⋯, ϕ j ,⋯, ϕ i ,⋯, ϕN] (.)

[ϕ ,⋯, ϕN](x ,⋯, x i ,⋯, x j ,⋯, xN) = −[ϕ ,⋯, ϕN](x ,⋯, x j ,⋯, x i ,⋯, xN). (.)
Moreover, two equal rows (i.e., equal function indices) means that two of the single-particle functions

are identical, giving a vanishing determinant. If two columns in Eq. (.) are identical, the determinant
vanishes. Two columns equal mean that we evaluate at some x i = x j .�is is the Pauli exclusion principle.





�eorem .. Let {ϕµ} be an orthonormal basis for L(X). �en, any Ψ ∈ L(XN)AS can be expanded in
the Slater determinants

[ϕµ , ϕµ ,⋯, ϕµN ]. (.)

Moreover, if we choose an ordering of the indices µ, the Slater determinants satisfying µ < µ < ⋯ < µN form
an orthonormal basis for L(XN)AS.

Proof. Step : Expand Ψ in the tensor product basis.

Ψ(x ,⋯, xN) = ∑
µ ,⋯,µN

cµ ,⋯,µN Φ̃µ ,⋯,µN (x ,⋯, xN). (.)

Step : Show that the coe�cients c µ⃗ are antisymmetric under permutation. For simplicity, consider a
transposition of i with j, i < j:

P̂i jΨ(x ,⋯, xN) = ∑
µ ,⋯,µN

cµ ,⋯,µN P̂i jΦ̃µ ,⋯,µN (x ,⋯, x i ,⋯, x j ,⋯, xN)

= ∑
µ ,⋯,µN

cµ ,⋯,µN Φ̃µ ,⋯,µN (x ,⋯, x j⋯, x i ,⋯, xN)

= ∑
µ ,⋯,µN

cµ ,⋯,µN Φ̃µ ,⋯,µ j ,⋯,µ i ,⋯,µN (x ,⋯, xN)

= ∑
µ ,⋯,µN

cµ ,⋯,µ j ,⋯,µ i ,⋯,µN Φ̃µ ,⋯,µN (x ,⋯, xN)

= − ∑
µ ,⋯,µN

cµ ,⋯,µN Φ̃µ ,⋯,µN (x ,⋯, xN)

(.)

Projecting the two last inequalities onto Φ̃ν ,⋯,νN gives

cν ,⋯,ν j ,⋯,ν i ,⋯,νN = −cν ,⋯,ν i ,⋯,ν j ,⋯,νN . (.)

We decompose an arbitrary σ ∈ SN into transpositions, and obtain

cµσ() ,µσ() ,⋯,µσ(N) = (−)∣σ ∣cµ ,⋯,µN . (.)

Step : Rearrange summation so that we exhibit Ψ as a linear combination of Slater determinants.
Note that we can write

∑
µ ,⋯µN

f (µ ,⋯, µN) = ∑
µ<µ<⋯<µN

∑
σ∈SN

f (µσ() ,⋯, µσ(N)), (.)

splitting the summation over orderedmultiindices and permutations of these. We now get

Ψ = ∑
µ<⋯<µN

∑
σ
(−)∣σ ∣cµ ,⋯,µN Φ̃µσ() ,µσ() ,⋯,µσ(N)

= ∑
µ<⋯<µN

(
√
N!cµ ,⋯,µN )

√
N!
∑
σ
(−)∣σ ∣Φ̃µσ() ,µσ() ,⋯,µσ(N)

= ∑
µ<⋯<µN

(
√
N!cµ ,⋯,µN )[ϕµ ,⋯, ϕµN ].

(.)

�is in fact proves that the Slater determinants, when we only use ordered indices, are su�cient to expand
anyΨL(XN)AS. Clearly, if we omit one such Slater determinant, not allΨ can be expanded. (In particular,
this omitted Slater determinant cannot be expanded in the rest!) �us, the Slater determinantswith ordered
indices form a basis.





Exercise .. Howmany terms are there in [ϕϕϕϕ](x , x , x , x), when expanded as a linear combi-
nation of tensor products? Write down the expansion explicitly. △

Exercise .. In this exercise, we de�ne the antisymmetrization operator A as

A = 
N! ∑σ∈SN

(−)∣σ ∣P̂σ . (.)

Now,
[ϕ ,⋯, ϕN] =

√
N!Aϕ(x)⋯ϕN(xN). (.)

An operator U is an orthogonal projector if and only if U  = U and U† = U .
Prove that A is an orthogonal projector from L(XN) onto L(XN)AS. △

. Second quantization

.. �e creation and annihilation operators
In this section, we introduce the following shorthand:

LN ≡ L(XN)AS (.)

since the space X is understood from context, and since we only deal with fermion spaces. We also intro-
duce the bra/ket notation for wavefunctions.
Recall that a basis for LN could be formed from an orthonormal basis {ϕµ} of L(X), by computing a

set of Slater determinants Φµ ,⋯,µN = [ϕµ ,⋯, ϕµN ], where µ < µ < ⋯ < µN were ordered. (If we permute
the index set, we get the same functionwith a possible sign change, so it is not an additional basis function.)
So far we have emphasized that [ϕµ ,⋯, ϕµN ] were functions, but in quantum mechanics the bra/ket

notation is useful. We therefore introduce the ket notation

∣ψ ,⋯,ψN⟩ = [ψ ,⋯,ψN] (.)

for an arbitrary Slater determinant. When {ϕµ} is a single-particle basis, we may choose to suppress all
the ϕ’s everywhere, and write

∣µ⃗⟩ = ∣µµ⋯µN⟩ , [ϕµ ,⋯, ϕµN ](x ,⋯, xN) = ⟨x⋯xN ∣µ⋯µN⟩ (.)

for a Slater determinant. If µ i = µ j then ∣µ⃗⟩ =  is the zero vector. We recall the antisymmetry properties,

P̂i j ∣µ⋯µ i⋯µ j⋯µN⟩ = − ∣µ⋯µ j⋯µ i⋯µN⟩ (.)

and more generally
P̂σ ∣µ⋯µN⟩ = (−)∣σ ∣ ∣µσ()⋯µσ(N)⟩ . (.)

For any ∣Ψ⟩ ∈ LN , we have the basis expansion

∣Ψ⟩ =
∼
∑
µ⃗

∣µ⃗⟩ ⟨µ⃗∣Ψ⟩ (.)





connecting with the earlier treatment. �e ∼ means that we sum only over ordered sets of indices. As we
saw earlier, the coe�cients ⟨µ⃗∣Ψ⟩ are permutation antisymmetric.
So far, we have used Greek letters µ, ν, etc., as single-particle indices. �ere is nothing special about

this, of course. We will later also use p, q, r, etc.
Looking at the determinant (.), we see that by adding a row containing the index ν, and a column

with coordinate xN+, we obtain an N +  particle Slater determinant (modulo a constant factor):

⟨x⋯xN+∣νµµ⋯µN⟩ =
√

(N + )!

RRRRRRRRRRRRRRRRRRRRRRR

ϕν(x) ϕν(x) ⋯ ϕν(xN) ϕν(xN+)
ϕµ(x) ϕµ(x) ⋯ ϕµ(xN) ϕµ(xN+)
ϕµ(x) ϕµ(x) ⋯ ϕµ(xN) ϕµ(xN+)

⋮ ⋮ ⋱ ⋮ ⋮
ϕµN (x) ϕµN (x) ⋯ ϕµN (xN) ϕµN (xN+)

RRRRRRRRRRRRRRRRRRRRRRR

(.)

Similarly, we can remove a row and column, and obtain an N −  particle Slater determinant.
�is inspires the creation and annihilation operators, thatmapwavefunctions between di�erent particle

number spaces:

c†ν ∶ LN → LN+ (.)

cν ∶ LN → LN− (.)

�e operator c†ν is called a creation operator and is, roughly de�ned, by inserting a row and column as
described. �e operator cν is the Hermitian adjoint of c†ν , and it will be shown that its action on a Slater
determinant corresponds to the mentioned removal of a row and column.
We de�ne the space L – the zero particle space – as a one-dimensional space spanned by the special

ket ∣−⟩, the vacuum state. �ere is nothing mysterious about this, it is just a de�nition that will be useful
later. Note that ∣−⟩ ≠ .
Recall that a linear operator is fully de�ned when we specify its action on a basis set. �is is how we

de�ne c†µ and cµ .
De�nition of the creation operator: For every single-particle index ν, we de�ne the creation operator

c†ν acting on the vacuum state by
c†ν ∣−⟩ = ∣ν⟩ . (.)

Since this is a Slater determinant with a single particle, we have, of course, ⟨x∣ν⟩ = ϕν(x). For an arbitrary
Slater determinant with N > , we de�ne the action by

c†ν ∣µ⋯µN⟩ ≡ ∣νµ⋯µN⟩ . (.)

We observe already that if there is a j such that ν = µ j , then ∣νµ⋯µN⟩ ≡ :

P̂ j ∣νµ⃗⟩ = − ∣νµ⃗⟩ = ∣νµ⃗⟩ = , ν = µ j . (.)

In terms of determinant coordinate expressions as in Eq. (.), c†ν inserts a column on the far right
with xN+ and inserts a row on the top with the index ν. Finally, the whole expression is renormalized.
[Recall that the basis Slater determinants were the determinants that had ordered indices. Assume that

µ⃗ is ordered. Clearly, c† ∣ν⃗⟩ is either zero or equal to (−) j ∣µµ⋯µ jνµ j+⋯µN⟩, which is a new basis
determinant. Here, j is chosen such that the augmented index set is ordered.]
Let us now consider the annihilation operator. �ere are no particles to remove in the vacuum state, so

we set
cν ∣−⟩ ≡ . (.)

Let µ⃗ be a multiindex. If ν = µ j for some j, we de�ne

cν ∣µ⃗⟩ ≡ (−) j− ∣µ⋯µ j−µ j+⋯µN⟩ . (.)





In terms of the coordinate determinant expression, this amounts to moving the jth row to the top with
j−  transpositions, giving the sign factor, and then crossing out the far right column and the �rst row, now
containing the index ν. �is moving of the jth rowmay seem like a complication compared to the creation
operator, but note that for c†ν we de�ned its action by inserting ν on the top. Moving ν to the ( j + )th
position will induce a (−) j . But cν removes a row at an in principle arbitrary location.

Exercise .. Prove that c†α and cα are Hermitian adjoints of each other, as the notation suggests. �us,
for any µ⃗ with N indices, and ν⃗ with N +  indices, show that

⟨µ⃗∣(cα ∣ν⃗⟩) = [⟨ν⃗∣(c†α ∣µ⃗⟩)]∗ (.)

△

.. Anticommutator relations
Recall that the anticommutator of two operators is de�ned by

{Â, B̂} ≡ ÂB̂ + B̂Â. (.)

In this section, we prove three important anticommutation relations:

{c†ν , c
†
ν} =  (.a)

{cν , cν} =  (.b)

{cν , c†ν} = δν ,ν . (.c)

Equation (.) is called the “fundamental anticommutator”.
Let ν , ν be a two single-particle indices, and let N ≥  be arbitrary. By the properties of determinants,

it is easy to see, that for any ∣µ⃗⟩ ∈ LN ,

c†ν c
†
ν ∣µ⃗⟩ = −c

†
ν c

†
ν ∣µ⃗⟩ . (.)

Why? �e right hand side is obtained by exchanging the two �rst rows of the determinant on the le� hand
side.
Since this equation holds for any basis vector, we have shown that the two creation operators anticom-

mute
{c†ν , c

†
ν} ≡ c

†
ν c

†
ν + c

†
ν c

†
ν = . (.)

Similarly, two annihilation operators anticommute,

{cν , cν} ≡ cν cν + cν cν = . (.)

We now prove that
{cν , c†ν} ≡ cν c

†
ν + c

†
ν cν = δν ,ν . (.)

Case : ν = ν = ν. Consider the expression

c†νcν ∣µ⃗⟩ . (.)

Case a: ν = µ j for some j. We get

c†νcν ∣µ⋯µN⟩ = c†ν(−) j− ∣µ⋯µ j−µ j+⋯µN⟩ = (−) j− ∣µ jµ⋯µ j−µ j+⋯µN⟩ = ∣µ⋯µN⟩ . (.)





We also get
cνc†ν ∣µ⋯µN⟩ = cν ∣µ jµ⋯µ j⋯µN⟩ = . (.)

Case b: ν ∉ µ⃗, ν is distinct from all the µ j . In this case, cν ∣µ⃗⟩ = , so

c†νcν ∣µ⋯µN⟩ = . (.)

On the other hand,
cνc†ν ∣µ⃗⟩ = cν ∣νµ⃗⟩ = (−) ∣µ⃗⟩ . (.)

Case  can be summarized as
{cν , c†ν} =  (.)

as desired.
Case : ν ≠ ν. Let µ⃗ be arbitrary, and consider the expression

c†ν cν ∣µ⃗⟩ . (.)

Case a: If either ν ∈ µ⃗ or ν ∉ µ⃗, the expression vanishes. Similarly,

cν c
†
ν ∣µ⃗⟩ = . (.)

Case b: ν ∉ µ⃗ and ν ∈ µ⃗ (ν = µ j):

c†ν cν ∣µ⃗⟩ = (−) j−c†ν ∣µ⋯µ j−µ j+⋯µN⟩ = ∣µ⋯µ j−νµ j+⋯µN⟩ , (.)

i.e., µ j = ν is replaced by ν. On the other hand,

cν c
†
ν ∣µ⃗⟩ = cν ∣νµ⋯µ j−µ jµ j+⋯µN⟩ = (−) j ∣νµ⋯µ j−µ j+⋯µN⟩ = (−) ∣µ⋯µ j−νµ j+⋯µN⟩ .

(.)
Summing, we see that Eq. (.) is proven in general.

.. Occupation number representation
Consider a given single-particle basis {ϕµ} and the corresponding basis of Slater determinants ∣µ⃗⟩.
Given µ⃗, we have N! rearrangements of the indices. All of the rearrangements give rise to the same

Slater determinant, up to the sign of the permutation. If σ ∈ SN is the permutation that sorts µ⃗ into
ν⃗ = σ(µ⃗), then

∣µ ,⋯, µN⟩ = (−)∣σ ∣ ∣µσ() ,⋯, µσ(N)⟩ = (−)∣σ ∣ ∣ν ,⋯, νN⟩ . (.)

So, the basis of Slater determinants can be chosen as those indexed by sorted indices.
A sorted set ofN indices µ⃗ is in - correspondencewith a subset of integers, or equivalently, by a picture

of �lled/un�lled circles, or occupied and unoccupied sites. Onemay say that the single-particle function ϕµ j
is occupied in ∣µ⃗⟩, while ν ∉ µ⃗ is unoccupied.
A commonname for “single-particle function” in chemistry is “orbital”, or “spin-orbital”. We sometimes

use the word “orbital” for “single-particle function”.
One can also consider µ⃗ as a binary number with N bits set: bit number ν is set if ν ∈ µ⃗, i.e., ν = µ j for

some j = ,⋯,N .
�us, the Slater determinant ∣µµµ⟩ = ∣, , ⟩ can be represented by the subset {µ , µ , µ} = {, , },

the picture





or the binary number

B = µ + µ + µ =  +  +  =  = . (.)

�edi�erent bits are called occupation numbers. �e vacuumhas no occupied single-particle functions,
and is represented by the binary number  or the empty set.
We use the notation

∣nn⋯nµ⋯⟩
to denote the Slater determinant with occupation numbers nµ ∈ {, }, and by de�nition we choose the
one determinant out of the N! possible that has µ⃗ sorted: µ < µ < ⋯ < µN . We have nµ =  if and only if
µ ∈ µ⃗. In the above example,

∣, , ⟩ = ∣⟩ . (.)
If no ambiguity can arise, we simply write

∣⟩
etc.
Again, we stress that occupation numbers only represent  of the N! Slater determinants possible to

construct with µ through µN , namely the one where all are sorted. But they still form a basis. In the
example,

∣⟩ = ∣, , ⟩ = − ∣, , ⟩ = − ∣, , ⟩ = − ∣, , ⟩ = + ∣, , ⟩ = + ∣, , ⟩ , (.)
exhausting all possibilities of N! = ! =  permutations. All these determinants are clearly linearly depen-
dent.
�e following de�nition can be useful:
Let µ⃗ be an index set, and let ν be an arbitrary index. �en #ν is the number of µ j that satis�es µ j < ν.

�us #ν counts the occupied single-particle functions “before” ν.

Exercise .. Let µ⃗ = {µ ,⋯, µN} be a given set of occupied orbitals, with occupation number represen-
tation

∣nnn⋯⟩
Show that:

c†ν ∣nnn⋯⟩ =
⎧⎪⎪⎨⎪⎪⎩

 if ν is occupied
(−)#ν ∣nnn⋯nν−νnν+⋯⟩ if ν is unoccupied

(.)

cν ∣nnn⋯⟩ =
⎧⎪⎪⎨⎪⎪⎩

 if ν is unoccupied
(−)#ν ∣nnn⋯nν−νnν+⋯⟩ if ν is occupied

(.)

△

Exercise .. Let ϕ i , i = , ,  be three orthonormal single-particle functions. Consider the determinants
∣, , ⟩, ∣, , ⟩, ∣, , ⟩, ∣, , ⟩, ∣, , ⟩ and ∣, , ⟩.
a) Are there further N =  Slater determinants that can be created using the single-particle orbitals ϕ i ,

i = , ,  only?
b) Write down a basis for the space spanned by the six determinants, i.e., a basis for all the vectors on

the form
∣Ψ⟩ = a ∣, , ⟩ + a ∣, , ⟩ + a ∣, , ⟩ + a ∣, , ⟩ + a ∣, , ⟩ + a ∣, , ⟩ .

(Here, a i are complex numbers.) △





.. Spin orbitals and orbital diagrams
Consider a system of electrons. Con�guration space is XN for N electrons, and for a single electron X =
Rd × {+,−}, so

L(X) = L(R)⊗C .

�is means that each ψ ∈ L(X) is a two-component function, one for spin-up and one for spin-down.
�e notation for spin can vary. Here, we use + for spin up and − for spin down, along the z-axis. �is

is arbitrary, of course. In chemistry, one o�en uses α for spin up, and β for spin down, as symbols. (�is is
the notation in Szabo and Ostlund, for instance.) Sometimes one uses arrows ↑ and ↓, or + 

 and −

 .

If {φp(r⃗)} is an orthonormal basis for L(R), the space part, and χ+(σ) and χ−(σ) are basis func-
tions for C, σ ∈ {+,−}, the spin space, we have a basis for L(X) via tensor products:

ϕµ(x) = ϕp ,α(r⃗, σ) = φp(r⃗)χα(σ).

Typically, one chooses

χ+ = () , χ− = ()

�at is,
χ+(+) = , χ+(−) = , χ−(+) = , χ−(−) = .

Or, yet another formula,
χα(σ) = δα ,σ .

�e operators Sx , Sy and Sz act on spin degrees of freedom only, and their matrices are given by the
Pauli matrices:

⟨σ ∣Sk ∣χα⟩ =


ħσk ,ασ .

�us,

⟨σ ∣Sx ∣χα⟩ =
ħ

( 
 ) (.)

⟨σ ∣Sy ∣χα⟩ =
ħ

( −i
i  ) (.)

⟨σ ∣Sz ∣χα⟩ =
ħ

( 
 −) = ħαδασ (.)

�e N-body spin operator is

Ŝk =
N

∑
i=
Sk(i) (.)

where Sk(i) acts only on the spin of particle i.
Suppose the Hamiltonian of the electronic system is independent of spin, i.e., the Hamiltonian acts only

on the degrees of freedom r⃗ i , and not σi for each particle. �en,

[Ĥ, Ŝz] = 

and we can �nd a common set of eigenvectors for Ĥ and Ŝz .
Consider the one-body part Ĥ of the Hamiltonian, which now is a purely spatial operator:

Ĥ =∑
i
ĥ(r⃗ i). (.)
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Figure .: Illustration of spin-orbitals and a Slater determinant of  electrons

Let ĥ, an operator on the space L(R), have a complete set of eigenfunctions, φp(r⃗),

ĥφp(r⃗) = єpφp(r⃗).

�en, as operator on L(X), we have the complete set ϕµ(r⃗, σ) = φp(r⃗)χα(σ), and we see that the single-
particle functions are doubly degenerate:

ĥϕp ,α(x) = єpϕp ,α(x), α ∈ {+,−}.

Here, µ = (p, α) is the combined space/spin quantum numbers.
In chemistry parlance, φp(r⃗) is an orbital, while ϕµ(x) is a spin-orbital. Only the spin-orbital is a

single-particle function in the sense that we use in this text, i.e., a bona �de element in L(X), the single-
particle Hilbert space. �e orbital is an element in L(R) andmust be adjoined with a spin basis function
to become a single-particle function, a spin-orbital.
Each spin-orbital can be occupied by only one electron, but each orbital has room for two – one spin up

and one spin down. One typically illustrates the eigenfunctions and the occupations of Slater determinants
via a diagram like Figure .. In the �gure, six spin-orbitals are occupied, and three orbitals are doubly
occupied. �e illustrated state is

c†,+c
†
,−c

†
,+c

†
,−c

†
,+c

†
,− ∣−⟩ . (.)

�is is the N = -electron ground-state wavefunction of Ĥ.

.. Fock space
�e space LN has the basis consisting of the Slater determinants ∣nnnn⋯⟩ with in total N occupied
orbitals, or N bits set in the binary representation. �e creation operator c†µ inserts a bit in position µ if it is
zero, and gives the zero vector if it was already . Similarly, the operator cµ turns a bit o�, see Exercise .
It is natural to consider Fock space, the direct sum of all LN :

F =
∞
⊕
N=

LN . (.)





By de�nition, ⟨µ⃗∣ν⃗⟩ =  if ν⃗ and µ⃗ have di�erent number of particles, i.e., di�erent number of occupied
single-particle functions.
�us

⟨⋯∣⋯⟩ =  (.)

for example, since the number of particles di�er in the two functions.
Now, c†µ ∶ F→Fmaps entirely insideF, and similarly with cµ .
A basis forF is the set of all ∣nn⋯⟩ with arbitrary number of orbital occupied.
�ebinary number representation is quite useful for computer programs involving Slater determinants,

as easily can be imagined.
A special operator, the number operator: Let ν be arbitrary. We have that

cν ∣nn⋯⟩ = (−)#νnν ∣nn⋯ν⋯⟩ , (.)

and furthermore that
c†νcν ∣nn⋯⟩ = (−)#νnν ∣nn⋯⟩ . (.)

�us,
∑
ν
c†νcν ∣nn⋯⟩ =∑

ν
nν ∣nn⋯⟩ = N ∣nn⋯⟩ . (.)

�erefore, we de�ne
N̂ ≡∑

ν
c†νcnu. (.)

�is operator extracts the number of fermions in a state ∣Ψ⟩ in the sense that for any ∣Ψ⟩ ∈ F, N̂ ∣Ψ⟩ = N ∣Ψ⟩
if and only if ∣Ψ⟩ ∈ LN .

.. Truncated bases
For “physical” particles, the Hilbert space is in�nite dimensional. But, as we have seen in exercises, espe-
cially Exercise ., we can select a few single-particle functions ϕµ , and construct Slater determinants out
of these. �ese will be �nite in number.
From a mathematical perspective, we can consider these �nite single-particle functions to de�ne a

single-particle space on their own:

V = span{ϕ ,⋯, ϕL} ⊂ L(X). (.)

�us, ψ ∈ V means

ψ(x) =
L

∑
µ=

ψµϕµ(x).

Having selected the �nite basis, we obtain for di�erent N a Slater determinant basis, spanning VN ⊂
L(XN)AS.
Clearly, as we have only L single-particle functions available, we cannot create more than N particles

from vacuum without getting at least one repeated creation operator, i.e., we must have L ≥ N to have
nonzero dimension. �e general dimension is dim(VN) = (LN).
In computational settings, the truncation of the ini�te basis into a �nite one is almost universally done.

Of, course, we can only numerically diagonalize a �nite matrix! But we would still like the basis to be as
large as possible to achieve the greatest accuracy. At least intuitively, we expect that as we includemore and
more single-particle functions, the numerical results will approach the exact result. Under mild assump-
tions on the basis set and the Hamiltonian under consideration, this is in fact true.





Sometimes, the �nite truncation is done a�er a detailed consideration of the physics of the system. �is
can give considerable physical insight, giving great explanatory power to the second quantized picture.
As an example, take the physical explanation of the principles of a laser. (See for example https://en.
wikipedia.org/wiki/Population_inversion.) Another example is the Hubbard model from solid-
state physics, see for example https://en.wikipedia.org/wiki/Hubbard_model.

Exercise .. [Note: �is exercise has been updated since it was given as a weekly exercise.]
Let ϕµ , µ = , ,⋯,  be given orthonormal single-particle functions.

a) Using the ∣µ ,⋯, µN⟩ notation, write down a basis for the �nite dimensional subspace of L(XN)AS
for N = , N =  and N = , that you can construct using the given single-particle funcitons. (Make
sure you include only linearly independent Slater determinants.)

b) Can you construct a Slater determinant for N =  particles using the given ϕµ?

c) Using the occupation number notation ∣nn⋯n⟩ notation, write down a basis for the same spaces
as in exercise a).

c) What is the dimension of the subspace of Fock space you can create with the  single-particle func-
tions?

e) Assume that you have L orbitals instead of just . What is the dimension of the N-particle spaces
you can build? What is the dimension of the Fock space you can build?

△

Exercise . (Note: �is exercise has been updated since it was given as a weekly exercise.). Consider the
following picture:

ϕ

ϕ

ϕ

ϕ

We have four horizontal lines, each representing a single-particle function ϕµ . �e circle represents an
occupied single-particle function, i.e., the Slater determinant ∣⟩.

a) In a similar fashion as the the above picture, draw a pictures of all the distinct Slater determinants
you can create using the four single-particle functions. Make sure you consider all possible particle
numbers. Caption each picture with the corresponding ∣µµ⋯µN⟩.

We now consider electrons. Consider  spin-orbitals φp(r⃗), i.e.,  spin-orbitals ϕµ(r⃗, σ). �e corre-
sponding diagram for the Slater determinant ∣ ↑,  ↓⟩ is:



https://en.wikipedia.org/wiki/Population_inversion
https://en.wikipedia.org/wiki/Population_inversion
https://en.wikipedia.org/wiki/Hubbard_model


φ

φ

φ

φ

↑ ↓

Each level now can hold  electrons, spin up and spin down.

b) Draw all possible -electron Slater determinants. Mark those that have total spin projection .

c) Consider the one-body operator given by

Ĥ =∑
p
єp(c†p↑cp↑ + c

†
p↓cp↓).

Here, єp are numbers such that є < є < ⋯. In �rst quantization,

Ĥ =
N

∑
i=
ĥ(i).

Write down thematrix of the (single-electron) operator ĥ in the spin-orbital basis {ϕpσ} and �nd its
eigenfunctions. Interpret the spin-orbital diagram in terms of your results. Find the N =  ground
state of Ĥ, and draw a picture of it.

△

. Representation of operators

.. What we will prove
In this section, we shall demonstrate the following representation of one-body operators:

Ĥ =
N

∑
i=
ĥ(i) =∑

µν
⟨µ∣ĥ∣ν⟩ c†µcν . (.)

Note that the last expression does not contain N explicitly. Here, note that ∣µ⟩ is a single-particle function
– it is the “Slater determinant” ϕµ(x). �e number ⟨µ∣ĥ∣ν⟩ is the matrix element of the single-particle
operator ĥ in the given one-particle basis,

⟨µ∣ĥ∣ν⟩ = ∫ dxϕµ(x)∗ ĥϕν(x). (.)

Eq. (??) gives a nice image of how Ĥ acts on a basis function: each term in the summanipulates the Slater
determinant’s occupied orbitals and weighs it with a matrix element. Simple, and not at all obvious from
the “single quantized form”.





We shall also prove the following formula for the two-body operator:

Ŵ =
N

∑
(i , j)

ŵ(i , j) = 
 ∑
µναβ

wαβ
µν c†µc

†
νcβcα , (.)

where the ordering of the annihilation operators should be noted. Here,

wµν
αβ = ∫ dx ∫ dxϕµ(x)∗ϕν(x)∗w(x , x)ϕα(x)ϕβ(x) (.)

is a matrix element using tensor product two-body functions, not Slater determinants. Using Slater deter-
minant matrix elements we in fact have a similar expansion,

Ŵ = 
 ∑
µναβ

⟨µν∣ŵ∣αβ⟩ c†µc†νcβcα , (.)

where thus the matrix elements are antisymmetric, computed as a matrix element using two-body Slater
determinants.
A word of warning: notation for two-body matrix elements is notoriouly varying between sources.

Some authors use the notation ⟨ϕαϕβ ∣ŵ∣ϕµϕν⟩ for the matrix element wαβ
µν , which is not antisymmetric.

In our case, the notation clashes with the Slater determinant matrix element, but we will still sin in this
respect. Some authors write ⟨ϕαϕβ ∣ŵ∣ϕµϕν⟩AS for the anti-symmetric Slater-determinant matrix element
(and sometimes we will too), which is equal to:

⟨ϕαϕβ ∣ŵ∣ϕµϕν⟩AS = ⟨αβ∣ŵ∣µν⟩ = wαβ
µν −w

αβ
νµ . (.)

�is can cause some confusion, as the expansions using tensor products and Slater determinants di�er by
a factor  . . .
�e proofs given in this section borrow heavily from [].

Lemma .. Let ∣µµ⋯µN⟩ be a Slater determinant built from orthonormal single-particle functions ϕµ , no
particular ordering assumed. �e operator c†νcα replaces ϕα with ϕν (or gives zero of α is not present in µ⃗),
with no sign change.
Similarly, c†ν c

†
ν cα cα replaces α with ν, and α with ν, or gives zero if one of α or α is not present in

µ⃗.

Exercise .. Prove the lemma. △

.. One-body operators
We prove Eq. (.) by showing that the actions of the le�- and right-hand sides on an arbitrary Slater
determinant agree. Let therefore {ϕµ} be a single-particle basis as usual.
Consider the action of Ĥ = ∑i ĥ(i) on an arbitrary Slater determinant:

Ĥ ∣ϕµ , ϕµ ,⋯, ϕµN ⟩ =
√
N!

(∑
i
ĥ(i))∑

σ
(−)∣σ ∣P̂σϕν(x)⋯ϕνN (xN)

= √
N!
∑
σ
(−)∣σ ∣P̂σ (∑

i
ĥ(i)) ϕν(x)⋯ϕνN (xN)

= ∣(ĥϕν), ϕν ,⋯, ϕνN ⟩ + ∣ϕν , (ĥϕν),⋯, ϕνN ⟩ +⋯ + ∣ϕν , ϕν ,⋯, (ĥϕνN )⟩

(.)





Here, we used that P̂σ commutes with Ĥ.
Consider the operator ĥ acting on a single-particle function ϕµ . �e result, ψ, can be expanded in the

basis:
ψ(x) = ĥϕµ(x) =∑

ν
ϕν(x) ⟨ν∣ĥ∣µ⟩ . (.)

We insert this expansion:

Ĥ ∣ϕµ , ϕµ ,⋯, ϕµN ⟩ = ∣(ĥϕν), ϕν ,⋯, ϕνN ⟩ + ∣ϕν , (ĥϕν),⋯, ϕνN ⟩ +⋯ + ∣ϕν , ϕν ,⋯, (ĥϕνN )⟩

=∑
ν
⟨ν∣ĥ∣µ⟩ ∣νµ ,⋯, µN⟩ +∑

ν
⟨ν∣ĥ∣µ⟩ ∣µνµ ,⋯, µN⟩ +⋯ +∑

ν
⟨ν∣ĥ∣µN⟩ ∣µµ ,⋯, ν⟩

(.)

Now, we note that
∣µ ,⋯, µ j−νµ j+⋯µN⟩ = c†νcµ j ∣µ ,⋯, µN⟩ , (.)

which we plug in:

Ĥ ∣ϕµ , ϕµ ,⋯, ϕµN ⟩ =∑
ν
⟨ν∣ĥ∣µ⟩ ∣νµ ,⋯, µN⟩ +∑

ν
⟨ν∣ĥ∣µ⟩ ∣µνµ ,⋯, µN⟩ +⋯ +∑

ν
⟨ν∣ĥ∣µN⟩ ∣µµ ,⋯, ν⟩

= [∑
ν
⟨ν∣ĥ∣µ⟩ c†νcµ +∑

ν
⟨ν∣ĥ∣µ⟩ c†νcµ +⋯ +∑

ν
⟨ν∣ĥ∣µN⟩ c†νcµN] ∣µ ,⋯, µN⟩ .

(.)

Finally, we note that cµ ∣µ⋯µN⟩ =  whenever µ ∉ µ⃗, so we may extend the summation over µ j to all of µ,
resulting in:

Ĥ ∣ϕµ , ϕµ ,⋯, ϕµN ⟩ = [∑
ν
⟨ν∣ĥ∣µ⟩ c†νcµ +∑

ν
⟨ν∣ĥ∣µ⟩ c†νcµ +⋯ +∑

ν
⟨ν∣ĥ∣µN⟩ c†νcµN] ∣µ ,⋯, µN⟩

=∑
µν

⟨ν∣ĥ∣µ⟩ c†νcµ ∣µ ,⋯, µN⟩ .

(.)

Since ∣µ ,⋯, µN⟩ was an arbitrary Slater determinant, we have proven Eq. (.).

.. Two-body operators
�e operator Ŵ = ∑i< j ŵ(i , j) is a two-body operator. �e operator ŵ(, ) is thus an operator on L(X)
that is completely characterized by its action on a basis: the tensor products ϕµ(x)ϕµ(x). �us,

ŵ(, )ϕµ(x)ϕµ(x) = ∑
νν

wνν
µ µϕν(x)ϕν(x), (.)

where the matrix elementswνν
µ µ are given by the formula (.). �ere is nothing special about the indices

(, ), it may just as well be (i , j). Note also the symmetry property

wνν
µ µ = w

νν
µ µ .





As for the one-body case, Ŵ commutes with P̂σ , and we get, using Eq. (.),

Ŵ ∣ϕµ⋯ϕµN ⟩ =
√
N!
∑
σ
(−)∣σ ∣P̂σ

⎡⎢⎢⎢⎢⎣
∑
i< j
ŵ(i , j)ϕµ(x)⋯ϕµN (xN)

⎤⎥⎥⎥⎥⎦

= √
N!
∑
σ
(−)∣σ ∣P̂σ

⎡⎢⎢⎢⎢⎣
∑
i< j
ŵ(i , j)ϕµ(x)⋯ϕµN (xN)

⎤⎥⎥⎥⎥⎦

= √
N!
∑
σ
(−)∣σ ∣P̂σ

⎡⎢⎢⎢⎢⎣
∑
i< j
∑
νν

wνν
µ i µ jϕµ⋯ϕν(x i)⋯ϕν(x j)⋯ϕµN (xN)

⎤⎥⎥⎥⎥⎦
=∑

i< j
∑
νν

wνν
µ i µ j ∣ϕµ⋯ϕν⋯ϕν⋯ϕµN ⟩

=∑
i< j
∑
νν

wνν
µ i µ j c

†
ν c

†
ν cµ j cµ i ∣ϕµ⋯ϕµN ⟩ .

(.)

Here, we used Lemma . about replacement behaviour of the c†c†cc product. We are currently summing
over µ i and µ j , such that i < j. Including i = j gives zero contribution (why?), and including j > i gives
equal contribution:

∑
i< j
∑
νν

wνν
µ i µ j c

†
ν c

†
ν cµ j cµ i ∣ϕµ⋯ϕµN ⟩ = −∑

i< j
∑
νν

wνν
µ i µ j c

†
ν c

†
ν cµ i cµ j ∣ϕµ⋯ϕµN ⟩

=∑
i< j
∑
νν

wνν
µ i µ j c

†
ν c

†
ν cµ i cµ j ∣ϕµ⋯ϕµN ⟩ =∑

j<i
∑
νν

wνν
µ j µ i c

†
ν c

†
ν cµ j cµ i ∣ϕµ⋯ϕµN ⟩

=∑
j<i
∑
νν

wνν
µ j µ i c

†
ν c

†
ν cµ j cµ i ∣ϕµ⋯ϕµN ⟩ =∑

j<i
∑
νν

wνν
µ i µ j c

†
ν c

†
ν cµ j cµ i ∣ϕµ⋯ϕµN ⟩

(.)

Here, we used the anticommutators and symmetry of the matrix elements. Assembling the two contribu-
tions,

Ŵ ∣ϕµ⋯ϕµN ⟩ =

∑i j

∑
νν

wνν
µ i µ j c

†
ν c

†
ν cµ j cµ i ∣ϕµ⋯ϕµN ⟩ . (.)

We note that the sum over i j is really a sum over two occupied orbitals µ i and µ j . We can therefore extend
the sum to all unoccupied orbitals as well, since cα ∣µ⃗⟩ gives zero contributions for such orbitals. �us,
Eq. (.) is proven.
We leave the proof of the antisymmetrized version as an exercise.

Exercise .. Prove Eq. (.). Start with showing Eq. (.). △

Exercise .. a) Let F̂ = ∑N
i= f̂ (i) be a �rst-quantization operator. Write down the second-quantized

form of this operator. Let Ĝ = ∑i< j ĝ(i , j) be a general two-body operator, where ĝ(, ) = ĝ(, ). Write
down the second-quantized form.
b) Using the fundamental anticommutator relations, compute the matrix element

⟨µµ∣F̂∣µµ⟩

c) Using the fundamental anticommutator relations, compute the matrix element

⟨µµµ∣F̂∣µµµ⟩





d) Using the fundamental anticommutator relations, compute the matrix element

⟨µµ∣Ĝ∣µµ⟩

e) Using the fundamental anticommutator relations, compute the matrix element

⟨µµµ∣Ĝ∣µµµ⟩

f) Compute the matrix element

⟨µ , µ ,⋯, µN ∣F̂∣µ , µ ,⋯, µN⟩

g) Compute the matrix element

⟨µ , µ ,⋯, µN ∣Ĝ∣µ , µ ,⋯, µN⟩

△

Exercise .. (Tedious, but very instructive.) In this exercise, we prove the so-called Slater–Condon rules:
the explicit expressions of matrix elements of one- and two-body operators in a Slater determinant basis.
We do not assume any particular ordering of the occupied single-particle functions considered.
If you solved Exercise ., you solved parts of this exercise.
a) Using the fundamental anticommutator relations, compute ⟨µ⃗∣Ĥ∣µ⃗⟩ and ⟨µ⃗∣Ŵ ∣µ⃗⟩ and prove that

⟨µ⃗∣Ĥ∣µ⃗⟩ =
N

∑
i=
hµ iµ i , (.)

⟨µ⃗∣Ŵ ∣µ⃗⟩ =
N

∑
i< j

⟨µ iµ j ∣ŵ∣µ iµ j⟩AS =

∑i j

⟨µ iµ j ∣ŵ∣µ iµ j⟩AS . (.)

b) Let ν⃗ be equal to µ⃗, except for one occupied orbital, i.e.,

∣ν⃗⟩ = c†ν j cµ j ∣µ⃗⟩ , ν j ≠ µ j . (.)

Using the fundamental anticommutator relations, compute ⟨µ⃗∣Ĥ∣µ⃗⟩ and ⟨µ⃗∣Ŵ ∣ν⃗⟩, and �nd

⟨µ⃗∣Ĥ∣ν⃗⟩ = h
µ j
ν j , (.)

⟨µ⃗∣Ŵ ∣ν⃗⟩ =∑
i
⟨µ iµ j ∣ŵ∣µ iν j⟩AS . (.)

c) Let ν⃗ be equal to µ⃗, except for two indices, i.e.,

∣ν⃗⟩ = c†νk c
†
ν j cµ j cµ j ∣µ⃗⟩ , j ≠ k. (.)

Using the fundamental anticommutator relations, compute ⟨µ⃗∣Ŵ ∣ν⃗⟩ and �nd

⟨µ⃗∣Ĥ∣ν⃗⟩ = , (.)

⟨µ⃗∣Ŵ ∣ν⃗⟩ = ⟨µ jµk ∣ŵ∣ν jνk⟩AS . (.)

d) Explain that if ν⃗ di�ers from µ⃗ inmore than two occupied functions, then ⟨µ⃗∣Ŵ ∣ν⃗⟩ = .
△
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p = 

p = 

Figure .: Schematic plot of the possible single-particle levels with double degeneracy. �e �lled circles
indicate occupied particle states. �e spacing between each level p is constant in this picture. We show
some possible two-particle states.

Exercise .. (�is exercise adapted from an exercise by Morten Hjorth-Jensen.)
We will now consider a simple three-level problem, depicted in Figure .. �e single-particle states

are labelled by the quantum number p and can accomodate up to two single particles, viz., every single-
particle state is doubly degenerate (you could think of this as one state having spin up and the other spin
down). We let the spacing between the doubly degenerate single-particle states be constant, with value d.
�e �rst state has energy d. �ere are only three available single-particle states, p = , p =  and p = , as
illustrated in the �gure.

a) How many two-particle Slater determinants can we construct in this space?

b) We limit ourselves to a system with only the two lowest single-particle orbits and two particles, p = 
and p = . We assume that we can write the Hamiltonian as

Ĥ = Ĥ + ĤI ,

and that the onebody part of the Hamiltonian with single-particle operator ĥ has the property

ĥψpσ = p × dψpσ ,

where we have added a spin quantum number σ . We assume also that the only two-particle states
that can exist are those where two particles are in the same state p, as shown by the two possibilities
to the le� in the �gure. �e two-particle matrix elements of ĤI have all a constant value, −g. Show
then that the Hamiltonian matrix can be written as

( d − g −g
−g d − g ) ,

and �nd the eigenvalues and eigenvectors. What is mixing of the state with two particles in p =  to
the wave function with two-particles in p = ? Discuss your results in terms of a linear combination
of Slater determinants.

c) Add the possibility that the two particles can be in the state with p =  as well and �nd the Hamil-
tonian matrix, the eigenvalues and the eigenvectors. We still insist that we only have two-particle
states composed of two particles being in the same level p. You can diagonalize numerically your
 × matrix.

�is simple model catches several birds with a stone. It demonstrates how we can build linear com-
binations of Slater determinants and interpret these as di�erent admixtures to a given state. It repre-
sents also the way we are going to interpret these contributions. �e two-particle states above p = 





will be interpreted as excitations from the ground state con�guration, p =  here. �e reliability of
this ansatz for the ground state, with two particles in p = , depends on the strength of the interac-
tion g and the single-particle spacing d. Finally, this model is a simple schematic ansatz for studies
of pairing correlations and thereby superuidity/superconductivity in fermionic systems.

△

. Wick’s�eorem
Supporting material for this section is Shavitt/Bartlett Ch. , Gross/Runge/Heinonen Ch. .

.. A sort of summary and motivation
Let us take a look at what we have so far. In the preceeding sections, we introduced a collection of tools for
describing () many-fermion states in many-particle Hilbert space, and () second-quantization language
for expressing these states and, importantly, the quantum-mechanical Hamiltonian.
�e quantum mechanical Hilbert space for N fermions is de�ned solely in terms of the con�guration

space X of a single fermion. �e Hilbert space of a single particle is L(X), the set of square integrable
single-particle functions ψ ∶ X → C.
Such a space always has an orthonormal basis, say {ϕµ}. Forming Slater determinants ∣ϕµϕµ⋯ϕµN ⟩,

we obtain totally antisymmetric basis functions for L(XN)AS. Furthermore, we de�ned Fock spaceF,

F =
∞
⊕
N=

L(XN)AS .

Inside the Fock space, every possible wavefunction of a system of some number of fermions exist.
Given a wavefunction ∣ΨN⟩ ∈ F, it could be expanded in Slater determinants,

∣ΨN⟩ =
∼
∑
µ⃗

∣µ⋯µN⟩ ⟨µ⋯µN ∣ΨN⟩ . (.)

Here, the subscriptN only indicates that we know the number of particles. �e notation ∣µ⋯µN⟩ indicates
that a certain single-particle basis {ϕµ}has been chosen, sincewe only list the indices µ j . Each determinant
can be constructed from vacuum using creation operators c†µ (these, of course, depend on the basis),

∣µ⋯µN⟩ = c†µ c
†
µ⋯c

†
µN ∣−⟩ . (.)

Finally, we found expressions for one- and two-body operators in terms of creation and annihilation
operators:

Ĥ =∑
µν

⟨µ∣ĥ∣ν⟩ c†µcν (.)

Ŵ = 
 ∑νν
µ µ

⟨µµ∣ŵ∣νν⟩ c†µ c
†
µ cν cν . (.)

We claimed that these expressions simplify our life a lot.
Our life goal in this context is to solve the (time-independent) Schrödinger equation,

(Ĥ + Ŵ) ∣ΨN⟩ = E ∣ΨN⟩ . (.)





�is expression equates two elements (functions) in Hilbert space. �ese functions are equal if and only if
their basis projections are equal. �us, we expand ∣ΨN⟩ in the basis, and similarly with the le�-hand side
Ĥ ∣ΨN⟩:

∼
∑
µ⃗

⟨ν⋯νN ∣ (Ĥ + Ŵ) ∣µ⋯µN⟩ ⟨µ⋯µN ∣ΨN⟩ = E ⟨ν⋯νN ∣ΨN⟩ . (.)

De�ning the vector Cµ⃗ = ⟨µ⃗∣ΨN⟩ and the matrix Hν⃗ , µ⃗ = ⟨ν⃗∣Ĥ∣µ⃗⟩, we see that we have a matrix eigenvalue
problem

HC = EC. (.)

Remark: this equation is (usually) in�nite-dimensional, and from a strict mathematical point of view,
this must really be carefully de�ned. But in this course, it is su�cient to think of this as a standard matrix
eigenvalue problem.
Ok, so we have a way of describing vectors ∣ΨN⟩ and the operators Ĥ etc. But if we actually want to

solve Eq. (.), we need to compute the matrix elements

H, ν⃗ , µ⃗ = ⟨µ⃗∣Ĥ∣µ⃗⟩ =∑
µν

⟨µ∣ĥ∣ν⟩ ⟨−∣ cνN cνN−⋯cν c
†
µcνc

†
µ c

†
µ⋯c

†
µN ∣−⟩ (.)

and similarly

Wν⃗ , µ⃗ = ⟨µ⃗∣Ŵ ∣µ⃗⟩ = 
 ∑αα
ββ

⟨αα∣ŵ∣ββ⟩ ⟨−∣ cνN cνN−⋯cν c
†
α c

†
α cβ cβ c

†
µ c

†
µ⋯c

†
µN ∣−⟩ (.)

Notice that we used
∣µ⋯µN⟩ = c†µ⋯c

†
µN ∣−⟩ (.)

and, by taking the adjoint,
⟨µ⋯µN ∣ = ⟨−∣ cµN⋯cµ . (.)

Observe that the order of the annihilation operators is the reverse of the order of the creation operators.
�e number ⟨−∣ c(†)c(†)⋯c(†) ∣−⟩ is referred to a vacuum expectation value, and the problem of com-

puting matrix elements is basically reduced to computing these.
Let us consider an example, and compute a typical vacuum expectation value occuring in the Ĥmatrix

element:
A = ⟨νν∣c†αcβ ∣µµ⟩ = ⟨−∣ cν cν c†αcβc†µ c

†
µ ∣−⟩ . (.)

Now, how are we going to approach this problem? Recall the anticummutation relations,

cαc†β + c
†
βcα = δαβ (.)

cαcβ + cβcα =  (.)

and

c†αc
†
β + c

†
βc

†
α = . (.)

So, we can “ip” two creation or annihilation operators adjacent to each other and compensate with a −
sign. We can “ip” an annihilation and creation operator by a − sign, but we have to “pay a price” in the

On a computer, we need to truncate the basis to obtain a �nite-dimensional matrix eigenvalue problem. Only for very small
problems will one actually compute the matrix itself, because that is quite expensive. Rather, one computes thematrix-vector product
Ĥ ∣µ⃗⟩.





form of a Kronecker delta, an additional term. However, this additional term has two less creation and
annihilation operators.
In this way, we can systematically move the annihilation operators to the right, and the creation oper-

ators to the le�, possibly inserting kronecker deltas and generating new terms with fewer operators. But
when the annihilation operators are to the right they give zero contribution since cα ∣−⟩ = .
Let us see this in practice, and �rst remove one pair of creation and annihilation operators:

A = ⟨−∣ cν cν c†αcβc†µ c
†
µ ∣−⟩ = ⟨−∣ cν cν c†α(δβµ − c

†
µ cβ)c

†
µ ∣−⟩

= δβµ ⟨−∣ cν cν c
†
αc

†
µ ∣−⟩ − ⟨−∣ cν cν c†αc†µ cβc

†
µ ∣−⟩

= δβµ ⟨−∣ cν cν c
†
αc

†
µ ∣−⟩ − ⟨−∣ cν cν c†αc†µ(δβµ − c

†
µ cβ) ∣−⟩

= δβµ ⟨−∣ cν cν c
†
αc

†
µ ∣−⟩ − δβµ ⟨−∣ cν cν c

†
αc

†
µ ∣−⟩ .

(.)

We continue:

A = δβµ ⟨−∣ cν(δνα − c
†
αcν)c†µ ∣−⟩ − δβµ ⟨−∣ cν(δνα − c

†
αcν)c†µ ∣−⟩

= δβµδνα ⟨−∣ cν c
†
µ ∣−⟩ − δβµ ⟨−∣ cν c

†
αcν c

†
µ ∣−⟩ − (µ ↔ µ) .

(.)

In the last equality, we have indicated that the remaining terms are generated from the previous ones by
exchanging µ and µ.
Continuing,

A = δβµδνα ⟨−∣ cν c
†
µ ∣−⟩ − δβµδν µ ⟨−∣ cν c

†
α ∣−⟩ + δβµ ⟨−∣ cν c

†
αc

†
µ cν ∣−⟩ − (µ ↔ µ) . (.)

Only the two �rst terms are non-vanishing, and we note, for example, that ⟨−∣ cν c†µ ∣−⟩ = ⟨ν∣µ⟩ = δν µ .
(We could also use the anticommutator once more.) �is gives:

A = δβµδναδν µ − δβµδν µδνα − (µ ↔ µ). (.)

Yes, our life wasmade easier by introducing second-quantiation. However, thematrix elements are still
quite hard to compute. �is is whereWick’s theorem comes in, by giving amuch quicker way of determining
the vacuum expectation values.
Observe that the vacuum expectation value is basis independent. �e value only depends on the anti-

commutator relations, and these only depended on the orthonormality of {ϕµ}. So we see that the frame-
work is quite general.

.. Vacuum expectation values
Consider the computation of a vacuum expectation value of a string of creation and annihilation operators:

⟨−∣AA⋯An ∣−⟩ , (.)

where each of the A i are one of the c†µ or cµ . For example, the overlap between two determinants is on this
form:

⟨µ⋯µN ∣ν⋯νN⟩ = ⟨−∣ cµN cµN−⋯cµ c
†
ν c

†
ν⋯c

†
νN ∣−⟩ (.)

Another example is the matrix elements of an operator on second quantized form, say Ĥ:

⟨µ⋯µN ∣Ĥ∣ν⋯νN⟩ =∑
µν

⟨µ∣ĥ∣ν⟩ ⟨µ⋯µN ∣c†µcν ∣ν⋯νN⟩∑
µν

⟨µ∣ĥ∣ν⟩ ⟨−∣ cµN⋯cµ c
†
µcνc

†
µ⋯c

†
µN ∣−⟩ . (.)

�e right-hand side is a linear combination of vacuum expectation values. So we see that having a straight-
forward way to compute Eq. (.) would be of great help.
Wick’s �eorem is what we shall need.





.. Normal ordering and contractions
In this section, we denote a general string of n creation and annihilation operators by

AA⋯An , A i ∈ {cµ} ∪ {c†µ}. (.)

Our goal is to �nd a general procedure of computing the vacuum expectation value

⟨−∣AA⋯An ∣−⟩ . (.)

Note that this expectation value only depends on the orthogonality of the single-particle functions, not on
the functions themselves. I.e., the value of the vacuum expectation value can be computed solely from the
anticummutator relations (.).
�e procedure we develop is based onWick’s�eorem, to be stated and proven. Wick’s theorem is based

on two fundamental concepts, namely normal ordering and contraction. �e normal-ordered product form
of an operator string AA⋯An is de�ned as

N(AA⋯An−An) ≡ (−)∣σ ∣ [creation operators] ⋅ [annihilation operators] (.)

Here, σ ∈ Sn denotes a permutation that brings the operator product to the desired order,

N(AA⋯An−An) = (−)∣σ ∣Aσ()Aσ()⋯Aσ(n) . (.)

Note that the string A⋯An and the normal-order product N(A⋯An) is not the same operator, since
by reordering creation and annihilation operators we neglect the extra terms arising from the Kronecker
delta in the anti-commutator relation {cα , c†β} = δαβ . If all individual A i in fact anticommute, then the
string and the normal-ordered string are identical as operators, but usually this is not the case.
Remark: �e permutation σ in the de�nition is usually not be unique, but the normal ordered product

is unique as operator. Consider for example

N(cc†c
†
 c) = (−)c†c

†
 cc . (.)

�ere are × possible arrangements of the creation and annihilation operators that conform to the de�ni-
tion of the normal-ordered product. But creation and annihilation operators anticommute among them-
selves. �e permutation sign (−)∣σ ∣ in Eq. (.) automatically compensates for this. �us,

N(cc†c
†
 c) = c

†
c

†
 cc = −c

†
 c

†
cc = c

†
 c

†
cc = −c

†
c

†
 cc . (.)

We de�ne the normal order product of linear combinations in the obvious way:

N(αA⋯An + βB⋯Bm) = αN(A⋯An) + βN(B⋯Bn). (.)

Mathematical aside for the interested reader: N(⋅) is now de�ned as a linear operator on the space of
linear combinations of operator strings. �e second-quantized formulas for Ĥ, Ŵ , etc., are examples of
such objects. �is space of operators is an example of a C∗-algebra with unity. An algebra is a vector space
where multiplication is also de�ned (the product of two operators is an operator), and roughly speaking
the ∗ means that we can form Hermitian adjoints. �e operator algebra is said to be generated by the cµ
operators and the unit operator.
A contraction between to arbitrary creation and annihilation operators X and Y is a special notation

for ⟨−∣XY ∣−⟩,

XY ≡ ⟨−∣XY ∣−⟩. (.)





�us, the contraction is a number. One can easily show (see exercise .), that

XY = XY − N(XY). (.)

Let us list all the possible contractions:

c†µc
†
ν = ⟨−∣c†µc†ν ∣−⟩ =  (.a)

cµcν = ⟨−∣cµcν ∣−⟩ =  (.b)

c†µcν = ⟨−∣c†µcν ∣−⟩ =  (.c)

cµc†ν = ⟨−∣cµc†ν ∣−⟩ = δµν . (.d)
(.e)

As we see, most contractions are actually zero.
We also de�ne contractions between two operators inside a normal ordered product. �is is de�ned by

�rst anticommuting the contracted operators to the front of the product, and then applying Eq. (.). A
contraction between two operators at positions x and y (with x < y) in the string is thus de�ned by

N(A⋯Ax⋯Ay⋯An) ≡ (−)x+y+ N(AxAyA⋯Ax⋯Ay⋯An) = (−)x+y+ AxAyN(A⋯Ax⋯Ay⋯An)
(.)

Equivalently, let σ ∈ Sn be a permutation such that σ(x) =  and σ(y) = . �en

N(A⋯Ax⋯Ay⋯An) ≡ (−)∣σ ∣N(AxAyAσ()⋯Aσ(n))

= (−)∣σ ∣AxAyN(Aσ()⋯Aσ(n))
(.)

(�is de�nition also allows the other operators to be permuted among themselves. �is is of course per-
fectly acceptable – the sign of σ accounts for this.)
�us, the sign factor (−)x+y+ equals the sign of the permutation σ that brings the two operators to

the front. Equivalently, we can count the number c of anticommutations needed, and the sign becomes
(−)c .
Examples:

N(cc†cc
†
) = cc

†
N(cc†) = −δc

†
 c (.a)

N(cc†cc
†
) = cc

†
N(cc†) = −δc

†
 c (.b)

N(cc†cc
†
) = cc

†
N(c†c) = δc

†
c (.c)

N(cc†cc
†
) = −c

†
c

†
N(cc) =  (.d)

In the last example (.d), we could tell immediately that the result is zero, since any contraction between
two creation operators vanishes.
It is important to realize that the contraction between two operators, with operators between, only

makes sense when inside the normal-order product operation N(⋯).
We also de�ne normal ordering with multiple contractions, say m, leaving n − m operators uncon-

tracted. Clearly, there can be at most ⌊n/⌋ pairs if each pair is required to be distinct.
⌊x⌋ is the integer part of x, e.g., ⌊/⌋ = .





�ede�nition is recursive: each pair of contracted operators is processed in turn according toEq. (.).
�is de�nition is independent of the order of the processing of the pairs. An example: Example:

N(cc†cc
†
cc

†
) = (−)N(cc†c

†
ccc

†
) = (−)N(cc†cc

†
c

†
c) = −δδN(c†c). (.)

Note how the contraction lines cross on the le�-hand side.
For m contractions, the de�nition is as follows: let (x i , y i) be the pairs x i < y i , for i = ,⋯,m. Let

σ ∈ Sn be a permutation such that σ(x) = , σ(y) = , σ(x) = , etc. �en

N(
m contraction lines

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
AA⋯An ) = (−)∣σ ∣N(AxAy⋯AxmAymAσ(m+)⋯Aσ(n)). (.)

Exercise .. Show Eq. (.) from Eq. (.), by considering the  possible cases. △

Exercise .. Prove that, for any permutation σ ∈ Sn ,

N(AA⋯An) = (−)∣σ ∣N(Aσ()Aσ()⋯Aσ(n)). (.)

△

.. Statement of Wick’s�eorem
Wick’s theorem states that every string of creation and annihilation operators can be written as a sum of
normal-ordered products every possible contraction.

�eorem . (Wick’s �eorem). Let A⋯An be an operator string of creation and annihilation operators.
�en,

AA⋯An = N(AA⋯An) +∑
()
N (A⋯ ⋯ ⋯An) +∑

()
N (A⋯ ⋯ ⋯An)

+⋯ + ∑
(⌊ n ⌋)

N
⎛
⎜⎜
⎝
A⋯ ⋯ ⋯ ⋯ ⋯ ⋯An
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⌊n/⌋ contractions

⎞
⎟⎟
⎠

(.)

�e notation∑(m) signi�es that we sum over all combinations of m contractions.

When n is even, the last sum signi�es thatwe sumover n/ contractions, i.e., all opeators are contracted.
If n is odd, there is one uncontracted operator le� in each term of the last sum.





.. Vacuum expectation values usingWick’s�eorem
Before we start with the proof of Wick’s �eorem, we apply it to the evaluation of vacuum expectation
values. For any string with at least one factor,

⟨−∣N(A⋯An)∣−⟩ = . (.)

�is is so, because in the normal-order product, the annihilation operators are to the right, and the creation
operators are on the le�. For odd n, therefore, Wick’s �eorem gives

⟨−∣A⋯An ∣−⟩ =  (n odd number), (.)

For even n,

⟨−∣AA⋯An ∣−⟩ = ∑
(⌊ n ⌋)

A⋯ ⋯ ⋯ ⋯ ⋯ ⋯An
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

all contracted

. (.)

where we for brevity omit N(⋯) since there are no operators le� anyway. (Note carefully, that this is abuse
of notation!)
�e only non-vanishing contractions are

cαc†β = δαβ . (.)

�is reduces the number of contractions we need to consider when evaluating the sum. Moreover, if
A⋯An contains a di�erent number of creation and annihilation operators, at least one contraction of
the form cαcβ or c†αc

†
β must be present in Eq. (.), in every term, giving a zero expectation value at once.

Finally, one can show that the sign of a fully contracted operator product is (−)k , where k is the number
of contraction line crossings. We will not prove this.
Clearly, Wick’s theorem provides us with an algebraic method for easy determination of the terms that

contribute to the matrix element.
We conclude with a recipe:

�eorem . (Vacuum expectation values using Wick’s �eorem). Let A⋯An be a string of creation and
annihilation operators.
If n is odd ⟨−∣A⋯An ∣−⟩ = .
Assume n is even. If A⋯An contains a di�erent number of creation operators compared to annihilation

operators, ⟨−∣A⋯An ∣−⟩ = .
Finally,

⟨−∣A⋯An ∣−⟩ = ∑
all contr.

AAAA⋯AkAk+Ak+Ak+⋯An , (.)

where the sum runs over all possible combinations of n/ contractions on the form

cαc†β

�e sign of each term in the sum is (−)k , where k is the number of crossings of contraction lines.

Exercise .. (Hard.) Prove the sign rule for the fully contracted terms. (More details will be �lled in for
this exercise later in the course. Stay tuned.) △





Exercise .. Write out the statement of Wick’s �eorem for the following operator strings, and simplify
where you can:

. cβc†α

. c†αcβc†γcδ

. cγc†µc†νcαcβc
†
δ

△

.. Proof of Wick’s�eorem
�e proof of Wick’s theorem is by induction on the length n of the operator string. In mathematical in-
duction, we prove a statement Pn for all integers n by �rst proving it for n = , and then prove that Pn+
must hold under the assumption that Pn holds.
Here, the statement Pn is (.). P and P are easily shown to be true (prove it!).
For the rest, it is useful to �rst prove a lemma.

Lemma .. Let Ar , r = ,⋯, n be creation and annihilation operators. Let B be a creation or annihilation
operator. �en,

N(AA⋯An)B =
n

∑
r=

N(AA⋯Ar⋯AnB) + N(A⋯AnB). (.)

Proof. Assume �rst that B is an annihilation operator. �en all the contractions on the right-hand side
vanish. Also, N(A⋯An)B = N(A⋯AnB).
Assume next that B is a creation operator, and that all the A i are annihilation operators. In that case,

we can verify that the le�- and right-hand sides are equal. �e le�-hand side is equal to A⋯AnB since
A⋯An is already a normal-ordered product. We compute N(A⋯AnB) = (−)nBA⋯An . Looking at the
le�-hand side again,

N(AA⋯An)B = A⋯AnB = A⋯An−(AnB − BAn), (.)

since {cα , c†β} = δα ,β = cαc
†
β . Continuing with the rest of the terms, we get

N(AA⋯An)B = A⋯An−AnB − A⋯An−An−BAn + A⋯An−An−BAn−An −⋯
+ (−)nBA⋯An

= N(A⋯An−AnB) + N(A⋯An−An−AnB) + N(A⋯An−An−An−AnB) +⋯
+ (−)nBA⋯An

(.)

�is proves the case for all A i annihilation operators, and it remains to prove it when we have creation
operators in the mix.
Multiply Eq. (.) from the le� by a creation operator A. We observe that normal order is preserved

on the le� hand side since A is a creation operator and can stand to the far right,

AN(A⋯An) = N(A⋯AN),





and similarly AN(A⋯An)B = N(A⋯An)B. Also,

A

n

∑
r=

n

∑
r=

N(AA⋯Ar⋯AnB) =
n

∑
r=

N(AAA⋯Ar⋯AnB),

since AB = . �us, the statement of the lemma is true also when A is a creation operator. Clearly, we
can continue, and add as many creation operators we like. �us, the lemma is true for strings of the form
C⋯CkAk+⋯An , where C i are creation operators, and A i are annihilation operators. By permuting this
string, we gain a sign change on all terms, and the terms in the sum over r are reordered, but leaving the
sum invariant. �us, the lemma is proved for arbitrary strings A⋯An .

We introduce another lemma, which generalizes Lemma . to the case where we have an arbitrary
number m contractions between the n operators inside the normal order operator.

Lemma .. Suppose A⋯An is a given operator string, and suppose we choose m pairs p i = {x i , y i} to
contract from this string, with x i < y i . Let Sm = {, ,⋯,N}∖(∪i p i) be the remaining indices when all pairs
are removed. Let B a creation or annihilation operator. �en,

N(AA⋯ ⋯An−An)B = N(AA⋯ ⋯An−AnB) + ∑
r∈Sm

N(AA⋯ Ar⋯An−AnB) (.)

where the notation indicates that all m pairs are contracted from the A is.

Proof. let S = {, ,⋯,N}. �e pairs are distinct, which we write mathematically as p i ⊂ S ∖ (∪i−j= p j).
Consider the normal-ordered product of A⋯An with them given contractions, see the le�-hand side

of Eq. (.). We perform the pairwise “operator ips” that brings �rst p to the front, then p, etc. �e �rst
pair gives a sign (−) f , for f ips. �e next pair gives a sign (−) f , and so on. (Importantly, f i depend
on the order in which we do the “contraction extractions”.) We arrive at

N(AA⋯ ⋯An−An) = (−) f+ f+⋯+ fmAxAy⋯AxmAymN(A⋯(pairs omitted)⋯An). (.)

Now,

N(AA⋯ ⋯An−An)B = (−) f+ f+⋯+ fmAxAy⋯AxmAym[N(A⋯(omitted)⋯AnB)

+ ∑
r∈Sm

N(A⋯(omitted)⋯Ar⋯(omitted)⋯AnB)]
(.)

Consider the �rst term inside the bracket. We canmove the contractions inside again, pm passing the same
operators as when extracted, then pm−, etc, giving an overall sign change that cancels (−) f+⋯+ fm . �is
reproduces the �rst term on the le�-hand side of Eq. (.).
�e same is actually true for the second term. Even if we pass a contracted Ar , the “operator ips”

count towards the sign, by the de�nition of N() with contractions.
�is completes the proof.

We now prove Wick’s �eorem. Assume now that Pn is true. Multiply Eq. (.) from the right by an
operator An+:

AA⋯AnAn+ = N(AA⋯An)An+ +∑
()
N (AA⋯An)An+

+∑
()

N (AAAA⋯An)An+

+⋯ + ∑
(⌊ n ⌋)

N (AAAA⋯AkAk+Ak+Ak+⋯An)An+

(.)





Each sum is a sum over m contractions, including the �rst where we have m = . We now use Lemma .
and write

∑
(m)

N (AAAA⋯An)An+ = ∑
(m)

N (AAAA⋯AnAn+) +∑
(m)
∑
r
N (AAAA⋯AnAn+)

∶= Xm + Im .
(.)

Here, Xm contain all possiblem contractions excluding An+, while Im contains all possiblem +  contrac-
tions including An+. We now get

A⋯An+ = X + I + X + I +⋯X⌊n/⌋ . (.)

Note that I⌊n/⌋ = , since there is no operator le� to to contract An+ with a�er ⌊n/⌋ operators have been
contracted.
Write

A⋯An+ = X + (I + X) + (I + X) +⋯X⌊n/⌋ . (.)

and note that (Im + Xm+) is the sum over all possible m +  contractions of the string A⋯An+. �us,
Wick’s �eorem is proved.

.. UsingWick’s�eorem
In this section, wee see some examples of how to use Wick’s �eorem to compute vacuum expectation
values. First, we state, but do not prove, a theorem regarding the sign of a vacuum expectation value
of a fully contracted normal-ordered product. �e theorem simpli�es enormously the work involved in
computing the sign of the permutation needed to bring all the contracted pairs to the front.

�eorem . (Sign rule for vacuum-expectation values). Let A⋯An be an operator string of creation and
annihilation operators, where n is even. Let n/ contractions be assigned, contracting Ax i with Ay i for all n/

pairs of operators, x i < y i , i.e., we have m/ contractions of the form Ax iAy i . �en,

⟨−∣AAA⋯⋯An−An ∣−⟩ = AxAy⋯Axn/Ayn/(−)
s , (.)

where s is the number of contraction line crossings on the le�-hand side.

Let us compute a few vacuum expectation values with the aid of this rule, and also the simpli�cations
we gain whenwe know that all annhilation operators must be contracted with a creation operator to the right.
We now also simplfy the notation a bit, and write, in place of the ordinary creation and annihilation

operators,
µ† ≡ c†µ , µ = cµ .

Worked example :

⟨µ⋯µ∣α†β∣µ⋯µ⟩ = ⟨−∣ µµµα†βµ†µ†µ
†
 ∣−⟩ . (.)

Worked example :

⟨µ⋯µ∣α† α
†
ββ∣µ⋯µ⟩ = ⟨−∣ µµµα† α

†
ββµ

†µ†µ
†
 ∣−⟩ . (.)





Exercise .. (Slater–Condon rules revisited)

a) Let µ⃗ = (µ⋯µN), with N ≥ . Compute the matrix elements ⟨µ⃗∣Ĥ∣µ⃗⟩ and ⟨µ⃗∣Ŵ ∣µ⃗⟩ using Wick’s
theorem applied to vacuum expectation values. Do you notice a pattern of which contractions con-
tribute other the rules listed in the main text?

b) Repeat Exercise . using Wick’s �eorem instead of the anticommutator relations to prove the
Slater–Condon rules. (Wick’s �eorem gives a much less tedious approach.)

△

. Particle-hole formalism
Motivatinal comments: O�en, a single Slater determinant can be a good approximation, for example the
Hartree–Fock state, see later. If this approximation is not good enout, one adds a correction on top of that.
�erefore it makes sense to develop a convenient way to describe this small correction.
In this section, we will introduce the concept of quasiparticles, or particle-hole formalism.
It is useful to indicate if µ ≤ N or µ > N in the following. We therefore introduce a rule. A latin index

i , j, k,⋯ ≤ N , and a, b, c,⋯ > N . �us, a summation∑µ is split into∑N
i= and∑

∞
a=N+.

We de�ne quasiparticle creation and annihilation operators as follows:

b i = c†i , ba = ca (.)

with Hermitian adjoints
b†i = c i , b†a = c†a (.)

It is an easy exercise to show that the anticommutator relations are preserved:

{bµ , b†ν} = δµ ,ν , {bµ , bν} = . (.)

Let a single-particle basis be given, and consider the Slater determinant

∣Φ⟩ = ∣⋯N⟩ = c† c
†
⋯c

†
N ∣−⟩ . (.)

For the N =  case, we can draw a picture like this:

∣Φ⟩ =

Note that
bµ ∣Φ⟩ = , ∀µ. (.)

�erefore, ∣Φ⟩ has the role of a vacuum for the new operators. It contains zero quasiparticles, since at-
tempting to remove one gives us zero.
Let us create a quasiparticle:

b†i ∣Φ⟩ = c i ∣⋯N⟩ = (−)i− ∣⋯(i − ) (i + ) ⋯N⟩ . (.)

b†a ∣Φ⟩ = c†a ∣⋯N⟩ = (−)N ∣Na⟩ . (.)

In pictures,





b†i ∣Φ⟩ =
i

b†a ∣Φ⟩ =
a

Note that b†i ∣Φ⟩ contains N −  “real” particles, while b†a ∣Φ⟩ contains N +  “real” particles.
�e quasiparticles with µ = i ≤ N are called “holes”, while the quasiparticles with µ = a > N are called

“particles”.
Creating a particle-hole pair results in a state with N “real” particles, since b†ab

†
i = c†ac i preserves N

when acting on a state. Acting on the reference, we get N −  occupied single-particle functions below N ,
and  occupied single-particle function above N , in pictures,

b†ab
†
i ∣Φ⟩ =

i a

Clearly, by creating another particle-hole pair with b†bb
†
i , we get a Slater determinant with two particles

and two holes, in total N particles. We are le� with N −  “real” particles below N .
Continuing, it is clear that we can generate all the original Slater determinants with N particles by

creating up to N particle-hole pairs.
�us, any wavefunction in with N particles can be written

∣ΨN⟩ = C ∣Φ⟩ +∑
i a
C i ab†ab i ∣Φ⟩ + 

! ∑i jab
C i jabb†bb

†
j b

†
ab

†
i ∣Φ⟩ +⋯, (.)

where the factor /! comes from the double counting of the two particle-hole states. �e sum extends all
the way up to N particle hole pairs.
Se de�ne

∣Φa
i ⟩ = b†ab†i ∣Φ⟩ = c†ac i ∣Φ⟩ , (.)

and
∣Φab

i j ⟩ = b†bb
†
j b

†
ab

†
i ∣Φ⟩ = c†bc jc

†
ac i ∣Φ⟩ , (.)

and so on. �e lower indices indicate that they are holes/below N , and the upper indices that they are
particles/above N .
In chemistry parlance, a particle-hole pair is called a singles excitation, two particle-hol pairs a doubles

excitation, etc. �us, ∣Φa
i ⟩ is a “singly excited determinant”, ∣Φab

i j ⟩ is doubly excited, etc.
�ere are many di�erent common notations for the particle-hole vacuum: ∣vac⟩, ∣Φ⟩, ∣c⟩, etc. Similarly,

there are many ways to denote a Slater determinant withm particle-hole pairs, for example ∣ia⟩c , ∣Φa
i ⟩, ∣

a
i⟩,

and others.
We can say that b†ab

†
i is a (particle-hole) pair creation operator. In chemistry language, a sigles excitation.

It is useful to note that
[b†ab†i , b

†
bb

†
j ] = . (.)

I.e., ∣Φab
i j ⟩ = ∣Φba

ji ⟩. We form double excitation operators by products of singles, and so on.

Digression: �ere can be only N hole-particles! I the solution of the Dirac equation, for those who have seen this, the vacuum
contains zero electrons. But every time an electron is created, an anti-electron is also created below the “Fermi sea”. �ere are in�nitely
many hole-states in Dirac theory.





Finally, we note that Wick’s theorem applies equally well to quasiparticles! For example, to compute
⟨Φ∣c†i c j ∣Φ⟩ we note that ∣Φ⟩ is the vacuum and that c†i = b i and c j = b

†
j , so

⟨Φ∣c†i c j ∣Φ⟩ = ⟨Φ∣b ib†j ∣Φ⟩ = b ib†j = δ i j . (.)

Note how the quasiparticles greatly simpli�ed the evaluation of the matrix element, see the exercises.

Exercise .. Prove Eq. (.) △

Exercise .. Prove the quasiparticle anticommutator relations. △

Exercise .. If we restrict a ≤ L, howmany linearly independent two-particle-two-hole determinants can
you create? Howmany three-particle-three-hole? How would you phrase this in chemistry language? △

Exercise .. Compute the vacuum expectation value (.) ussing the Wick’s theorem and the original
creation and annihilation operators and compare the method and amount of work.
Repeat for

⟨Φ∣c†αc†βcδcγ ∣Φ⟩ (.)

but compute also with quasiparticles, but note that you get several cases, depending if the Greek indices
are smaller than or larger than N . Compare with the original formulation. △

Exercise .. Use Wick’s �eorem with respect to quasiparticles and write down the following operators
as a sum of normal-ordered strings with as few terms as possible (i.e., only include nonvanishing contrac-
tions):

a) bab†i

b) b†i bcb
†
a

c) b ib jb†ab
†
bbcb

†
k

d) bab ib jb†bb
†
cbdb

†
k

△





. Operators on normal-order form (Not yet lectured)

.. �e number operator
We need the Hamiltonian and other second-quantized operators on normal-order form, relative to quasi-
particle vacuum. I.e., we want the operator to be written such that all quasiparticle annihilation operators
are to the right. �is is achieved usingWick’s�eorem, and results in the original operator obtaining more
terms.
�is is the task in the current section.
For conformity with much of the literature, we replace Greek indices µ, ν, etc, with p, q, etc. We still

reserve i, j, etc for hole indices, and a, b, etc for particles. And let’s face it, it is easier to write up in LATEX.
We start with the number operator N̂ , as an easy warm-up. First, we rewrite the second-quantized

operator using quasiparticle operators:

N̂ =∑
p
c†pcp =∑

i
c†i c i +∑

a
c†aca =∑

i
b ib†i +∑

a
b†aba . (.)

We now use Wick’s theorem, relative to quasiparticle operators, to get

N̂ =∑
i
[N(b ib†i ) + b ib

†
i ] +∑

a
[N(b†aba) + b†aba]

=∑
i
[−b†i b i + ] +∑

a
b†aba

= N −∑
i
b†i b i +∑

a
b†aba .

(.)

�is is the normal-ordered form of N̂ . Interpreting, the last equality counts N minus the number of holes
plus the number of particles.
Let us act with N̂ on the quasiparticle vacuum, and observe:

N̂ ∣Φ⟩ = (N −∑
i
b†i b i +∑

a
b†aba) ∣Φ⟩ = N ∣Φ⟩ . (.)

All the terms vanish except the fully contracted term since we have annihilation operators to the right.
�us, normal-ordered operators can be very useful when we deal with quasiparticles.

.. One-body operators
We continue with an arbitrary one-body operator

Ĥ =∑
pq
hpq c†pcq , hpq = ⟨p∣ĥ∣q⟩ . (.)

Introducing the quasiparticle operators at this stage leads to four distinct contributions to the operator,
corresponding to the di�erent pq = i j, ia, ai, and ab contributions. However, it is more convenient to
useWick’s�eorem on the above Ĥ expression without changing the creation- and annihilation operator
notation. �us, beware, when we normal order now, it is relative to quasiparticles.
Wick’s �eorem gives

c†pcq = N(c†pcq) + c†pcq . (.)





Some of the contractions are nonzero, namely, when pq = ii. �e reader should verify that the rest of the
possible contractions vanish identically. �us,

Ĥ =∑
pq
hpqN(c†pcq) +∑

pq
hpq c†pcq

=∑
pq
hpqN(c†pcq) +∑

i
h ii

= Ĥ(qp)
 + Ĥ(qp)

 .

(.)

Note that Ĥ is separated into a one-quasiparticle part and a constant zero-quasiparticle part. Explicitly,

Ĥ(qp)
 =∑

i
h ii , (.)

and
Ĥ(qp)
 = −∑

i j
h ijb

†
j b i +∑

ai
hai b

†
ab

†
i +∑

i a
h iab iba +∑

ab
habb

†
abb , (.)

where we have expanded the sum over pq in order to resolve the quasiparticles.

.. Two-body operators
We continue woth an arbitrary two-body operator

Ŵ = 
 ∑pqrs

w pq
rs c†pc

†
qcscr , (.)

where we assume that w pq
rs is anti-symmetrized. (�is is at odds with earlier notation, but we do this to

save space in the current section.)
Wick’s �eorem gives

c†pc
†
qcscr = N(c†pc†qcscr) + N(c†pc†qcscr) + N(c†pc†qcscr) + N(c†pc†qcscr)

+ N(c†pc†qcscr) + N(c†pc†qcscr) + N(c†pc†qcscr)

+ N(c†pc†qcscr) + N(c†pc†qcscr) + N(c†pc†qcscr)

= N(c†pc†qcscr) + c†pc†qN(cscr) − c†pcsN(c†qcr) + c†pcrN(c†qcs)

+ c†qcsN(c†pcr) − c†qcrN(c†pcs) + cscrN(c†pc†q)

+ c†pc†qcscr − c†pcsc†qcr + c†qcsc†pcr

(.)

We see immediately, that analogously to the one-body operator, we will get

Ŵ = Ŵ(qp) + Ŵ(qp) + Ŵ(qp) . (.)

�e two-quasiparticle term is

Ŵ(qp) = 
 ∑pqrs

w pq
rs N(c†pc†qcscr). (.)

�e one-quasiparticle term is
Ŵ(qp) =∑

pqi
w pi
qiN(c†pcq) (.)

while the constant term is
Ŵ(qp) = 

∑i j
w i j
i j . (.)





.. Normal-ordered two-body Hamiltonian
Consider the �ull Hamiltonian on the form

Ĥ = Ĥ + Ŵ . (.)

�e Hamiltonian is normal-ordered relative to “real” particles. In terms of quasiparticles, we saw in the
previous sections that we could split

Ĥ = Ĥ(qp)
 + Ŵ(qp) + Ĥ(qp)

 + Ŵ(qp) + Ŵ(qp) , (.)

separating Ĥ into zero, one and two-quasiparticle contributions. �ese were normal-ordered relative to
quasiparticles.
It is conventional to write

Ĥ = ĤN + E = ĤN + ŴN + E , (.)
with

E = Ĥ(qp)
 + Ŵ(qp) =∑

i
h ii +


∑i j

w i j
i j , (.a)

Ĥ,N = Ĥ(qp)
 + Ŵ(qp) =∑

pq
(hpq +∑

i
w pi
qi )N(c†pcq), (.b)

ŴN = Ŵ(qp) = 
 ∑pqrs

w pq
rs N(c†pc†qcscr). (.c)

�us, Ĥ,N is the total one-quasiparticle operator part of Ĥ, and contains contributions from Ŵ as well
as Ĥ, while ŴN is the total two-quasiparticle operator part of Ĥ. �e subscript N stands for “normal-
ordered”.

.. Full expressions for the normal-ordered Hamiltonian
For completeness, we expand Ĥ,N and ŴN in terms of quasiparticle operators. �is gives a lot of terms,
especially in the two-body case. We start with Ĥ,N, splitting the sum over pq into four terms:

Ĥ,N =∑
i j
f ij N(c†i c j) +∑

ai
f ai N(c†ac i) +∑

i a
f iaN(c†i ca) +∑

ab
f ab N(c†acb)

=∑
ai
f ai b

†
ab

†
i + −∑

i j
f ij b

†
j b i +∑

ab
f ab b

†
abb +∑

i a
f iab iba+

(.)

where
f pq = hpq +∑

j
w p j
q j . (.)

Next, we resolve the two-body operator. �ere are  terms:

ŴN = 
 ∑i jk l

w i j
k lN(c†i c

†
j c l ck) +


 ∑i jka

w i j
kaN(c†i c

†
kcack) +


 ∑i jak

w i j
akN(c†i c

†
j ckca) +


 ∑i a jk

w i a
jkN(c†i c

†
ackc j)

+ 
 ∑ai jk

wai
jkN(c†ac†i ckc j) +


 ∑i jab

w i j
abN(c†i c

†
j cbca) +


 ∑i a jb

w i a
jbN(c†i c

†
acbc j) +


 ∑i ab j

w i a
b jN(c†i c

†
ac jcb)

+ 
 ∑ai jb

wai
jbN(c†ac†i cbc j) +


 ∑aib j

wai
b jN(c†ac†i c jcb) +


 ∑abi j

wab
i j N(c†ac†bc jc i) +


 ∑i abc

w i a
bcN(c†i c

†
acccb)

+ 
 ∑aibc

wai
bcN(c†ac†i cccb) +


 ∑abic

wab
ic N(c†ac†bccc i) +


 ∑abc i

wab
c i N(c†ac†bc i cc) +


 ∑abcd

wab
cdN(c†ac†bcd cc)

(.)





Some terms are equal, and we rearrange the expression to read:

ŴN = 
 ∑abi j

wab
i j b

†
ab

†
bb

†
j b

†
i +


 ∑abc i

wab
c i b

†
ab

†
bb

†
i bc +


 ∑aib j

wai
b jb

†
ab

†
j b

†
bb i +


 ∑ai jk

wai
jkb

†
ab

†
kb

†
j b i

+ 
 ∑i jk l

w i j
k lb

†
l b

†
kb ib j −


 ∑i a jb

w i a
jbb

†
ab

†
j b ibb +


 ∑i ab j

w i a
b jb

†
ab

†
j b ibb +


 ∑abcd

wab
cd b

†
ab

†
bbdbc

+ 
 ∑i jak

w i j
akb

†
kb ib jba +


 ∑aibc

wai
bcb

†
ab ibcbb +


 ∑i jab

w i j
abb ib jbbba

(.)

Exercise .. Verify that Eq. (.) equals Eq. (.). △

Exercise .. Verify that ŴN in Eq. (.) is Hermitian, given that Ŵ is Hermitian. △

Exercise .. (Tedious.) Consider a three-body operator

X̂ = 
 ∑pqrstu

x pqrstu c
†
pc

†
qc

†
r cuctcs , (.)

where x pqrstu = ⟨pqr∣x̂(, , )∣stu⟩ is permutation antisymmetric in the upper and lower indices separately,
i.e., it is the matrix of the three-particle operator x. Such operators occur in nuclear physics.
Compute the separation

X̂ = X̂(qp) + X̂(qp) + X̂(qp) + X̂(qp) . (.)

Given a Hamiltonian is given by Ĥ = F̂ + Ĝ + X̂, write down the normal-ordered Hamiltonian, split as

Ĥ = F̂N + ĜN + X̂N + E . (.)

△

.. �e GeneralizedWick’s�eorem
We here present a very useful generalization of Wick’s �eorem. Even though Wick’s �eorem greatly
simpli�es the evaluation of vacuum expectation values, it is a fact that most such expectation values one
wants to compute are of strings of where substrings are already on normal-ordered form, i.e., we have a
number k substrings of length nk which are on normal order, viz,

Â⋯Ân = N(Â,⋯Â,n)N(Â,⋯Â,n)⋯N(Âk ,⋯Âk ,nk). (.)

�us the total string if of length n = ∑k
i= n i .

Of course, this is not a restriction. For the standard Wick’s �eorem, all the substrings are of length ,
nk =  and k = n.
Recall, that in the usual Wick’s �eorem, we sum over normal-order products with contractions. �is

is also the case for the Generalized Wick’s �eorem, but now each contraction must involve two operators
from di�erent substrings. �at is, contractions involving two operators from the same substring do not
contribute.
�is is in fact almost obvious: If a string is on normal order, all the contractions between the operators

are zero, since annihilation operators are to the right of the creation opeators.





�eorem . (�e Generalized Wick’s �eorem). Let A⋯An be an operator string of creation and annihi-
lation operators, such that

Â⋯Ân = N(Â,⋯Â,n)N(Â,⋯Â,n)⋯N(Âk ,⋯Âk ,nk). (.)

�en,

AA⋯An = N(A,⋯Ak ,nk) +
′
∑
()
N (A,⋯ ⋯ ⋯Ak ,nk) +

′
∑
()

N (A,⋯ ⋯ ⋯Ak ,nn)

+⋯ +
′
∑

(⌊ n ⌋)
N

⎛
⎜⎜⎜
⎝
A,⋯ ⋯ ⋯ ⋯ ⋯ ⋯Ak ,nk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⌊n/⌋ contractions

⎞
⎟⎟⎟
⎠

(.)

�e notation∑′(m) signi�es that we sum over all combinations of m contractions that each involve operators
from di�erent substrings, i.e., all contractions are between operators Â i , j and Â i′ , j′ with i′ ≠ i. Contractions
between Â i , j and Â i , j′ are omitted.

When n is even, the last sum signi�es thatwe sumover n/ contractions, i.e., all opeators are contracted.
�e restriction to inter-string contractions implies that the maximum number of contractions in a term
usually is smaller than ⌊n/⌋.
Here is an example:

N(ÂÂÂ)N(ÂÂ) = N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ)

+ N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ)

+ N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ)

= N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ) + N(ÂÂÂ⋮ÂÂ)
(.)

�e vertical dots are for clari�cation only.

Exercise .. In this exercise, c† means c
†
µ , etc.

Write out, using the Generalized Wick’s �eorem, the following operators. Use normal-ordering rela-
tive to the zero-particle vacuum ∣−⟩. Start by identifying substrings already in normal-order product form.

a) ccc† c
†


b) cc†c
†
 ccc

†


c) ccc†ccc
†
cc

△





Chapter 

�e Standard Methods of
approximation

. Introduction
Having dealt with the basic formalism of many-fermion theory, how do we solve the Schrödinger equation
approximately? In this section, we discuss the variational principle, perhaps the most important tool for
devising approximate schemes.
We then develop the con�guration-interaction method, and then Hartree–Fock theory, and then we

combine the two methods.

. �e variational principle
Consider the time-independent Schrödinger equation for an N-fermion system, i.e., given our Hamilto-
nian Ĥ, �nd a nonzero ∣Ψ⟩ ∈ LN with E a real number such that

Ĥ ∣Ψ⟩ = E ∣Ψ⟩ . (.)

�is is an eigenvalue problem for a Hermitian operator Ĥ over a Hilbert space. �e mathematical analysis
of this problem is complex. However, if the Hilbert space LN has �nite dimension D, then Ĥ can be viewed
as a Hermitian matrix, and we can �nd a complete set of orthonormal eigenfunctions ∣Ψk⟩, k = , , ,⋯
with corresponding eigenvalues Ek , such that

Ĥ =
D

∑
k=

Ek ∣Ψk⟩ ⟨Ψk ∣ . (.)

Of course, Hilbert space is usually in�nite dimensional, complicating the mathematical analysis of the
problem. It may happen that Ĥ does not even have a ground state, or not even a single eigenvector. How-
ever, it turns out, that in most interesting cases the di�erences are small enough to warrant the assumption
that we are dealing with a �nite-dimensional problem, or at least that Eq. (.) holds with possibly an
in�nite dimension.

�eorem . (Variational principle). Consider the expectation value functional de�ned by

E(∣Ψ⟩) ≡ ⟨Ψ∣Ĥ∣Ψ⟩
⟨Ψ∣Ψ⟩

. (.)





Let ∣Ψ∗⟩ be given. �en E∗ = E(∣Ψ∗⟩) is a stationary value of E with respect to all in�nitesimal variations
∣Ψ∗⟩ + є ∣η⟩ (with є a small number and ⟨η∣η⟩ = ) if and only if

Ĥ ∣Ψ∗⟩ = E∗ ∣Ψ∗⟩ . (.)

Proof. Let є be a small real number, ∣Ψ⟩ , ∣η⟩ ∈ LN arbitrary vectors, ∣η⟩ normalized. Let f (є) be de�ned
as

f (є) = E(∣Ψ⟩ + є ∣η⟩). (.)
�e stationary point condition can be formulated as

f ′() = . (.)

�is condition must hold for all ∣η⟩. �us, є ∣η⟩ is an arbitrary in�nitesimal variation. Mathematically,
f ′(є) is the directional derivative of E at ∣Ψ⟩ in the direction ∣η⟩. �en

f (є) = ⟨Ψ∣Ĥ∣Ψ⟩ + є ⟨η∣Ĥ∣Ψ⟩ + є ⟨Ψ∣Ĥ∣η⟩ + є ⟨η∣Ĥ∣η⟩
⟨Ψ∣Ψ⟩ + є ⟨η∣Ψ⟩ + є ⟨Ψ∣η⟩ + є ⟨η∣η⟩

. (.)

De�ne E = ⟨Ψ∣Ĥ∣Ψ⟩, N = ⟨Ψ∣Ψ⟩. De�ne A = ⟨η∣Ĥ∣Ψ⟩ + ⟨Ψ∣η⟩, a = ⟨η∣Ψ⟩ + ⟨Ψ∣η⟩.

E(∣Ψ⟩ + є ∣η⟩) = E + єA+ O(є)
N + єa + O(є)

. (.)

Using /( + x) =  − x + O(x), we expand the denominator to �rst order in є:

N


 + є aN + O(є)

= 
N

[ − є a
N
+ O(є)] . (.)

We expand f (є) to �rst order in є:

N f (є) = (E + єA+ O(є)) [ − є a
N
+ O(є)]

= E + є [A− aE
N

] + O(є).
(.)

Recall that
f (є) = f () + є f ′() + O(є). (.)

We see that f ′() =  if and only if

A = aE
N
, (.)

that is,
⟨η∣Ĥ∣Ψ⟩ + ⟨Ψ∣Ĥ∣η⟩ = (⟨η∣Ψ⟩ + ⟨Ψ∣η⟩)E(∣Ψ⟩), (.)

which must hold for all ∣η⟩. In particular, if it holds for ∣η⟩ = ∣u⟩ it must also hold for ∣η⟩ = i ∣u⟩. Plugging
these in gives

⟨u∣Ĥ∣Ψ⟩ + ⟨Ψ∣Ĥ∣u⟩ = (⟨u∣Ψ⟩ + ⟨Ψ∣u⟩)E(∣Ψ⟩), (.)

−i ⟨u∣Ĥ∣Ψ⟩ + i ⟨Ψ∣Ĥ∣u⟩ = (−i ⟨u∣Ψ⟩ + i ⟨Ψ∣u⟩)E(∣Ψ⟩), (.)

Multiplying the second equation by i and adding the two equations gives

⟨u∣Ĥ∣Ψ⟩ = E(∣Ψ⟩) ⟨u∣ ∣Ψ⟩⟩ . (.)

Since ∣u⟩ was arbitrary, we must have

Ĥ ∣Ψ⟩ = E(∣Ψ⟩) ∣Ψ⟩ . (.)

�e proof is complete.





�e variational principle in its simplest form states that the ground-state energy E is the minimum of
the expectation value of the Hamiltonian:

�eorem . (Variational Principle, Rayleigh–Ritz). If Ĥ has a ground state, then the ground-state energy
is given by the minimum of the expectation value of Ĥ, viz,

E = min
⎧⎪⎪⎨⎪⎪⎩

⟨Ψ∣Ĥ∣Ψ⟩
⟨Ψ∣Ψ⟩

RRRRRRRRRRR
 ≠ ∣Ψ⟩ ∈ LN , ∣ ⟨Ψ∣Ĥ∣Ψ⟩ ∣ < +∞

⎫⎪⎪⎬⎪⎪⎭
. (.)

�eorem . holds even if Eq. (.) does not hold. It is su�cient that Ĥ has a lowest eigenvalue. In the
in�nite dimensional case, we must require that ∣ ⟨Ψ∣Ĥ∣Ψ⟩ ∣ < +∞, since for most Hamiltonians of interest,
there are in fact ∣Ψ⟩ that has an in�nite expectation value. In �nite dimensons, this is of course not true.
We will not prove �eorem . in its full generality, but we see immediately that it follows from�e-

orem .: E is a stationary value, and cleary E cannot take values lower than E. �us, E must be the
minimum.
We now consider the variational procedure, a useful method of generating approximate ground-state

energies. Suppose we have a subset of Hilbert spaceM ⊂ LN , and compute

E[M] ≡ inf
⎧⎪⎪⎨⎪⎪⎩

⟨Ψ∣Ĥ∣Ψ⟩
⟨Ψ∣Ψ⟩

RRRRRRRRRRR
 ≠ ∣Ψ⟩ ∈M, ∣ ⟨Ψ∣Ĥ∣Ψ⟩ ∣ < +∞

⎫⎪⎪⎬⎪⎪⎭
. (.)

Clearly,
E ≤ E[M], (.)

sinceweminimize over a smaller set than the fullHilbert space. �isupper bound property of the variational
procedure is very useful, because if we enlargeM, we will always get a better estimate for E.
Suppose that our variational procedure yields a minimum value in Eq. (.) for the function ∣Ψ̃⟩ ∈M:

E[M] = E(∣Ψ̃⟩) = ⟨Ψ̃∣Ĥ∣Ψ̃⟩
⟨Ψ̃∣Ψ̃⟩

. (.)

Suppose also that ∣Ψ̃⟩ is fairly close to ∣Ψ⟩, i.e.,

∣Ψ⟩ ≈ ∣Ψ̃⟩ + є ∣η⟩ (.)

�en, from the proof of the variational principle, we expect that

Ẽ − E = f (є) − f () = [ f () + є f ′() + O(є)] − f () = O(є) , (.)

i.e., that the error in the eigenvalue is quadratic in the error in the eigenfunction! �us, the error E[M]−
E is insensitive to errors in the wavefunction. �is explains why the variational procedure is so useful.
Example: �e hydrogen atom with Hamiltonian

ĥ = − 

∇ + 

r
. (.)

�e exact ground-state wavefunction is well-known,

ψ(r⃗) = Ce−r , (.)

with eigenvalue E = −/. Here, C is a normalization constant. Let us imagine we did not know ψ, and
try a parameterized wavefunction on the form

ψα(r⃗) = (α/π)/e−αr
/ . (.)
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Figure .: Plot of approximate and exact ground-state wavefunction for the Hydrogen example

�us,M = {∣ψα⟩ ∣ α > } is the set of approximate wavefunctions, which all satisfy ⟨ψα ∣ψα⟩ = . We can
compute the expectation value,

E(∣ψα⟩) = ⟨ψα ∣ĥ∣ψα⟩ = 

α − (α

π
)
/

(.)

and minimize with respect to α,

E[M] = inf
α
E(∣ψα⟩) = E(∣ψ


π ⟩) = − 

π ≈ −.. (.)

�is is actually a minimum, obtained at α = /(π). Comparing with the exact result, we see that the
energies are rather close for such a simple parameterization. �e wavefunctions are not that close, see
Fig. .! Note that the exact ground-state is not smooth at r⃗ = .
Usually, the setM contains wavefunction ansätze that are parameterized in some way. In the example,

we had a simple Gaussian wavefunction parameterized by the width.

.. �e Cauchy interlace theorem and linear models
Suppose that the setM is a linear space, i.e., a subspace V of LN de�ned by a basis set ∣ΦI⟩, I = , ,⋯,D.
�en the variational procedure is equivalent to computing the smallest eigenvalue of the matrix

HI J = ⟨ΦI ∣Ĥ∣ΦJ⟩ . (.)

�is is so, because for

∣Ψ̃⟩ =
D

∑
I=
AI ∣ΦI⟩ (.)

the expectation value becomes

E(∣Ψ̃⟩) = AHHA

AHA
, (.)

which is simply the expectation value functional for the quantum system with the Hamiltonian H and
wavefunction A, and we can apply the variational principle to this functional.
It is a fact, that under verymild assumptions on {∣ΦI⟩} and Ĥ, the eigenvalues of thematrixH converge

to the eigenvalues of Ĥ, even in the in�nite dimensional case.





For the �nite-dimensional case, the Cauchy interlace theorem states that for a linear model as here
described, all the eigenvalues ofH actually approximate eigenvalues of the full HamiltonianH from above.
For a general nonlinear modelM, we cannot say this. In general only the ground-state energy is approxi-
mated.
�e theorem implies that truncating a single-particle basis or truncating a Slater determinant basismakes

sense.
We will not prove the theorem.

�eorem . (Cauchy Interlace�eorem). Let V and V be linear spaces, of dimension D and D, respec-
tively. Let V ⊂ V be a subspace.
Let {∣ΦI⟩}D

I= be an orthonormal basis for V, such that {∣ΦI⟩}D
I= is a basis for V.

Let Ĥ ∶ V → V be a Hermitian operator with matrix H ∈ CD×D , HI J = ⟨ΦI ∣Ĥ∣ΦJ⟩.
Let H be the projection of Ĥ onto V, i.e., the matrix H of this operator is equal to the upper le� D ×D

block of the D × D matrix H.
Let E(i)

k be the D i eigenvalues of Hi , arranged such that

E(i)
k ≤ E(i)

k+ ∀k. (.)

�en,
E()
k ≤ E()

k ≤ E()
k+δ , δ = D − D . (.)

Exercise .. Prove Eq. (.). △

. �e Con�guration-interaction method (CI)

.. General description
We now describe an approach to manybody theory called con�guration-interaction theory (CI). It basically
entails truncating both the single-particle basis and the resulting Slater determinant basis according to
certain rules.
Let an orthonormal single-particle basis {ϕp} be given, with associated creation operators c†p , and

corresponding Slater determinants ∣p⃗⟩. Suppose we expand an N-fermion wavefunction in the Slater de-
terminant basis, but truncate the expansion, including only a �nite subset S of Slater determinants. �e
determinants then span a D-dimensional subspace of LN ,

V = span{∣p⃗⟩ ∣ ∣p⃗⟩ ∈ S} (.)

Equivalently, any wavefunction in V can be written

∣Ψ⟩ = ∑
p⃗∈S

A p⃗ ∣p⃗⟩ , A p⃗ = ⟨p⃗∣Ψ⟩ . (.)

�e set S may of course be chosen in many di�erent ways. One typical choice is the set of all possible
Slater determinants generated by the �rst L single-particle functions ϕ through ϕL−. �is gives a space
of dimension (LN), and is called the full con�guration-interaction space (FCI space).
Another typical approach is to have a reference determinant ∣Φ⟩ and consider particle-hole states on

top of that, or excitations in chemistry language.





For example, the one-particle-one-hole space (CI singles, CIS) wavefunction is given by the choice

VCIS = span{∣Φ⟩ , ∣Φa
i ⟩ ∣ i = ,⋯N , a = N + ,⋯, L}, (.)

and any CIS wavefunction can thus be written

∣Ψ⟩ = A ∣Φ⟩ +∑
i a
Aa
i ∣Φ i a⟩ . (.)

Furthermore, CI singles-and-doubles (CISD) is de�ned by the space

VCISD = span{∣Φ⟩ , ∣Φa
i ⟩ ∣Φab

i j ⟩ ∣ i , j = ,⋯N , a, b = N + ,⋯, L}. (.)

A wavefunction ∣Ψ⟩ ∈ VCISD can be written

∣Ψ⟩ = A ∣Φ⟩ +∑
i a
Aa
i ∣Φa

i ⟩ +∑
i< j
∑
a<b

Aab
i j ∣Φab

i j ⟩ . (.)

Con�guration-interaction singles-doubles-and-triples (CISDT), etc, are de�ned similarly.
Sometimes, the doubles term is written

∑
i< j
∑
a<b

Aab
i j ∣Φab

i j ⟩ =

∑i j
∑
ab
Aab
i j ∣Φab

i j ⟩ . (.)

�e coe�cients satisfy Aab
i j = −Aab

ji = −Abai j = Abaji , and the factor / comes from the fact that ∣Φab
i j ⟩ =

− ∣Φba
i j ⟩ = − ∣Φab

ji ⟩ = ∣Φba
ji ⟩, i.e., we are deliberately over-counting the basis in this expression to keep

notation simple.

Exercise .. Compute the dimension of VCIS, VCISD, etc. △

Clearly, indexing the Slater determinants using the vector p⃗ directly can be cumbersome. Using a
di�erent notation, we let I ∈ I be an index that enumerates the basis determinants, and write

V = span{∣ΦI⟩ ∣ I ∈ I}. (.)

Our vector expansion becomes

∣Ψ⟩ =∑
I
AI ∣ΦI⟩ , AI = ⟨ΦI ∣Ψ⟩ . (.)

For example, I = , ,⋯,D is a possibility, with some way of choosing an I for every p⃗ we are interested in.
Or I = (a, i), I = (ab, i j), etc, enumerates the CIS, CISD, etc, hierarchy of spaces.
Howdowe choose the single-particle functions and the reference state inCI theory? �emost common

choice in chemistry is to employ a basis of Hartree–Fock spin-orbitals. �is is the topic of Section .. A
more general picture is as follows: if Ĥ = Ĥ + Ŵ , it is also possible to consider Ŵ a perturbation of Ĥ,
assuming that the eigenstates and eigenvalues of Ĥ are good approximations to those of the full Ĥ. (�is
is also true for the Hartree–Fock paradigm to be considered later.)
Let therefore {ϕp} be a complete set of eigenfunctions for the single-particle operator ĥ with eigen-

values єp arranged in increasing order. �en, the Slater determinants ∣p⃗⟩ are eigenstates of the one-body
Hamiltonian Ĥ = ∑N

i ĥ(i). Clearly, the determinant

∣Φ⟩ = ∣⋯N⟩ (.)
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Figure .: Fermi level and quasiparticles. To the le�, we have the vacuum state. To the right, we have a
doubly excited state, or a two-particle-two-hole-state. Notice how we draw the “Fermi line” between two
levels for clarity. In this simple picture, we have assumed that the levels are non-degenerate. If we had spin
present, we could �t two particles per level, and so on.

is the ground-state wavefunction of Ĥ, whose second quantized expression is

Ĥ =∑
p
єpc†pcp . (.)

Note, that if the eigenvalues of ĥ are degenerate, then this wavefunction may or may not be unique.
In this picture, the truncated CI scheme as outlined above is a natural approach, since it is reasonable

to assume that singles, doubles, etc, will systematically improve upon the “zero-order” wavefunction ∣Φ⟩.
In the context of a reference function ∣Φ⟩ de�ned in terms of a zero-order Hamiltonian, such as Ĥ,

it is common to de�ne the fermi level є as the energy of the occupied orbital with the highest energy, єF,
assuming that all degenerate levels are included. With this terminology,

∣Φ⟩ =
⎛
⎝∏єp≤єF

c†p
⎞
⎠
∣−⟩ , (.)

for example. Moreover, we say that a hole is “below the Fermi level” and a particle is “above the Fermi level”.
An excitation excites a fermion from below the Fermi level to above the Fermi level. �us, the index N is
replaced by the one-body energy of that level, єF. See Fig. .
Notice that the truncated CI scheme favors the description of the ground-state wavefunction.

.. Matrix elements of the CI method
Having established the parametrization of the approximate wavefunction, a linear space V , we turn to the
variational principle, which tells us (together with the Cauchy Interlace �eorem that) that the matrix of
the Hamiltonian Ĥ with respect to the chosen basis is the central object. Diagonalizing this matrix gives
us approximations to the ground-state energy and in total D eigenvalues of the full system.
�us, in the CI method, we need to diagonalize the matrix H = [HI J] given by

HI J = ⟨ΦI ∣Ĥ∣ΦJ⟩ (.)





If we look at the CISD case, the matrix then obtains a block form:

H =
⎛
⎜⎜
⎝

⟨Φ∣Ĥ∣Φ⟩ ⟨Φ∣Ĥ∣Φa
i ⟩ ⟨Φ∣Ĥ∣Φab

i j ⟩
⟨Φa′

i′ ∣Ĥ∣Φ⟩ ⟨Φa′
i′ ∣Ĥ∣Φa

i ⟩ ⟨Φa′
i′ ∣Ĥ∣Φab

i j ⟩
⟨Φa′b′

i′ j′ ∣Ĥ∣Φ⟩ ⟨Φa′b′
i′ j′ ∣Ĥ∣Φa

i ⟩ ⟨Φa′b′
i′ j′ ∣Ĥ∣Φab

i j ⟩

⎞
⎟⎟
⎠

(.)

.. Computer implementation of CI methods
In chemistry, speed and reliability are crucial factors. Computations are performed by non-specialists using
highly optimized codes like Dalton,Molpro, or Gaussian.
We will not try and compete with such codes, of course, but instead indicate how various methodsmay

be implemented.

.. Naive CI
�e simplest approach, which we here call “naive CI”, is to

. Write down a list of all the Slater determinants in the desired basis,

I ↦ ∣ΦI⟩ .

. Compute all the matrix elements HI J and store them in computer memory as a big D × D matrix.
�is can be done using, say, the Slater–Condon rules (see Exercise ??) that are basically formulae for
the matrix elements given in terms of the occupied single-particle functions in ∣ΦI⟩ and ∣ΦJ⟩.

. Use a diagonalization agorithm to �nd, say, the ground-state energy or other eigenvalues of the
matrix.

�e biggest problem with this approach, is that the dimension D of the CI space grows pretty fast.
�e matrix is, in principle, a table with D elements. For FCI, D grows like (LN), which very quickly is
prohibitive. For CIS, it grows only like N(L − N), but CIS is not that fancy. For CISD, the dimension
grows like N(L − N). We see that the spaces in any case become huge for moderate partucle numbers
and numbers L of single-particle functions.

.. Direct CI
More common than “naive CI” is direct CI. For systems of interest, the matrix size grows so quickly that
storing the matrix H in memory is out of question. Moreover, diagonalization of dense matrices scales as
D, quickly becoming too expensive for practical calculations.
Luckily, we have iterative algorithms such as the Lanczos algorithm. �ese rely only on thematrix-vector

product. Nowhere is the actual value ofHI J needed, only the action on a vector AI , i.e., the algorithm needs
to compute

A⃗′ = HA⃗ (.)

for some input vector A⃗. I.e., we must have an algorithm to compute

∣Ψ′⟩ = PĤ ∣Ψ⟩ (.)

where P = ∑I ∣ΦI⟩ ⟨ΦI ∣ is the projection operator onto our chosen basis, i.e., we throw away the part of
Ĥ ∣Ψ⟩ which is not describable in terms of our basis.
It is useful to represent ∣ΦI⟩ in terms of its occupation number vector, a bit string B = B[I]. �ese are

integers, and we need a table of these in computer memory. Since our ∣ΦI⟩must be linearly independent,





there is a one-to-one correspondence between the B[I]’s and the I’s, i.e., we can invert the table to obtain
I = I[B], given B. We write ∣B⟩ = ∣ΦI[B]⟩ for brevity, and we stress that now B is an integer written on
binary form.
�e central observation is now that, for any string of creation and annihilation operators

CC⋯Cn ∣B⟩ =
⎧⎪⎪⎨⎪⎪⎩

 or
(−)s ∣B′⟩

. (.)

�e result can be found by manipulating the bits of B and keeping track of the resulting sign. When B′ has
been found, the corresponding index I′ can be found by searching the bit pattern table. �us, let us write:

∣Ψ′⟩ = PĤ ∣Ψ⟩ =∑
B′

∣B′⟩ ⟨B′∣ Ĥ∑
B
AB ∣B⟩

=∑
B
AB∑

B′
∣B′⟩ ⟨B′∣

⎛
⎝∑pq

hpq c†pcq + 
 ∑
pqrs

w pq
rs c†pc

†
qcscr

⎞
⎠
∣B⟩

= ∣Ψ′⟩ =∑
B
AB

⎛
⎝∑pq

hpq ⟨B′∣c†pcq ∣B⟩ + 
 ∑
pqrs

w pq
rs ⟨B′∣c†pc†qcscr ∣B⟩

⎞
⎠
∣B′⟩

(.)

�is gives us the following algorithm for computing the Ĥ contribution to ∣Ψ′⟩ (the Ŵ part is similar):

. Initialize A′I′ =  for all I′.

. Loop over I:

(a) Fetch B = B[I].
(b) Loop over p, q.

i. Compute c†pcq ∣B⟩ =  or (−)s ∣B′⟩ by manipulaing the bits in B.
ii. If the result is nonzero, compute I′ such that B[I′] = B′ by searching the bit pattern table.
iii. If the pattern is found, update A′I′ ← A′I′ + AIh

p
q(−)s .

Of course, this algorithm is just a sketch. �ere are many ways to improve it.
How does one search for the index I′ in step /b/ii? One way is to ensure that the table of bit patterns

(integers) are sorted, and then use binary search. �is requires on average O(D logD) operations, and
since we need to do this O(D) times, this slows down our program drastically. One can also use a hash
map (e.g., the C++ STL class std::map<int,int> can be used). �is is no faster.
A much faster approach can be taken using graphical methods. It is actually possible to �nd a formula

for the inverse map. �is formula is O(), dramatically reducing the computer work for direct CI. For
more information on this technique, see Helgaker/Jørgensen/Olsen [], Section ..

.. Recipe for bit pattern representation.
How can we perform the bitwise operations mentioned above?
Each Slater determinant ∣µ ,⋯ µN⟩ is, via the occupationnumbers,mapps to the bit pattern ∣nnn⋯nL⟩

where each nµ ∈ {, }. We identify the bit pattern with the integer B[µ⋯µN] it encodes. �us,

µ⃗ = {, , }↦ ∣⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L bits

⟩↦ ∣ ×  +  ×  +  × ⟩ = ∣⟩ . (.)





(But who is thinking in terms of base- numbers these days anyway?) All integers between  and L−
encode all possible Fock space basis functions. A basis for N-fermion space is composed of all the integers
whose bit patterns have precisely N bits in total.
Annihilation operator: cp ∣B⟩ is either  or (−)k ∣B′⟩ for some k and B′. We have the following algo-

rithm:

. If bit p is not set, return the zero result.

. Else, compute k as the number of bits set before p.

. Erase bit p to obtain B′.

. Retun the sign (−)k and B′.

Creation operator: c†p ∣B⟩ is either  or (−)k ∣B′⟩ for some k and B′. We have the following algorithm:

. If bit p is set, return the zero result.

. Else, compute k as the number of bits set before p.

. Light bit p to obtain B′.

. Return the sign (−)k and B′.

�e product c†pcq ∣B⟩ can be computed by repeating the above algorithms, and similarly with any string
of creation and annihilation operators.

Exercise .. We are given L =  orbitals, numbered p = , ,⋯, L − , and thus an occupation number
representation of length  bits, e.g.,

∣p = , p = ⟩ = ∣⟩ = ∣⟩ . (.)

Write down the result of the following expressions, on occupation number form. Remember the sign
factor:

a) c† ∣⟩

b) c ∣⟩

c) c†c
†
 ∣⟩

d) c† ∣⟩

e) c ∣⟩

f) c† ∣⟩

g) c† c
†
c

†
 ∣⟩

h) c†c ∣⟩

△





Exercise .. Write a program that generates all possible bit patterns of length L with N bits set and writes
them to screen.
Check that you have the correct number of patterns, (LN). △

Exercise .. (continues exercise ..) Write a program that correctly creates/annihilates particles from a
bit pattern representation ∣B⟩ of a Slater determinant, returning the proper sign. △

Exercise .. (continues exercises . and ..) Write a program that, given hpq andw
pq
rs (antisymmetrized

or otherwise) as input arrays, computes Ĥ ∣B⟩ using direct CI. △

. Hartree–Fock theory (HF)

.. �e Hartree–Fock equations
Suggested reading for this section: Szabo/OstlundCh. , Harris/Monkhorst/FreemanCh. , Gross/Runge/Heinonen
Ch. .
It is highly recommended to read the mathematical supplement in the Appendix, Sec. A. on the cal-

culus of variations.
One of the earliest and most successful approximation methods for many-fermion systems was the

Hartree–Fock method (HF method). In Hartree–Fock theory we parametrize our wavefunction as a sin-
gle Slater determinant. However, the single-particle functions are the unknowns to be determined by the
variational procedure.
�us, our wavefunction manifoldM consists of all possible functions on the form

∣Φ⟩ = ∣ϕϕ⋯ϕN⟩ , ⟨ϕ i ∣ϕ j⟩ = δ i j . (.)

Note carefully, that a single-particle basis is not given – it is to be found! �e expectation value of the
Hamiltonian Ĥ = Ĥ + Ŵ now reads (recalling that ⟨Φ∣Φ⟩ = )

⟨Φ∣Ĥ∣Φ⟩ =∑
i
⟨ϕ i ∣ĥ∣ϕ i⟩ +


∑i j

⟨ϕ iϕ j ∣ŵ∣ϕ iϕ j − ϕ jϕ i⟩ (.)

as obtained via the Slater–Condon rules, see for example Exercise .. Here,

⟨ϕpϕq ∣ŵ∣ϕrϕs⟩ ≡ ∫ dx ∫ dxϕp(x)∗ϕq(x)∗w(x , x)ϕr(x)ϕs(x), (.)

which satis�es ⟨ϕpϕq ∣ŵ∣ϕrϕs⟩ = ⟨ϕqϕp ∣ŵ∣ϕsϕr⟩. �e task is now to minimize this energy ⟨Φ∣Ĥ∣Φ⟩ subject
to the constraint that the ϕ i are orthonormalized,

⟨ϕ i ∣ϕ j⟩ = δ i j . (.)

When a minimum is found, we denote the solution by ∣ΦHF⟩, the Hartree–Fock state.





�e constraints constitute a complication that we want to get rid of. We therefore Lagrange multipliers,
one for each constraint, giving a Lagrangian functional

L[ϕ ,⋯, ϕN , λ] = ⟨Φ∣Ĥ∣Φ⟩ −∑
i j
λ ji(⟨ϕ i ∣ϕ j⟩ − δ i j)

=∑
i
⟨ϕ i ∣ĥ∣ϕ i⟩ +


∑i j

⟨ϕ iϕ j ∣ŵ∣ϕ iϕ j − ϕ jϕ i⟩ −∑
i j
λ ji(⟨ϕ i ∣ϕ j⟩ − δ i j)

(.)

Recall, that computing an extremum for the constrained problem is equivalent to an unconstrained ex-
tremalization of L with respect to the ϕ i and the Lagrange multipliers (see any text on vector calculus).
Due to symmetry of the constraints, the Lagrangemultipliermatrix λ can be assumed to beHermitian.
A word on a special notation. We de�ne a single-particle function

⟨ ⋅ ϕ∣ŵ∣ϕϕ⟩ ∈ L (.)

as the function obtained by integrating only over the second particle in the inner product, viz,

⟨x∣ ⟨ ⋅ ϕ∣ŵ∣ϕϕ⟩ = ⟨ ⋅ ϕ∣ŵ∣ϕϕ⟩ (x) ≡ ∫ ϕ(x)∗[w(x , x)ϕ(x)ϕ(x)] dx . (.)

�e inner product with any single-particle function χ is

⟨χ∣ ⟨ ⋅ ϕ∣ŵ∣ϕϕ⟩ =∬ χ(x)∗ϕ(x)∗[w(x , x)ϕ(x)ϕ(x)] dxdx = ⟨χϕ∣ŵ∣ϕϕ⟩ , (.)

i.e., the full two-particle integral. �us, the dot represents an “unused slot” in the two-particle matrix
element.
We can expand the function in any orthonormal single-particle basis {χp} ⊂ L ,

⟨ ⋅ ϕ∣ŵ∣ϕϕ⟩ =∑
p
∣χp⟩ ⟨χp ∣ ⟨ ⋅ ϕ∣ŵ∣ϕϕ⟩ =∑

p
∣χp⟩ ⟨χpϕ∣ŵ∣ϕϕ⟩ , (.)

i.e., a linear combination of to-particle matrix elements. �is notation will be useful when we now state
and prove our result:

�eorem. (Hartree–Fock equations). �e single-particle functions of theHartree–Fock state ∣ΦHF⟩ satisfy
the nonlinear eigenvalue problem

f̂ (ϕ ,⋯, ϕN) ∣ϕ i⟩ = є i ∣ϕ i⟩ , (.)

where
f̂ (ϕ ,⋯, ϕN) ≡ ĥ + v̂direct − v̂exchange , (.)

with
v̂direct ∣ψ⟩ ≡∑

j
⟨ ⋅ ϕ j ∣ŵ∣ψϕ j⟩ . (.)

and
v̂exchange ∣ψ⟩ ≡∑

j
⟨ ⋅ ϕ j ∣ŵ∣ϕ jψ⟩ . (.)

�e equations (.) are referred to as “the Hartree–Fock equations”. �e operator f̂ in Eq. (.) is “the
Fock operator”, and v̂direct and v̂exchange are the direct- and exchange potentials, respectively.

To see this, assume that a ji is a matrix which is not assumed to be Hermitian. Note that the expression g i j = ⟨ϕ i ∣ϕ j⟩ − δ i j
satis�es g∗i j = g ji . �us, ∑i j a ji g i j = ∑i j a ji g∗ji = ∑i j a i j g∗i j = (∑i j a∗i j g i j)∗. �is gives ∑i j a ji g i j = 

 ∑i j(a ji + a∗i j)g i j . Take
λ ji = a ji + a∗i j .





Proof. In the language of Sec. A., we need to show that the directional derivative of the Lagrangian van-
ishes.
We �rst note that λ ji can be treated separately: ∂L/∂λ ji = ⟨ϕ i ∣ϕ j⟩−δ i j , the constraint. �ese equations

are ensured ful�lled in the end by �nding solutions ϕ i that are in fact orthonormal. We thus only compute
the directional derivatives with respect to variations of the ϕ i .
Choose a k ∈ {,⋯,N}. We are going to compute the directional derivative with respect to changes in

the function ϕk only, leaving the other �xed. �is turns out to be su�cient to �nd all the equations. �us,
let є be a small real number, and let η be a normalized single-particle function. We write

δϕk = єη.

�e other functions are �xed, δϕ i =  for i ≠ k. De�ne the function

f (є) = L(ϕ ,⋯, ϕk + єη,⋯, ϕN , λ), (.)

To �rst order in є,
f (є) = f () + є f ′() + O(є), (.)

and we for an extremal point of L, we must have that for any η, f ′() = . In the language of Sec. A., the
directional derivative of L at {ϕ i}Ni= in the direction η (for ϕk , the others are �xed) vanishes.
We compute the Taylor expansion of f (є) by direct computation of the perturbed Lagrangian:

f (є) =∑
i
⟨ϕ i + δkiєη∣ĥ∣ϕ i + δkiєη⟩ +


∑i j

⟨(ϕ i + δkiєη)(ϕ j + δk jєη)∣ŵ∣(ϕ i + δkiєη)(ϕ j + δk jєη)⟩

− 
∑i j

⟨(ϕ i + δkiєη)(ϕ j + δk jєη)∣ŵ∣(ϕ j + δk jєη)(ϕ i + δkiєη)⟩

−∑
i j
λ ji(⟨ϕ i + δ i kєη∣ϕ j + δ jkєη⟩ − δ i j)

(.)

We now write out the matrix elements, but keep only terms up to �rst order in є. �is gives

f (є) =∑
i
⟨ϕ i ∣ĥ∣ϕ i⟩ +


∑i j

⟨ϕ iϕ j ∣ŵ∣ϕ iϕ j − ϕ jϕ i⟩ + є ⟨η∣ĥ∣ϕk⟩ + є ⟨ϕk ∣ĥ∣η⟩

+ 

є∑

j
⟨ηϕ j ∣ŵ∣ϕkϕ j⟩ +



є∑

i
⟨ϕ iη∣ŵ∣ϕ iϕk⟩ −



є∑

j
⟨ηϕ j ∣ŵ∣ϕ jϕk⟩ −



є∑

i
⟨ϕ iη∣ŵ∣ϕkϕ i⟩

+ 

є∑

j
⟨ϕkϕ j ∣ŵ∣ηϕ j⟩ +



є∑

i
⟨ϕ iϕk ∣ŵ∣ϕ iη⟩ −


∑i

є ⟨ϕ iϕk ∣ŵ∣ηϕ i⟩ −

∑j

є ⟨ϕkϕ j ∣ŵ∣ϕ jη⟩

−∑
j
λ jkє ⟨η∣ϕ j⟩ −∑

i
λkiє ⟨ϕ i ∣η⟩ −∑

i j
λ ji(⟨ϕ i ∣ϕ i⟩ − δ i j) + O(є)

(.)

We now use the symmetry property of the matrix elements of ŵ. �is gives, for example,


∑i

⟨ϕ iη∣ŵ∣ϕ iϕk⟩ =

∑i

⟨ηϕ i ∣ŵ∣ϕkϕ i⟩ =

∑j

⟨ηϕ j ∣ŵ∣ϕkϕ j⟩ . (.)





�is gives a simpli�cation of f (є), and we regroup:

f (є) =∑
i
⟨ϕ i ∣ĥ∣ϕ i⟩ +


∑i j

⟨ϕ iϕ j ∣ŵ∣ϕ iϕ j − ϕ jϕ i⟩ −∑
i j
λ ji(⟨ϕ i ∣ϕ i⟩ − δ i j)

+ є ⟨η∣ĥ∣ϕk⟩ + є ⟨ϕk ∣ĥ∣η⟩ + є∑
j
⟨ηϕ j ∣ŵ∣ϕkϕ j⟩ − є∑

j
⟨ηϕ j ∣ŵ∣ϕ jϕk⟩

+ є∑
j
⟨ϕkϕ j ∣ŵ∣ηϕ j⟩ −∑

j
є ⟨ϕ jϕk ∣ŵ∣ηϕ j⟩ − є∑

j
λ jk ⟨η∣ϕ j⟩ − є∑

j
λk j ⟨ϕ j ∣η⟩ + O(є)

(.)

We recognize that the zeroth order term is just f () = L(ϕ ,⋯, ϕN , λ). We read o� f ′(є), and obtain the
directional derivative, and hence the equation

 = ⟨η∣ĥ∣ϕk⟩ + ⟨ϕk ∣ĥ∣η⟩ +∑
j
⟨ηϕ j ∣ŵ∣ϕkϕ j⟩ −∑

j
⟨ηϕ j ∣ŵ∣ϕ jϕk⟩

+∑
j
⟨ϕkϕ j ∣ŵ∣ηϕ j⟩ −∑

j
⟨ϕ jϕk ∣ŵ∣ηϕ j⟩ −∑

j
λk j ⟨ϕ j ∣η⟩ −∑

j
λ jk ⟨η∣ϕ j⟩ ,

(.)

which must be valid for all choices of the function η. In particular we can also insert iη, giving, a�er
dividing the result by i,

 = − ⟨η∣ĥ∣ϕk⟩ + ⟨ϕk ∣ĥ∣η⟩ −∑
j
⟨ηϕ j ∣ŵ∣ϕkϕ j⟩ +∑

j
⟨ηϕ j ∣ŵ∣ϕ jϕk⟩

+∑
j
⟨ϕkϕ j ∣ŵ∣ηϕ j⟩ −∑

j
⟨ϕ jϕk ∣ŵ∣ηϕ j⟩ −∑

j
λk j ⟨ϕ j ∣η⟩ +∑

j
λ jk ⟨η∣ϕ j⟩ ,

(.)

Subtracting the two equations gives us

 = ⟨η∣ĥ∣ϕk⟩ +∑
j
⟨ηϕ j ∣ŵ∣ϕkϕ j⟩ −∑

j
⟨ηϕ j ∣ŵ∣ϕ jϕk⟩ −∑

j
λ jk ⟨η∣ϕ j⟩ , ∀η. (.)

Let {χp} be a complete orthonormal basis for the single-particle space L . Inserting η = χp in Eq. (.),
we obtain

 =∑
p
∣χp⟩

⎧⎪⎪⎨⎪⎪⎩
⟨χp ∣ĥ∣ϕk⟩ +∑

j
⟨χpϕ j ∣ŵ∣ϕkϕ j⟩ −∑

j
⟨χpϕ j ∣ŵ∣ϕ jϕk⟩ −∑

j
λ jk ⟨χp ∣ϕ j⟩

⎫⎪⎪⎬⎪⎪⎭
= ĥ ∣ϕk⟩ +∑

j
∑
p
∣χp⟩ ⟨χpϕ j ∣ŵ∣ϕkϕ j⟩ −∑

j
∑
p
∣χp⟩ ⟨χpϕ j ∣ŵ∣ϕ jϕk⟩ −∑

j
λ jk ∣ϕ j⟩ .

(.)

Here, we used
 =∑

p
∣χp⟩ ⟨χp ∣ . (.)

We use Eq. (.), to get

 = ĥ ∣ϕk⟩ +∑
j
⟨ ⋅ ϕ j ∣ŵ∣ϕkϕ j⟩ −∑

j
⟨ ⋅ ηϕ j ∣ŵ∣ϕ jϕk⟩ −∑

j
λ jk ∣ϕ j⟩ . (.)

We now get rid of λ, replacing it with a diagonal matrix with diagonal elements єk (not to be confused with
the small parameter є above, which we now are done with.)
�e determinant ∣Φ⟩ is invariant (up to an irrelevant phase) under a unitary mixing of the single-

particle functions, i.e, if we let
ϕ̃k =∑

j
ϕ jU jk (.)





with U a unitary matrix, then ∣Φ̃⟩ = det(U) ∣Φ⟩, i.e., the same state, and clearly the energy must be the
same too.
As argued, λ i j = λ∗ji can be assumed Hermitian. Select therefore U such that λ = UEUH , with E jk =

δ jkєk the elements of a diagonal matrix (the eigenvalues of λ):

λ ji =∑
ℓ
U jℓєℓU∗

i ℓ . (.)

Let ∣r i⟩ be the right-hand side of Eq. (.), and consider

∑
k
∣rk⟩Uki = . (.)

SinceU is unitary, Eq. (.) is satis�ed for all k if and only if Eq. (.) is satis�ed for all i. Computing the
sum in Eq. (.) (see Exercise .) we obtain

ĥ ∣ϕ̃ i⟩ +∑
j
[⟨ ⋅ ϕ̃ j ∣ŵ∣ϕ̃ i ϕ̃ j⟩ − ⟨ ⋅ ϕ̃ j ∣ŵ∣ϕ̃ j ϕ̃ i⟩] − є i ∣ϕ̃ i⟩ = . (.)

�is must hold for all i = ,⋯,N simultaneously.
With the de�nitions of v̂direct and v̂exchange in the theorem formulation, we are �nished.

�e theorem does not guarantee that the solutions to the HF equations correspond to a the actual HF
solution, i.e., a global minimum, or even a local minimum. It could well be a saddle point. Indeed, it has
been found that the standard algorithms for the HF equations sometimes give local minima NB: insert
citation.
Let us consider the unfamiliar operators v̂direct and v̂exchange in some detail. To this end, suppose that

the two-body operator is a local potential ŵ(x , x), such as the Coulomb potential

ŵCoul(x , x) =


∣r⃗ − r⃗∣
, x i = (r⃗ i , σ). (.)

�e operator v̂direct is a one-body operator. When acting on a one-body function ∣ψ⟩ it produces a new
one-body function, which at x takes the value

⟨x∣ (v̂direct ∣ψ⟩) =∑
j
⟨x∣ ⟨ ⋅ ϕ j ∣ŵ∣ψϕ j⟩ =∑

j
∫ ϕ∗j (x)w(x , x)ϕ j(x)ψ(x) dx

=
⎡⎢⎢⎢⎢⎣
∫ ∑

j
∣ϕ j(x)∣w(x , x) dx

⎤⎥⎥⎥⎥⎦
ψ(x) ≡ vdirect(x)ψ(x).

(.)

�us, v̂direct is a local potential, given by a sort of average ofw(x , x)over x, weighted by ρ(x) ≡ ∑ j ∣ϕ j(x)∣,
giving a “mean-�eld potential”.
�e operator v̂exchange is, however, non-local: the value ⟨x∣ (v̂exchange ∣ψ⟩) depends on ψ(x) in every

point x. To see this, we compute

⟨x∣ (v̂exchange ∣ψ⟩) =∑
j
⟨x∣ ⟨ ⋅ ϕ j ∣ŵ∣ϕ jψ⟩ =∑

j
∫ ϕ∗j (x)w(x , x)ψ(x)ϕ(x) dx . (.)

�e operator v̂exchange is still linear when acting on ∣ψ⟩, it is just not interpretable as a local potential.
If we introduce the reduced one-particle density matrix γ(x , x) as

γ(x , x′) =∑
j
ϕ j(x)ϕ j(x′)∗ , (.)





we can express
⟨x∣ v̂direct ∣ψ⟩ = ψ(x)∫ γ(x , x)w(x , x) dx . (.)

⟨x∣ v̂exchange ∣ψ⟩ = ∫ γ(x , x)w(x , x)ψ(x) dx . (.)

�e reduced density matrix γ will turn out to be a useful concept in Hartree–Fock theory.
In the proof of the HF equations, we �rst found an equation whose solutions were not eigenfunctions,

Eq. (.). However, by forming a particular linear combination, the equation was brought on eigenvalue
form, Eq. (.). We realized that the HF single-particle functions were not unique; any unitary transfor-
mation among the orbitals produces the same ∣ΦHF⟩.
�e diagonal form of the HF equations are referred to as the canonical HF equations, while the non-

diagonal form is non-canonical.
�e HF equations are a set of eigenvalue equations that are nonlinear in the eigenvectors. �us, the

equations need to be solved self-consistently. �e fermions experience an averaged interaction from the
other electrons – hence, we o�en call HF theory formean-�eld theory.
We only used the N �rst eigenvectors of f̂ to construct our HF wavefunction. But when these have

been found, f̂ = f̂ (ϕ ,⋯, ϕN) is a �xed Hermitian operator (see Exercise .), and we can in principle
�nd a complete basis of eigenvectors of f̂ ,

{ϕp} = {ϕ i} ∪ {ϕa}. (.)

�is particular orthonormal basis is o�en taken as basis for proper manybody treatments, such as CI cal-
culations, perturbation theory, and coupled-cluster (CC) theory (these are topics we return to later). It is
referred to as the canonical basis, and Eq. (.) is an extenion of Eq. (.) to include the extra single-
particle functions ϕa .
�is rather central, that we write it up as a de�nition that we can refer to later:

De�nition . (Canonical HF equations, HF basis). For a given two-body Hamiltonian

Ĥ =
N

∑
i=
ĥ(i) +

N

∑
i< j
ŵ(i , j), (.)

�e equation
f̂ (ϕ ,⋯, ϕN) ∣ϕp⟩ = єp ∣ϕp⟩ . (.)

with the Fock operator
f̂ (ϕ ,⋯, ϕN) = ĥ + v̂direct − v̂exchange , (.)

is referred to as the canonical Hartree–Fock equations, and the solutions are called the canonical single-
particle functions.
�e �rst N HF single-particle functions ϕ i are o�en called occupied, while the rest, ϕa , are o�en called

virtual single-particle functions.

We now show an interesting relation for the Hartree–Fock energy. It is tempting to assume that EHF =
∑i є i . However, this is not the case.

�eorem . (Energy expression for Hartree–Fock). Assume that a solution (ϕ i , є i), i = ,⋯,N , to the
canonical Hartree–Fock equations have been found. �en, the Hartree–Fock energy is given by

EHF =∑
i
є i −


∑i j

⟨ϕ iϕ i ∣ŵ∣ϕ iϕ j − ϕ jϕ i⟩ . (.)

It happens that f̂ has a continuous spectrum, so our statement must really be limited to �nite-dimensional one-particle spaces
for strict validity.





Proof. Multiply the HF equation from the le� by ⟨ϕ i ∣ and sum over i to obtain

∑
i
є i =∑

i
⟨ϕ i ∣ĥ∣ϕ i⟩ +∑

i j
⟨ϕ iϕ j ∣ŵ∣ϕ iϕ j − ϕ jϕ i⟩ . (.)

We see that the interaction is double counted compared to Eq. (.), and we are �nished.

Exercise .. Suppose the HF single-particle functions have been found, so that the Fock operator f̂ is a
�xed operator. Prove that it is Hermitian, i.e., for any two single-particle functions ψ(x) and ψ′(x),

⟨ψ∣ f̂ ∣ψ′⟩ = [⟨ψ′∣ f̂ ∣ψ⟩]∗ .

△

Exercise .. We show that the reduced one-particle density matrix is the same for canonical and non-
canonical orbitals: Let U be a unitary matrix and de�ne

ϕ̃ i =∑
j
ϕ jU ji . (.)

Show that
γ(x , x′) =∑

j
ϕ̃ j(x)ϕ̃ j(x′)∗ . (.)

What can you conclude about v̂direct and v̂exchange, which are functions of γ? △

Exercise .. In this exercise, we �ll in the details between Eq. (.) and Eq. (.) in the proof of �eo-
rem ..

a) Verify that
∑
k
Uki ĥ ∣ϕk⟩ = ĥ ∣ϕ̃ i⟩ . (.)

b) Next, show that
∑
k
Uki∑

j
λ jk ∣ϕ j⟩ = є i ∣ϕ̃ i⟩ . (.)

c) As an intermediate calculation, verify that

∣ϕ i⟩ =∑
k
UH
ki ∣ϕ̃k⟩ =∑

k
U∗
i k ∣ϕ̃k⟩ . (.)

d) Show that
∑
k
Uki∑

j
⟨ ⋅ ϕ j ∣ŵ∣ϕkϕ j⟩ =∑

j
⟨ ⋅ ϕ̃ j ∣ŵ∣ϕ̃ i ϕ̃ j⟩ . (.)

You may do the transformations of the various ϕℓ into ϕ̃ℓ using c), or use Exercise ..

e) Show that
∑
k
Uki∑

j
⟨ ⋅ ϕ j ∣ŵ∣ϕ jϕk⟩ =∑

j
⟨ ⋅ ϕ̃ j ∣ŵ∣ϕ̃ j ϕ̃ i⟩ . (.)

f) Gather the results of a), b), d), and e), to show that Eq. (.) becomes Eq. (.).

△





.. �e Hartree–Fock equations in a given basis: the Roothan–Hall equations
How do we solve the HF equations (.)? In this section, we reformulate the HF equations relative to a
�xed basis, {χp}Lp=. For practical reasons, of course, the basis must have a �nite size L. However, we do
not assume that it is orthonormal. �us, we have a possibly non-diagonal overlap matrix S of size L × L,

Spq ≡ ⟨χp ∣χq⟩ . (.)

and we must have that S− exists since the ϕp form a basis.
Such basis functions are common in quantum chemistry, where a non-orthogonal basis of Gaussian

functions centered on the atoms is typically employed. See for example Szabo/OstlundorHelgaker/Jørgensen/Olsen
for details. For now, we just keep this remark as a motivation for not assuming orthogonality. In nuclear
physics or solid state physics, orthogonal functions χp are more typical.
We expand our HF functions as

∣ϕp⟩ =∑
q

∣χq⟩Uqp , (.)

whereU is in general not a unitarymatrix, since the basis is not orthogonal. (However, we haveUHSU = I,
the identity matrix, see Exercise ..) We notice that the columns ofU are the basis expansions of each ϕp .
We write up for column number p, ∣ϕp⟩ = ∑q ∣χq⟩ (up)q .
�e reduced density matrix becomes

γ(x , x′) =∑
i
⟨x∣ϕ i⟩ ⟨ϕ i ∣x′⟩ =∑

pq
∑
i
Uqi ∣χq⟩ ⟨χp ∣U∗

pi =∑
pq

(∑
i
UqiU∗

pi) ⟨x∣χq⟩ ⟨χp ∣x′⟩ =∑
pq

(U∶NUH
∶N)qp ⟨x∣χq⟩ ⟨χp ∣x′⟩ ,

(.)
and it makes sense to de�ne

D = U∶NUH
∶N =∑

i
u iuHi , (.)

which we interpret as the reduced density matrix relative to the given basis {χp}, depending on the N �rst
columns of U only.
We now demonstrate how the canonical HF equations (.) can be written

F(D)U = SUє, (.)

where
Fpq = ⟨χp ∣ f̂ (ϕ ,⋯, ϕN)∣χq⟩ (.)

are the matrix elements of the Fock operator in the �xed basis, and where є = diag(є ,⋯, єL) is a diagonal
matrix. Equation (.) is a nonlinear generalized eigenvalue problem.
Let us look at the matrix elements of f ,

Fqp = ⟨χq ∣ f̂ ∣χp⟩ = ⟨χq ∣ĥ∣χp⟩ + ⟨χq ∣v̂direct∣χq⟩ − ⟨χq ∣v̂exchange∣χp⟩ . (.)

�e direct term is

⟨χq ∣v̂direct∣χp⟩ =∑
j
⟨χqϕ j ∣ŵ∣χpϕ j⟩ = ∑

p′q′ j
U jq′U∗

j p′ ⟨χq χq′ ∣ŵ∣χp χp′⟩

= ∑
p′q′

Dq′ p′ ⟨χq χq′ ∣ŵ∣χp χp′⟩ .
(.)

Correspondingly,

⟨χq ∣v̂exchange∣χp⟩ =∑
j
⟨χqϕ j ∣ŵ∣ϕ j χp⟩ = ∑

p′q′ j
U jq′U∗

j p′ ⟨χq χq′ ∣ŵ∣χp′ χp⟩

= ∑
p′q′

Dq′ p′ ⟨χq χq′ ∣ŵ∣χp′ χp⟩ .
(.)





We obtain
Fqp = ⟨χq ∣ĥ∣χp⟩ +∑

p′q′
Dp′q′(⟨χq χq′ ∣ŵ∣χp χp′⟩ − ⟨χq χq′ ∣ŵ∣χp′ χp⟩). (.)

Note that we have expressed Fqp in terms of non-antisymmetricmatrix elements of ŵ.
�us, projecting the LHS of the canonical HF equations onto the basis gives

⟨χq ∣ f̂ ∣ϕp⟩ =∑
q′

⟨χq ∣ f̂ ∣χq′⟩Uq′ p =∑
q′
Fqq′Uq′ p , ∀q, p. (.)

�e right-hand side gives the projection

⟨χq ∣ϕp⟩ єp =∑
q′

⟨χq ∣χq′⟩Uq′ pєp =∑
q′
Sqq′Uq′ pє i , ∀q, p. (.)

Gathering, we �nd
F(D)U = SUє, (.)

and we are �nished. �is equation is called the Roothan–Hall equation.
In terms of each column, i.e., each ϕp ,

F(D)up = єpSup . (.)

Exercise .. Prove that UHSU = I (the identity matrix) by using ⟨ϕp ∣ϕq⟩ = δpq and

∣ϕp⟩∑
q
Sqp ∣χq⟩ , Sqp = ⟨χq ∣χp⟩ . (.)

△

.. Self-consistent �eld iteration
How do we �nd self-consistent solutions of Eq. (.)? �e standard approach is by self-consistent �eld
iteractions (SCF iterations), Finding hopefully better and better approximations u(k)

i , k = , , ,⋯, to the
canonical HF functions, starting from a well-selected initial guess u()

i .
Let D(k) = ∑i u

(k)
i (u(k)

i )H be the k’th iteration’s density matrix. �en, the basic SCF iteration is to
compute a complete set of orthonormal vectors

F(D(k))u(k+)
p = є(k+)p Su(k+)

p (.)

by numerical diagonalization, sorting the eigenvalues є(k+)p in ascending order. �en, p = ,⋯,N gives
the next approximation to the HF eigenpairs (ϕ i , є i), while the next L − N form the additional canonical
functions.
If the SCF iteration converges, it o�en converges to a solution that corresponds to the trueHFminimum

wavefunction. Sometimes it does not converge to the true solution, but is still useful. Sometimes it does
not converge at all, and one needs to “�x” the SCF iteration.
In fact, the basic SCF iterationhas very problematic convergence properties. �emost common scheme

today is the so-called direct inversion in the iterative subspace iteration (DIIS), but this is out of scope
for the present course. Read more aboud DIIS in Helgaker/Jørgensen/Olsen [], and see also https:
//en.wikipedia.org/wiki/DIIS.



https://en.wikipedia.org/wiki/DIIS
https://en.wikipedia.org/wiki/DIIS


.. Basis expansions in HF single-particle functions
We have now established the canonical Hartree–Fock single-particle functions, which can be used as a
basis just like any other orthonormal basis. Each canonical ϕp is associated with a creation operator c†p ,
and in terms of the original basis {χp} we have for a two-body operator

⟨pq∣ŵ∣rs⟩AS = ⟨ϕpϕq ∣ŵ∣ϕrϕs⟩AS = ∑
p′q′r′ s′

U∗
p′ pU

∗
q′qUr′rUs′ s ⟨χp′ χq′ ∣ŵ∣χr′ χs′⟩AS (.)

and
⟨p∣ĥ∣q⟩ = hpq = ⟨ϕp ∣ĥ∣ϕq⟩ = ∑

p′q′
U∗
p′ pUq′q ⟨χp′ ∣ĥ∣χq′⟩ , (.)

and similarly for any one-body operator. In a situation where HF single-particle functions are used in,
say, a CI program, the matrix elements ⟨χp′ χq′ ∣ŵ∣χr′ χs′⟩(AS) and ⟨χp′ ∣ĥ∣χq′⟩ will be produced by external
codes. �is is especially true in chemistry, where the computation of matrix elements is a business on its
own.
In quantum chemistry, it is standard to start with the HF single-particle functions and perform cor-

rections on top of that, such as CISD, giving rise to the term “post-Hartree–Fock methods”.
It is convenient to write the Hamiltonian on the following form

Ĥ = Ĥ + Ŵ = F̂ + Û , (.)

where the second-quantized Fock operator is given by

F̂ =
N

∑
i=

f̂ (i) = Ĥ + V̂direct − V̂ exchange , (.)

and where the uctuation potential is given by

Û = Ŵ − V̂direct + V̂ exchange . (.)

Here,
V̂direct =∑

i
v̂direct(i), V̂ exchange =∑

i
v̂exchange(i). (.)

�e uctuation potential is so named, because if one considers the HF solution as a reference ∣Φ⟩ (and
now we drop the “HF” subscript), “most” of the interactions between the particles in ∣Φ⟩ are described by
the Fock operator, and Û should be “small”: a�er all, we have chosen the HF state such that it contains as
much of the interaction energy as possible, by minimizing the energy over all possible determinants. �us,
the exact wavefunction ∣Ψ⟩ = ∣Φ⟩ + δ ∣Ψ⟩ consists of “small uctutations” on top of ∣Φ⟩ caused by Û .
An expression for the direct potential operator matrix element is

⟨ϕq ∣ v̂direct ∣ϕp⟩ =∑
i
⟨ϕ iϕq ∣ŵ∣ϕ iϕp⟩ , (.)

with non-antisymmetric matrix elements. �us,

V̂direct =∑
pq
∑
i
⟨ϕ iϕq ∣ŵ∣ϕ iϕp⟩ c†qcp . (.)

Similarly, for the the exchange potential we get

V̂ exchange =∑
pq
∑
i
⟨ϕ iϕq ∣ŵ∣ϕpϕ i⟩ c†qcp . (.)





�is results in (using antisymmetrized matrix elements (.))

F̂ = Ĥ +∑
pq
∑
i
⟨qi∣ŵ∣pi⟩AS c

†
qcp (.)

Û = Ŵ −∑
pq
∑
i
⟨qi∣ŵ∣pi⟩AS c

†
qcp . (.)

Having dealt with the second-quantized form of theHartree–Fock partitionedHamiltonian, let us turn
to the Slater determinants. Since the c†p are creation operators for the canonical HF single-particle func-
tionss, a basis of Slater determinants can be taken to be the ∣p⋯pN⟩, with p < p < ⋯pN . Alternatively,
we can use the quasiparticle picture, and let the HF function be the reference,

∣Φ⟩ = c†⋯c
†
N ∣−⟩ . (.)

All other Slater determinant basis functions can be written

∣Φa
i ⟩ = c†ac i ∣ΦHF⟩ = b†ab†i ∣Φ⟩ , (.)

∣Φab
i j ⟩ = c†bc jc

†
ac i ∣Φ⟩ = b†bb

†
j b

†
ab

†
i ∣Φ⟩ , (.)

etc, where we have introduced the quasiparticle creation- and annihilation operators.
All the determinants ∣p ,⋯, pN⟩ are eigenfunctions of F̂,

F̂ ∣p ,⋯, pN⟩ = (∑
i
єp i) ∣p ,⋯, pN⟩ , (.)

and in particular the HF function ∣Φ⟩ is the “ground-state” of F̂.
What is special about the HF reference, is of course that it is chosen to be optimize a certain aspect

of the basis, namely that the reference state has minimal energy. �is has a reformulation in terms of
second-quantization, namely Brillouin’s �eorem:

�eorem. (Brillouin’s�eorem). Let an orthonormal single-particle basis {ϕp} be given, and and assume
that these satisfy the canonical HF equations. �en,

⟨Φa
i ∣Ĥ∣Φ⟩ = , ∀i , a. (.)

Proof. Assume that the HF equations are satis�ed. Since f̂ is Hermitian, the single-particle basis functions
are orthonormal. �e Fock matrix becomes diagonal,

f pq = hpq +∑
j
⟨p j∣ŵ∣q j⟩ = δpqєq . (.)

In particular,
f ai = hqi +∑

j
⟨a j∣ŵ∣i j⟩ = . (.)

But this is precisely (see the Slater–Condon rules from Exercise .) the expression for ⟨Φa
i ∣ Ĥ ∣Φ⟩, which

therefore must vanish for all i , a.

�e converse of Brilloin’s theorem is also true, in the sense that f ai =  is equivalent to the non-canonical
HF equations. Recall that the HF state is the same for the non-canonical and canonical single-particle
functions.





�eorem . (Converse of Brillouin’s �eorem). Let a single-particle basis be given. �is basis satis�es

⟨Φa
i ∣Ĥ∣Φ⟩ = , ∀i , a (.)

if and only if the non-canonical HF equations are sati�ed for the occupied ϕ i , i = ,⋯,N .

Proof. Since f ia = ( f ai )∗ = ,

f̂ ∣ϕ i⟩ =∑
p
⟨ϕp ∣ f̂ ∣ϕ i⟩ ∣ϕp⟩ =∑

j
⟨ϕ j ∣ f̂ ∣ϕ i⟩ ∣ϕ j⟩ , (.)

�is is implies f̂ ∣ϕ i⟩ = ∑ j λ ji ∣ϕ j⟩ with λ ji = f ji , which are the non-canonical HF equations. Conversely,
assume that the non-canonical HF equations are satis�ed by the ϕ i ,

f̂ ∣ϕ i⟩ =∑
j
λ ji ∣ϕ j⟩ . (.)

Forming the inner product with ϕ j , we otain f
j
i = λ ji , and Eq. (.) is satis�ed.

Because of Brillouin’s�eorem, a con�guration-interaction treatment win only singles (CIS) yields no
correction over the HF treatment alone, and we have to go to doubles.

.. Restricted Hartree–Fock for electronic systems (RHF)
[�ere is an unfortunate overlap between the notation for spin functions χα and the basis functions χp in
the previous section. Hopefully no confusion arises.]
We now discuss the restricted Hartree–Fock (RHF) method for electronic systems. Supportingmaterial:

Szabo and Ostlund.
Motivation:
Consider N electrons, which we assume to a �rst approximation do not interact among themselves,

i.e., we neglect the inter-electron repulsion operator given by

ŵ(r⃗ , r⃗) =


∣r⃗ − r⃗∣
, (.)

in suitable units. �e electrons are thus described by a one-body Hamiltonian Ĥ = ∑i ĥ(i),

ĥ(r⃗) = − 

∇ + v(r⃗), (.)

where v(r⃗) is an external electrostatic potential, such as the one set up by an atomic nucleus. �e operator
ĥ does not couple to electron spin, so that the single-particle eigenfunctions of ĥ separate,

ϕµ(r⃗, σ) = φp(r⃗)χα(σ), µ = (p, σ), (.)

where α = ±/ is the value of the projection of the electron spin along the z-axis. Also, σ = ±/, and
⟨χα ∣χβ⟩ = δαβ . �e eigenvalue problem of ĥ(r⃗) becomes

ĥφp(r⃗)χα(σ) = epφp(r⃗)χα(σ), σ = ±/. (.)

where the eigenvalue ep is seen to be doubly degenerate due to spin. �e N-electron ground-state of Ĥ is
now given by the Slater determinant with the N �rst eigensolutios ϕ(p ,σ) occupied. Assuming N even, we
get

∣Φ⟩ = ∣ϕ
, 
ϕ
,− 


⋯ϕ N

 , 
ϕ N

 ,− 

⟩ . (.)





(If N is odd, the ground-state is doubly degenerate, with an electron occupying ϕ
⌊ N ⌋+,α

, for α = +/ or

α = −/.) A common notation is

∣ΦRHF⟩ = ∣φφ̄φφ̄⋯φN/φ̄N/⟩ (.)

with the understanding that φp represents ϕp ,+/ and φ̄p represents ϕp ,−/.
�e idea of RHF is to assume that the exact ground-state has a similar structure. �us, we do not

optimize all the N single-particle functions freely, we assume that they form a set of doubly occupied
orbitals. In RHF we therefore compute the HF single-particle functions by minimizing the energy under
the assumption that ∣Φ⟩ is on the form (.).
�e HF energy is simpli�ed because of the special case of single-particle functions on factorized spin-

orbital form. Consider for example the matrix element

⟨ϕp ,α ∣ĥ∣ϕq ,β⟩ = ⟨χα ∣χβ⟩∫ φp(r⃗)∗ ĥ(r⃗)φq(r⃗) dr⃗ ≡ δαβ(φp ∣ĥ∣φq), (.)

where we have introduced a special notation for the spatial matrix element. Similarly,

⟨ϕpαϕqβ ∣ŵ∣ϕrγϕsδ⟩ = ⟨χα ∣χγ⟩ ⟨χβ ∣χδ⟩∬ φp(r⃗)∗φq(r⃗)∗ŵ(r⃗ , r⃗)φr(r⃗)φs(r⃗) dr⃗dr⃗ ≡ δαγδβδ(φpφq ∣ŵ∣φrφs),
(.)

where we also introduce a special notation to be used in the sequel.
We use Eqs. (.–.) and compute the energy of ∣Φ⟩:

⟨Φ∣Ĥ∣Φ⟩ =∑
α

N/

∑
i=

⟨ϕ iα ∣ĥ∣ϕ iα⟩ +

∑α

N/

∑
i=
∑
β

N/

∑
j=

⟨ϕ iαϕ jβ ∣ŵ∣ϕ iαϕ jβ − ϕ jβϕ iα⟩

= 
N/

∑
i=

(φ i ∣ĥ∣φ i) + 
N/

∑
i j

(φ iφ j ∣ŵ∣φ iφ j) −
N/

∑
i j

(φ iφ j ∣ŵ∣φ jφ i)

(.)

Observe the factor  in front of the two �rst terms.
�e RHF state is obtained by minimizing the energy with respect to orthonormal orbitals φ i , i =

,⋯,N/. We obtain the restricted HF equationn.

�eorem. (RestrictedHartree–Fock equations). �eorbitals of theminimizingRHF state ∣ΦRHF⟩ satis�es
the RHF equations:

f̂ (γ)φ i(r⃗) = є iφ i(r⃗), i = ,⋯,N/, (.)

where the (RHF) Fock operator is given by
f̂ (γ) = (.)

and where the reduced denity matrix is

γ(r⃗, r⃗′) = ∑
i
φ i(r⃗)φ i(r⃗)∗ . (.)

�e RHF energy is

ERHF = 
N/

∑
i=

є i − 
N/

∑
i j

(φ iφ j ∣ŵ∣φ iφ j) +
N/

∑
i j

(φ iφ j ∣ŵ∣φ jφ i) (.)





Proof. (Optional reading.) Optimization of RHF energy, and RHF equations: Introducing Lagrange mul-
tipliers for the orthonormality constraints, we obtain a Lagrangian

L[φ ,⋯, φN/ , λ] = ∑
i
(φ i ∣ĥ∣φ i) + ∑

i j
(φ iφ j ∣ŵ∣φ iφ j) −∑

i j
(φ iφ j ∣ŵ∣φ jφ i) − ∑

i j
λ ji[(φ i ∣φ j) − δ i j],

(.)
where we have introduced Lagrange multipliers for the orthonormality constraints. �e factor  in front
of the constraint term is for convenience.
A procedure similar to the derivation of the HF equations (see Exercise .) gives:

ĥφ i + ∑
j
( ⋅ φ j ∣ŵ∣φ iφ j) −∑

j
( ⋅ φ j ∣ŵ∣φ jφ i) −∑

j
λ jiφ j = . (.)

A unitary transformation similar to the one for theHF equations allow us to replace λ by a diagonalmatrix,
�nally obtaining

[ĥ + v̂Coulomb − v̂exchange]φ i(r⃗) = є iφ i(r⃗), i = ,⋯,N/, (.)

with
v̂Coulomb(r⃗) = ∫ γ(r⃗′ , r⃗′) 

∣r⃗ − r⃗′∣
dr⃗′ (.)

being a local potential, and where

[v̂exchangeψ](r⃗) = 
 ∫

γ(r⃗′ , r⃗) 
∣r⃗ − r⃗′∣

ψ(r⃗′) dr⃗′ (.)

is a non-local potential. �e reduced density matrix is

γ(r⃗, r⃗′) ≡ 
N/

∑
j=

φ j(r⃗)φ j(r⃗′)∗ (.)

�e proof of Eq. (.) is obtained by taking the inner product of Eq. (.) with φ i and summing over i,
then multiplying with .

Exercise .. In this exercise, we prove�eorem . (To be �lled in.) △

.. Unrestricted Hartree–Fock for electronic systems (UHF)
Supporting material: Szabo and Ostlund.
�e RHF model is usually a good approximation, but fails in some circumstances. �e unrestricted

Hartree–Fock model is an intermediate between the general HF model and the restricted HF model. In
RHF space orbital i for both spins were required to be identical. In UHF we allow them to be di�erent,

ϕ i ,α(r⃗, σ) = φαi (r⃗)χα(σ). (.)

�us, the orbital carries a spin-index as well as a space index, compare with the RHF model. �e UHF
state can be written

∣ΦUHF⟩ = ∣φ/ φ̄−/ φ/ φ̄−/ ⋯φ/N/φ̄
−/
N/ ⟩ , (.)





compare with Eq. (??) Notice that the spin-orbitals are still orthogonal for di�erent spins. Notice also that
the general HFmodel is more general than UHF: there, each spin-orbital was not required to separate into
a product of space and spin functions.
�e UHF energy expectation value is (see Exercise .)

EUHF =∑
α

N/

∑
i=

(φαi ∣ĥ∣φαi ) +

∑α
∑
β

N/

∑
i j

(φαi φ
β
j ∣ŵ∣φαi φ

β
j ) −


∑α

N/

∑
i j

(φαi φαj ∣ŵ∣φαj φαi ). (.)

�e variational UHF equations become

ĥφαi (r⃗) +∑
β
∑
j
( ⋅ φβj ∣ŵ∣φαi φ

β
j ) −∑

j
( ⋅ φαj ∣ŵ∣φαj φαi ) = єαi φαi (r⃗), (.)

where we note that each spin-orbital is not doubly degenerate anymore. We introduce the UHF Coulomb
potential,

vCoulomb(r⃗) = ∫ ∑
jβ

∣φβj (r⃗′)∣
 
∣r⃗ − r⃗′∣

dr⃗′ , (.)

and the UHF exchange potential operator

[v̂α ,exchangeψ](r⃗) = ∫ ∑
j
φαj (r⃗)φαj (r⃗′)∗ψ(r⃗)


∣r⃗ − r⃗′∣

dr⃗′ , (.)

to obtain
[ĥ + v̂Coulomb − v̂α ,exchange]ϕαi (r⃗) = єαi ϕαi (r⃗). (.)

Exercise .. Prove Eq. (.), by showing

⟨ΦUHF∣Ĥ∣ΦUHF⟩ = EUHF . (.)

△

.. Normal-ordered Hamiltonian in HF basis (Not yet lectured)
Recall that for a two-body Hamiltonian Ĥ = Ĥ + Ŵ , the normal-ordered Hamiltonian (with respect to
quasiparticles) was

Ĥ = E + Ĥ,N + ŴN , (.)

with

E =∑
i
h ii +


∑i j

⟨i j∣ŵ∣i j⟩ (.)

Ĥ,N =∑
pq

(hpq +∑
j
⟨p j∣ŵ∣q j⟩)N(c†pcq), (.)

ŴN = N(Ŵ) = 
 ∑pqrs

⟨pq∣ŵ∣rs⟩N(c†pc†qcscr). (.)

Each of the operators with subscript “N” is thus normal-ordered with respect to quasiparticle vacuum,
thereby simplifying many formulas and manipulations.





Suppose now our single-particle basis is the HF basis. Looking carefully at the above equations, and
recalling the operator N( ⋅ ) is de�ned for linear combinations of strings, we recognize that

E = EHF , Ĥ,N = N(F̂), and ŴN = N(Û). (.)

�us, using HF orbitals, the normal-ordered Hamiltonian takes on a particularly simple form:

Ĥ = F̂ + Û = EHF + N(F̂) + N(Û), (.)

where we recall that the normal-ordering operator is relative to quasiparticle vacuum. Here, the quasi-
particle reference is the HF state ∣ΨHF⟩ = ∣Φ⟩. Recall, that the normal-orering operator is de�ned linear
combinations of strings,

N(F̂) = N
⎛
⎝∑pq

f pq c†pcq
⎞
⎠
=∑

pq
f pq N(c†pcq). (.)

But beware! In general,N(Ĥ) ≠ Ĥ,N! �eoperator Ĥ,N depends on thewholeHamiltonian, i.e., also
the two-body interaction. It is just that in in the particular case of the HF partitioning of the Hamiltonian,
N(F̂) = F̂N.
We now also use the fact that F̂ is diagonal in the HF basis,

F̂ =∑
p
єpc†pcp . (.)

�is gives a considerable simpli�cation, since

N(F̂) =∑
p
єpN(c†pcp) =∑

a
єab†abc −∑

i
є ib†i b i . (.)

Exercise .. Set up the CISD formalism using LHartree–Fock orbitals. Use the normal-ordered Hamil-
tonian. Compute the matrix elements ⟨Φ∣Ĥ∣Φ⟩, ⟨Φa

i ∣Ĥ∣Φ⟩, ⟨Φab
i j ∣Ĥ∣Φ⟩, ⟨Φa

i ∣Ĥ∣Φc
k⟩, ⟨Φ

a
i ∣Ĥ∣Φcd

k l ⟩, and
⟨Φab

i j ∣Ĥ∣Φcd
k l ⟩. Use Wick’s �eorem for quasiparticle operators to achieve this. (One could also use the

Slater–Condon rules, but this exercise is about quasiparticles and normal-ordered operators.) △

. Perturbation theory for the ground-state (PT)

.. Non-degenerate Rayleigh–Schrödinger perturbation theory (RSPT)
Perturbation theory is a powerful method for systematic improvement of a model wavefunction. We can
for the moment “forget” everything we know about second quantization, Slater determinants, quasiparti-
cles, etc: PT is a generic theory applicable to all matrix problems.
Supporting material: Szabo and Ostlund; Bartlett and Shavitt; Helgaker, Jørgensen and Olsen.
Suppose we have a Hamiltonian Ĥ for which we seek eigenfunctions and eigenvalues,

Ĥ ∣Ψk⟩ = Ek ∣Ψk⟩ . (.)

�e idea is to partition the Hamiltonian into a part that we can “solve” and a perturbation V̂ ,

Ĥ = Ĥ + V̂ . (.)





�e operator Ĥ is “solved”, in the sense that we we assume knowledge of all its eigenfunctions and eigen-
values,

Ĥ ∣Φk⟩ = єk ∣Φk⟩ . (.)

�e set {∣Φk⟩} is assumed to be anorthonormal basis forHilbert space (this is true for all �nite-dimensional
cases, and for many in�nite-dimensional ones). We should, in principle, be able to express the exact eigen-
vectors and (and therefore the eigenvalues) in terms of the this basis and V̂ .
In perturbation theory, we seek such an expression in terms of power series in the perturbation V̂ . We

introduce an order parameter λ and write

Ĥλ = Ĥ + λV̂ , (.)

i.e., Ĥ = Ĥ is the full Hamiltonian. It is not unreasonable to assume that the eigenvalues and eigenvectors
of Ĥλ become smooth functions of λ, at least for λ su�ciently small and/or su�ciently weak perturbations
V̂ .
�e Schrödinger equation for Ĥ(λ) reads

Ĥλ ∣Ψk(λ)⟩ = Ek(λ) ∣Ψk(λ)⟩ . (.)

We now assume that we can expand the eigenvectors and eigenvalues in power series around λ = .

∣Ψk(λ)⟩ =
∞
∑
n=

∣Ψ(n)
k ⟩ λn (.a)

Ek(λ) =
∞
∑
n=

E(n)
k λn . (.b)

�e unperturbed problem is obtained at λ = : ∣Ψk()⟩ = ∣Φk⟩ = ∣Ψ()
k ⟩ and Ek() = єk , and the full

problem at λ = : ∣Ψk()⟩ = ∣Ψk⟩, and Ek() = Ek .
�e assumption that ∣Ψk(λ)⟩ is di�erentiable at λ =  is assured by requiring єk to be non-degenerate.
We now derive formulas for the perturbation corrections E(n)

k and ∣Ψ(n)
k ⟩. �is is done by plugging

Eqs. (.) into the Schrödinger equation. �is gives

(Ĥ + λV̂)
∞
∑
n=

∣Ψ(n)
k ⟩ λn = (

∞
∑
n=

E(n)
k λn)

∞
∑
m=

∣Ψ(m)
k ⟩ λm . (.)

For this equation to hold for all λ, it must hold order-by-order. �e λ-part of the equation is simply
Eq. (.). �e n’th order equation is

Ĥ ∣Ψ(n)
k ⟩ + V̂ ∣Ψ(n−)

k ⟩ =
n

∑
j=
E( j)
k ∣Ψ(n− j)

k ⟩ , n > . (.)

�e solution ∣Ψk(λ)⟩ to the Schrödinger equation is not unique. By scaling it we obtain a new solution.
�us, in order to write ∣Ψk(λ)⟩ as a smooth function of λ, we need to select one particular normalization
for each λ. We obtain particularly simple expressions using intermediate normalization:

⟨Φk ∣Ψk(λ)⟩ = . (.)

Inserting the power series for ∣Ψk(λ)⟩ we obtain

 = ⟨Φk ∣Ψk(λ)⟩ =  + λ ∣Ψ()
k ⟩ + λ ∣Ψ()

k ⟩ +⋯, (.)





Since this expression is to hold for all λ, it must hold order-by-order, which gives

⟨Φk ∣Ψ(n)
k ⟩ = , ∀n ≥ , (.)

i.e., all the higher-order corrections are orthogonal to the unperturbed vector ∣Φk⟩.
We now use Eq. (.) and project Eq. (.) onto ∣Φk⟩ to obtain

⟨Φk ∣V̂ ∣Ψ(n−)
k ⟩ = E(n)

k , (.)

which is an expression for the n-th order energy perturbation in terms of the n − -th order correction in
the wavefunction. In particular,

E()
k = ⟨Φk ∣V̂ ∣Φk⟩ . (.)

If we can �nd an expression for ∣Ψ(n)
k ⟩ in terms of ∣Ψ( j)

k ⟩, j < n, then we have a recursive procedure for
determining all the perturbation corrections.
To this end, rearrange Eq. (.) as

(єk − Ĥ) ∣Ψ(n)
k ⟩ = V̂ ∣Ψ(n−)

k ⟩ −
n−
∑
j=

E(n− j)
k ∣Ψ( j)

k ⟩ . (.)

On the right-hand side we only have wavefunction corrections of order less than n. We also know that the
E(n)
k , which occurs on the right-hand side, is a function of ∣Ψ(n−)

k ⟩, so if we can somehow invert єk − Ĥ

then we have an expression for ∣Ψ(n)
k ⟩ in terms of lower-order corrections only.

Let P̂ = ∣Φk⟩ ⟨Φk ∣, the projection operator onto the unperturbed eigenvector. Let Q̂ =  − P̂, which is
then the projector onto the subspace spanned by all the other ∣Φ j⟩, j ≠ k:

Q̂ =∑
j≠k

∣Φ j⟩ ⟨Φ j ∣ . (.)

Intermediate normalization can now be written

∣Ψ(n)
k ⟩ = Q̂ ∣Ψ(n)

k ⟩ , n ≥ . (.)

Moreover,
[Ĥ , Q̂] = , (.)

since the ∣Φ j⟩ are eigenfunctions of Ĥ. Acting on Eq. (.) with Q̂ we then obtain

(єk − Ĥ)Q̂ ∣Ψ(n)
k ⟩ = Q̂V̂ ∣Ψ(n−)

k ⟩ −
n−
∑
j=
E(n− j)
k Q̂ ∣Ψ( j)

k ⟩ , (.)

where we remark that the j = -term from the sum on the right-hand side is eliminated. We have

єk − Ĥ =∑
j≠k

(єk − є j) ∣Φ j⟩ ⟨Φ j ∣ = Q̂(єk − Ĥ)Q̂ , (.)

i.e., the operator acts only within the space orthogonal to ∣Φk⟩. (Here, we use the non-degeneracy assump-
tion.) De�ne the operator

R̂ = Q̂R̂Q̂ = ∑
j , j≠k


єk − є j

∣Φ j⟩ ⟨Φ j ∣ . (.)





It is important to note that we must here assume that the unperturbed eigenvalue єk is non-degenerate.
Otherwise there are in�nite terms in the sum. Now, for every ∣u⟩ = Q̂ ∣u⟩ (such as ∣Ψ(n)

k ⟩) we have

R̂(єk − Ĥ) ∣u⟩ = ∣u⟩ . (.)

�e operator R̂ is called a pseudoinverse, and since R̂ = Q̂R̂Q̂ it is common to write

R̂ = Q̂
єk − Ĥ

, (.)

even though the fraction notation for matrices and operators is something to be careful with. R̂ is also
called the resolvent of Ĥ. Acting with R̂ on Eq. (.), we obtain

∣Ψ(n)
k ⟩ = Q̂

єk − Ĥ

⎡⎢⎢⎢⎢⎣
V̂ ∣Ψ(n−)

k ⟩ −
n−
∑
j=
E(n− j)
k ∣Ψ( j)

k ⟩
⎤⎥⎥⎥⎥⎦
. (.)

We summarize as a theorem:

�eorem . (Non-degenerate Rayleigh–Schrödinger Perturbation �eory). Let Ĥ = Ĥ + λV̂ be given,
and assume that

Ĥ ∣Φk⟩ = єk ∣Φk⟩ (.)

where the eigenvectors for a complete basis. Let

(Ĥ + λV̂) ∣Ψk(λ)⟩ = Ek(λ) ∣Ψk(λ)⟩ , ⟨Φk ∣Ψk(λ)⟩ = , (.)

for a given k, and assume that єk is a non-degenerate eigenvalue for Ĥ. Assume furthermore, that Ek(λ)
and ∣Ψk(λ)⟩ are analytic in a neighborhood of λ = ,

Ek(λ) =
∞
∑
n=

E(n)
k λn (.)

∣Ψk(λ)⟩ =
∞
∑
n=

∣Ψ(n)
k ⟩ λn . (.)

�en the n-th order corrections are given recursively in terms of the j < n-th order corrections via the formulae

E(n)
k = ⟨Φk ∣V̂ ∣Ψ(n−)

k ⟩ (.)

∣Ψ(n)
k ⟩ = Q̂

єk − Ĥ

⎡⎢⎢⎢⎢⎣
V̂ ∣Ψ(n−)

k ⟩ −
n−
∑
j=
E(n− j)
k ∣Ψ( j)

k ⟩
⎤⎥⎥⎥⎥⎦
. (.)

.. Low-order RSPT
�eorem . gives a recursive procedure for the n-th order corrections of the energies and wavefunctions.
We now consider the explicit expressions up to n = .
For notational simplicity, we omit the subscript k in the following, and write є ≡ єk for the unperturbed

energy, ∣Φ⟩ ≡ ∣Φk⟩ for the unperturbed wavefunction, etc. We use R̂ for the resolvent (which also depends
on k).
�e �rst-order correction to the energy is simple,

E() = ⟨Φ∣V̂ ∣Φ⟩ . (.)





For E() we need the �rst-order wavefuncton correction,

∣Ψ()⟩ = R̂V̂ ∣Φ⟩ , (.)

which then gives

E() = ⟨Φ∣V̂ R̂V̂ ∣Φ⟩ = ∑
j , j≠k

∣ ⟨Φk ∣V̂ ∣Φ j⟩ ∣

єk − є j
, (.)

which is a familiar expression for second-order perturbation theory. For E() we need the second-order
wavefunction correction,

∣Ψ()⟩ = R̂[V̂ − ⟨Φ∣V̂ ∣Φ⟩]R̂V̂ ∣Φ⟩ . (.)
�is gives

E() = ⟨Φ∣ V̂ R̂[V̂ − ⟨Φ∣V̂ ∣Φ⟩]R̂V̂ ∣Φ⟩
= ⟨Φ∣ V̂ R̂V̂ R̂V̂ ∣Φ⟩ − ⟨Φ∣V̂ ∣Φ⟩ ⟨Φ∣ V̂ R̂V̂ ∣Φ⟩

(.)

Comparing E(), and E(), we notice a pattern, but that for E(), we see that the pattern becomes more
complicated: there is a leading term on the form

E(k)
leading = ⟨Φ∣V̂ R̂V̂ R̂⋯V̂ ∣Φ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n factors V̂ , n −  farctors R̂

, (.)

but then there are terms arising from

E( j) ⟨Ψ(n−)∣Ψ(n− j)⟩ = E( j) ⟨Φ∣V̂ monomial(R̂, V̂)V̂ ∣Φ⟩ , (.)

where the monomial is a product of in total n − j −  operators V̂ , and several R̂s, in some order.
We will not consider the perturbation series furthere here (see Exercise .). However, when we dis-

cuss diagrams, the second term of E() is referred to as an unlinked term. Higher order corrections obtain
more and more such terms. �ey can be systematically generated from E(n)

leading by a procedure called the
“bracketing procedure”, see Paldus and Čı́žek[] in the supporting material for more details.
�e nth order energy E(n) can be written as the leading term plus terms generated by inserting ⟨ ⟩

around one or more V̂s, except for the outer ones, in any possible way, in any number. �ey may also be
nested. �e bra(c)ket represents an expectation value with ∣Ψ⟩. �e sign of each term is (−) j , where j is
the number of brackets in the term. For example, for n =  there is one possibility:

⟨Φ∣V̂ R̂ ⟨V̂⟩ R̂V̂ ∣Φ⟩ = − ⟨Φ∣V̂ ∣̂Φ⟩ ⟨Φ∣V̂ R̂V̂ ∣Φ⟩ , (.)

which reproduces E(). For n =  we have the possibilities
⟨Φ∣V̂ R̂⟨V̂⟩R̂V̂ R̂V̂ ∣Φ⟩ = − ⟨Φ∣V̂ ∣Φ⟩ ⟨Φ∣V̂ R̂V̂ R̂V̂ ∣Φ⟩ (.a)

⟨Φ∣V̂ R̂V̂ R̂⟨V̂⟩R̂V̂ ∣Φ⟩ = − ⟨Φ∣V̂ ∣Φ⟩ ⟨Φ∣V̂ R̂V̂ R̂V̂ ∣Φ⟩ (.b)

⟨Φ∣V̂ R̂⟨V̂⟩R̂⟨V̂⟩R̂V̂ ∣Φ⟩ = ⟨Φ∣V̂ ∣Φ⟩ ⟨Φ∣V̂ R̂V̂ ∣Φ⟩ (.c)

⟨Φ∣V̂ R̂⟨V̂ R̂V̂⟩R̂V̂ ∣Φ⟩ = − ⟨Φ∣V̂ R̂V̂ ∣Φ⟩ ⟨Φ∣V̂ R̂V̂ ∣Φ⟩ . (.d)

In higher order energies, one even gets brackets within brackets, and quite a lot of terms.

Exercise .. Prove Eq. (.) △

Exercise .. Derive the fourth and �� order perturbation theory corrections to the energy from�eo-
rem .. Next, verify that the bracketing technique gives the correct answer. △





.. A two-state example
It is instructive to consider a two-state example, since we can diagonalize it exactly and obtain closed-form
expressions. �e behavior of the perturbation series can then be considered.
Let

H = (− 
 ) , V = ( є

є ) , (.)

so that

H(λ) = (− λє
λє  ) . (.)

�e exact eigenvalues of H(λ) are given by the roots of the polynomial

det(H(λ) − eI) = (− − e)( − e) − (λє) = −( + e)( − e) − (λє) . (.)

Solving, we �nd the two roots
e± = ±[ + (λє)]/ . (.)

As functions of λ, see Fig. .. Note well, that our calculations are also true for complex λ, only that e± are
no longer real, but complex roots in general.
In RSPT, we would seek the Taylor series of, say, e−(λ) around λ = . Since we have a closed-form

expression we can compute this series. �e �rst three terms are

e−(λ) = e−() + λe′−() +


λe′′−() + O(λ). (.)

Explicit evaluation of the derivatives:

e′−(λ) = −[ + (λє)]−/λє (.)

e′′−(λ) = [ + (λє)]−/(λє) − [ + (λє)]−/є (.)

We obtain the Taylor series (with a few extra terms obtained by computer algebra)

e−(λ) = − −


(λє) + 


(λє) − 


(λє) + 


(λє) + O(λ). (.)

A natural question arises: does the series converge? Does it converge for our desired parameter value
λ = ? Well, our function has a branch-point singularity since it is a square-root function. �e branch-
point singularity arises when the two roots coincide in the complex plane, at λ = ±i/є. At these points the
eigenvalue functions are no longer analytic. �e Taylor series only converges in a disc around λ =  that
does not contain the singularity. �us, the Taylor series will only converge within the circle ∣λ∣ < /∣є∣, i.e.,
it will converge for λ =  only if ∣є∣ < .
�us, we see directly that the strength of the perturbation may a�ect the convergence properties of the

perturbation series.
�e points λ = ±i/є are called avoided crossings since, if the parameter λ is real, it “narrowlymisses” the

branch-point and hence an exact crossing. O�en, in eigenvalue plots, one can see the function behaviour
±[a + (єλ)]/, indicating an avoided crossing and hence a singluarity located approximately at this λ-
value.
For an n-state problem, each of the n eigenvaluesmay collidewith n− eigenvalues (again for complex λ

in general), giving quite a lot of possible branch points, and thus many singularities. Determining whether
the RSPT series converges is thus a virtually impossible task for many-body calculations. Still, a few terms
may still give a good approximation.





λ

e±

λ = 

Figure .: �e eigenvalues of a two-state problem, as function of the perturbation parameter λ. Here,
є = .





We now consider the perturbation series of the two-state problem explicitely. We write ∣⟩ for the
unperturbed ground state, and ∣⟩ for the unperturbed excited state. We obtain

Ĥ = ∣⟩ ⟨∣ − ∣⟩ ⟨∣ , V̂ = є(∣⟩ ⟨∣ + ∣⟩ ⟨∣). (.)

We alsso have
R̂ = − 


∣⟩ ⟨∣ . (.)

Perturbation terms for the energy:
E() = ⟨∣V̂ ∣⟩ = . (.)

E() = ⟨∣V̂ R̂V̂ ∣⟩ = − 

⟨∣V̂ ∣⟩ ⟨∣V̂ ∣⟩ = − 


є . (.)

For the higher order terms, we note that R̂V̂ R̂ = . �e third-order energy:

E() = ⟨∣V̂ R̂V̂ R̂V̂ ∣⟩ − ⟨∣V̂ ∣⟩ ⟨∣V̂ R̂V̂ ∣⟩ = . (.)

Exercise .. Prove that Use R̂V̂ R̂ = . Compute E(n), n = , , , for the two-state model, continuing the
above calculations. Use the bracketing technique to derive the terms. Verify that your calculations match
the terms in the Taylor expansion .. △

.. Manybody Perturbation�eory (MBPT)
We now use nondegenerate RSPT, and apply it to a manybody Hamiltonian. �us, manybody Rayleigh-
Schrödinger perturbation theory for nondegenerate states.
In most cases, one has a partitioning Ĥ = K̂ + L̂, where K̂ is a onebody operator (say, Ĥ or F̂, the Fock

operator), and where L̂ = Ĥ − K̂ may be a two plus onebody operator. �us,

Ĥ = K̂ + L̂, (.)

K̂ =
N

∑
i=
k̂(i), (.)

L̂ =
N

∑
i=
ℓ̂()(i) +

N

∑
i< j
ℓ̂()(i , j). (.)

We take K̂ to be the zero-order Hamiltonian: we assume that k̂ has been diagonalized, giving a complete
orthonormal set of single-particle functions,

k̂ϕp(x) = κpϕp(x). (.)

We introduce a set of creation operators c†p for these functions, and obtain

K̂ =∑
p
κpc†pcp (.)

L̂ =∑
pq

⟨ϕp ∣ℓ̂()∣ϕq⟩ c†pcq +

 ∑pqrs

⟨ϕpϕq ∣ℓ̂()∣ϕrϕs⟩AS c
†
pc

†
qcscr . (.)





We are considering RSPT for the ground-state wavefunction ∣Ψ⟩. �e corresponding unperturbed ground-
state is ∣Φ⟩ = c†⋯c

†
N ∣−⟩, the ground-state of K̂. �e unperturbed energy is

є = ⟨Φ∣K̂∣Φ⟩ =
N

∑
i=
κ i . (.)

Let us introduce quasiparticle operators, and write ∣ΦX⟩ for an arbitrary excited Slater determinant.
�us ∣ΦX⟩ is a Slater determinant with  particle-hole pair,  particle-hole pairs, etc. We write #X for the
number of particle-hole pairs in ∣ΦX⟩. �us, the whole complete Slater determinant basis can be con-
structed:

∣ΦX⟩ = b†ab
†
i⋯b

†
a#Xb

†
i#X ∣Φ⟩ . (.)

For the projector Q̂, we get
Q̂ =∑

X
∣ΦX⟩ ⟨ΦX ∣ . (.)

Note that the reference ∣Φ⟩ is excluded from this sum. �e unperturbed energies are

єX = ⟨ΦX ∣K̂∣ΦX⟩ =
N

∑
i=
κ i +

#X

∑
j=

(κa j − κ i j), (.)

and it is a useful exercise to verify this. We get for the resolvent

R̂ =∑
X

∣ΦX⟩ ⟨ΦX ∣
∆єX

, (.)

where we have de�ned

∆єX ≡ є − єX =
#X

∑
j=

(κ i j − κa j). (.)

We here remark that if k̂ has degenerate eigenvalues, we will end up with a zero denominator for some
X. Hence, the assumption of non-degeneracy. In fact, it is not enough to require k̂ to have nodegenerate
eigenvalues – we must require that ∆єX ≠  for all X. �is is a stronger requirement.
Let us consider RSPT up to second order. Recall �rst the Slater–Condon rules:

⟨Φa
i ∣L̂()∣Φ⟩ = ⟨ϕa ∣ℓ̂()∣ϕ i⟩ (.)

⟨Φa
i ∣L̂()∣Φ⟩ =∑

j
⟨ϕ jϕa ∣ℓ̂()∣ϕ jϕ i⟩AS (.)

⟨Φab
i j ∣L̂()∣Φ⟩ = ⟨ϕaϕb ∣ℓ̂()∣ϕ iϕ j⟩AS . (.)

All other matrix elements involving L̂ and ∣Φ⟩ vanish. We now obtain

E() = ⟨Φ∣L̂∣Φ⟩ =∑
i
⟨ϕ i ∣ℓ̂()∣ϕ i⟩ +


∑i j

⟨ϕ iϕ j ∣ℓ̂()∣ϕ iϕ j⟩AS . (.)

E() = ⟨Φ∣L̂R̂L̂∣Φ⟩ =∑
X

∣ ⟨ΦX ∣L̂∣Φ⟩ ∣

∆єX
. (.)

Since L̂ is at most a two-body operator, this series truncates at #X = ,

E() =∑
i a

∣ ⟨Φa
i ∣L̂∣Φ⟩ ∣

κ i − κa
+ 
 ∑i jab

∣ ⟨Φab
i j ∣L̂()∣Φ⟩ ∣

κ i + κ j − κa − κb
. (.)





�e prefactor comes from over-counting the double excitations. We note that only the two-body part of L̂
contributes in the second sum due to the Slater–Condon rules.
Higher-order corrections quickly become more complicated. We shall see, that using theHamiltonian

on normal-order form will simplify matters a lot. Moreover, in Møller–Plesset perturbation theory, where
we use K̂ = F̂, the Fock operator, we get even more simpli�cations due to Brillouin’s �eorem.

Exercise .. Write oute E() in the same fashion as Eq. (.). △

.. Møller–Plesset Perturbation�eory
When thewe partition theHamiltonian accoring toHF theory, we obtainMøller–Plesset PT.�e n-th order
theory is called MPn. �us, we set K̂ = F̂ and L̂ = Û ,

Ĥ = F̂ + Û (.)

where
F̂ = Ĥ + V̂HF =∑

pq
(hpq +∑

i
w pi
qi )c

†
pcq , (.)

where hpq = ⟨ϕp ∣ĥ∣ϕq⟩ and
w pq
rs ≡ ⟨ϕpϕq ∣ŵ∣ϕrϕs⟩AS (.)

for brevity. Moreover,

Û = Ŵ − V̂HF = ∑
pqrs

w pq
rs c†pc

†
qcscr −∑

pq
(∑

i
w pi
qi )c

†
pcq . (.)

We have de�ned
V̂HF = V̂direct − V̂ exchange =∑

pq
(∑

i
w pi
qi )c

†
pcq . (.)

We obtain the main simpli�cations from the Brillouin�eorem, ⟨Φa
i ∣Ĥ∣Φ⟩ = .

We here assume canonical orbitals, and compute a few terms of the energy expansion.
�e unperturbed energy is

E() = ⟨Φ∣F̂∣Φ⟩ =∑
i
є i ≡ є. (.)

It is worthwhile to note that this is di�erent from the HF energy.
�e excited Slater determinants form the rest of the unperturbed states. �ese have energies (to show

this is an instructive exercise)

F̂ ∣ΦX⟩ = (∑
i
є i) −

#X

∑
j=

(є i j − єa j)) ∣ΦX⟩ , (.)

where
X = (a a ⋯ a#X

i i ⋯ i#X
) (.)

is the index of an excitation of order #X.
We obtain for the resolvent operator

R̂ =∑
X


∆єX

∣ΦX⟩ ⟨ΦX ∣ , ∆єX =
#X

∑
j=

(є i j − єa j). (.)





�e �rst-order energy is

E() = ⟨Φ∣Û ∣Φ⟩ = ⟨Φ∣(Ĥ − F̂)∣Φ⟩ = EHF − є, (.)

so in total �rst-order perturbation theory gives us the HF energy.

E() + E() = EHF . (.)

�e second-order energy is

E() = ⟨Φ∣Û R̂Û ∣Φ⟩ =∑
X


∆єx

∣ ⟨ΦX ∣Û ∣Φ⟩ ∣ , (.)

where only the doubles-excitations X = (a bi j) will contribute. To see this, note that

⟨Φa
i ∣Û ∣Φ⟩ = ⟨Φa

i ∣(Ĥ − F̂)∣Φ⟩ =  − f ai = , (.)

due to Brillouin’s �eorem and the HF equations. (It can also be shown directly from Eq. (.), see
Exercise ..) For X being a higher than doubles-excitation, the Slater–Condon rule zeroes out anymatrix
element. �us,

E() = 
∑i j
∑
ab


є i + є j − єa − єb

∣wab
i j ∣ , (.)

where we used
⟨Φab

i j ∣Û ∣Φ⟩ = ⟨Φab
i j ∣Ŵ ∣Φ⟩ = wab

i j , (.)

via the Slater–Condon rules, and the factor / comes from double-counting the indices i j and ab.
�e third-order energy E() can be computed in a similar fashion, bt this is much more tedious, so we

omit it. See Szabo and Ostlund for the full expression.

Exercise .. Show that ⟨Φa
i ∣Û ∣Φ⟩ =  using the Slater–Condon rules and Eq. (.).

A remark to think about: �e result does not depend on the HF equations being satis�ed. △





Chapter 

�e Electron Gas

. �e JelliumModel

.. �e density operator (not lectured!)
Recall the probabilistic interpretation of an N-electron wavefunction ∣Ψ⟩. An observable of interest is the
electron density ρ(r⃗) at some point r⃗ in space. �e density is the probability of �nding an electron at r⃗,
regardless of where the other electrons are.
�e probability of �nding electron  at r⃗ = r⃗ is

p(r⃗) =∑
α
∫ ∣Ψ((r⃗, α), x , x ,⋯, xN)∣ dx⋯dxN . (.)

Here, x i = (r⃗ i , α i) is a space-spin coordinate. Similarly,

p i(r⃗) =∑
α
∫ ∣Ψ(x ,⋯, x i− , (r⃗, α), x i+ ,⋯, xN)∣ dx⋯dxN . (.)

�us, the total probabilty of �nding any electron at the point r⃗ is thus

ρ(r⃗) =
N

∑
i=

p i(r⃗). (.)

Introducing the Dirac delta function we note that

p i(r⃗) = ∫ Ψ(x ,⋯, xN)∗δ(r⃗ − r⃗ i)Ψ(x ,⋯, xN) dx⋯dxN , (.)

i.e., an expectation value.
We therefore introduce the density operator ρ̂(r⃗) as

ρ̂(r⃗) =
N

∑
i=
δ(r⃗ − r⃗ i), (.)

so that we obtain
ρ(r⃗) = ⟨Ψ∣ρ̂(r⃗)∣Ψ⟩ . (.)

Suppose a complete set of spin orbitals φp(r⃗ χσ(α) is given, with creation operator c†pσ associated. We
note that

⟨ϕpσ ∣δ(r⃗ − r⃗)∣ϕqτ⟩ = δσ τφp(r⃗)∗φq(r⃗). (.)





�e second-quantized form of ρ̂ is therefore

ρ̂(r⃗) =∑
pq
φp(r⃗)φq(r⃗)∗∑

σ
c†pσ cqσ . (.)

It is convenient to introduce the �eld creation operator

ψ†
σ(r⃗) ≡∑

p
φp(r⃗)c†pσ , (.)

which we interpret as the an operator that creates a particle at the space-spin point (r⃗, σ). Similarly

ψσ(r⃗) =∑
p
φp(r⃗)∗cpσ , (.)

is the corresponding annihilation operator. �us,

ρ̂(r⃗) =∑
σ
ψσ(r⃗)ψ†

σ(r⃗). (.)

�e �eld operators satisfy the anticommutation relations

{ψσ(r⃗),ψ†
τ(r⃗′)} = δσ τδ(r⃗ − r⃗′), (.)

and
{ψσ(r⃗),ψτ(r⃗′)} = , {ψ†

σ(r⃗),ψ†
τ(r⃗′)} = . (.)

We note that for any one-body operator â(), the second-quantized operator can be written

Â =∑
σ
∫ ψ†

σ(r⃗)[â(r⃗, σ)ψσ(r⃗)] dr⃗. (.)

�is can be shown by inserting the de�nitions of the �eld operators. �e notation implies that the operator
â is to be multiplied with the �eld annihilation operator.
For a local potential v(r⃗) this simpli�es to

V̂ = ∫ v(r⃗)ρ̂(r⃗) dr⃗ = ∫ v(r⃗)∑
σ
ψσ(r⃗)ψ†

σ(r⃗) dr⃗. (.)

Also,
⟨Ψ∣V̂ ∣Ψ⟩ = ∫ v(r⃗)n(r⃗) dr⃗, (.)

which is identical to the potential energy of a classical system with density n(r⃗).
Similarly, any two-body operator b̂, the second-quantized operator can be written

B̂ = 
∑σ τ
∬ ψ†

σ(r⃗)ψ†
τ(s⃗)[b̂(r⃗, σ , s⃗, τ)ψτ(s⃗)ψσ(r⃗) dr⃗ds⃗], (.)

where it is to be understood that the operator b̂ is to be multiplied with the �eld operators. For a local
potential b̂ = w(r⃗, s⃗) this simpli�es to

B̂ = 
∬

w(r⃗, s⃗)∑
σ τ
ψ†
σ(r⃗)ψ†

τ(s⃗)ψτ(s⃗)ψσ(r⃗) dr⃗ds⃗. (.)





.. Plane-wave basis
In this section we discuss the jellium model: an in�nite system of interacting electrons and a uniform
background charge, so that the system, on average, is neutral. �is is also called the electron gas, and is a
�rst-approximation to, among other things, a metal. A surprising amount of insight can be obtained from
the jellium model, and we will here only scratch the surface.
�e electron gas is an important theoretical model. It is useful as a model of metals, semiconductor

heterostructures, etc., and it is the theoretical foundation of density-functional theory (DFT), a very popular
computational technique in chemistry and solid-state physics.
From a many-body theoretical perspective, the electron gas is particularly interesting because it is an

example of a system where the HF equations can be solved analytically. It also displays divergent terms in
the a series, another interesting phenomenon.
An in�nite system is hard to treat mathematically. It is natural to start with a �nite system and then

take a limit a�erwards. �row N electrons in a box of sides L and volume Ω = L. �e average density
is ρ̄ = N/Ω, and we add a background charge eN to balance the electron charge −eN . Smearing the
background charge uniformly gives a charge density eρ̄.
A�er having obtained the results for this box-truncated jellium, one then considers the thermodynamic

limit, sending L → +∞ andN → +∞ together, such that ρ̄ is kept constant. �us, ρmeasures the “number”
of electrons in the thermodynamic limit.

.. Fourier series and plane-wave basis sets
For covenience, we impose periodic boundary conditions onour box. Any periodic function can be summed
as a Fourier series,

f (r⃗) = 
Ω∑

k⃗

f̃ (q⃗)e i k⃗⋅r⃗ , (.)

where the sum extends over k⃗ such that

k⃗ = πκ⃗/L, κx , κ , κ ∈ Z. (.)

(It is an exercise to show that the Fourier modes exp(i k⃗ ⋅ r⃗) are then periodic functions.) We use the
notationKL = {k⃗} for the set of wavenumbers.
�e Fourier coe�cients are given by

f̃ (k⃗) = ∫
B
f (r⃗)e−i k⃗⋅r⃗ dr⃗, (.)

where the integral extends over the box B = [−L/,+L/].
�e kinetic energy operator of a single electron is

t̂ = − ħ

m
∇ , (.)

whose eigenfunctions are, precisely, the Fourier modes. De�ne

φ k⃗(r⃗) =


Ω/ e
i k⃗⋅r⃗ , (.)

and observe that these are orthonormal,

(φ k⃗ ∣φ k⃗′) = δ k⃗ , k⃗′ . (.)





�ese plane-wave basis functions are very useful, since the kinetic energy is diagonal in this basis. Indeed,
the momentum operator of a single electron is

ˆ⃗p = −iħ∇, (.)

and when acting on a Fourier mode,
ˆ⃗pφ k⃗(r⃗) = ħk⃗φ k⃗(r⃗). (.)

�us, ħk⃗ = p⃗ k⃗ is an eigenvalue for the momentum operator, and the plane-wave basis is an eigenbasis.
Adding spin to the picture, we get spin-orbitals on the form ϕ k⃗ ,α(r⃗) = φ k⃗(r⃗) ∣χα⟩, forming our single-

particle basis, with the corresponding creation operators c†
k⃗ ,α
.

Exercise .. Prove that the plane-wave basis functions φ k⃗(r⃗) are orthonormal if and only if Eq. (.)
holds. △

Exercise .. Let k⃗ i , i = ,⋯,N be momentum vectors in KL . Let ∣Φ⟩ = ∣(k⃗α)⋯(k⃗NαN)⟩, a Slater
determinant.
Explain why ∣Φ⟩ is an eigenfunction of the total momentum operator ˆ⃗P = ∑i

ˆ⃗p(i) and compute its
eigenvalue. Repeat for the total kinetic energy operator T̂ = ∑i t̂(i). △

.. Non-interacting jellium
Assuming that the electrons do not interact, i.e., we set the charge e = , we obtain the simple Hamiltonian

Ĥ = T̂ =
N

∑
i=
t̂(i). (.)

�e plane waves are eigenfunctions of t̂,

t̂φ k⃗(r⃗) =
ħk

m
φ k⃗(r⃗), (.)

which gives the second-quantized kinetic energy

T̂ = ∑
k⃗∈K

ħk

m ∑α
c†
k⃗ ,α
c k⃗ ,α . (.)

Exercise .. Show Eq. (.). △

�e ground-state of this Hamiltonian is the Slater determinant ∣Φ⟩ where the �rst N/ lowest-energy
orbitals are doubly occupied. �e energy becomes

E =  ∑
k⃗∈Uocc

ħk

m
, (.)





where the summation extends over the occupied orbitals, denoted by the set Uocc ⊂ K.
�e kinetic energy depends only on k = ∣k⃗∣, and it is increasing in k. �us,Uocc is, for large N , approx-

umately a sphere with radius kF.
Suppose we choose N such that Uocc consists of all the points k⃗ inside a sphere U with radius kF, i.e.,

we �ll up with electrons having kinetic energy no larger than the Fermi energy

єF =
ħkF
m

. (.)

�is gives for the number of electrons

N = ∑
k⃗∈U

= ( L
π

)


∑
πκ⃗/L∈U

(π
L

)

≈ ( L

π
)


∫
U
dk⃗, (.)

where we have used the de�nition of the Riemann integral in the last equatlity: κ⃗ is a vector of integers,
and for large L we see that k⃗ = πκ⃗/L lies on a grid with grid spacing π/L in each spatial direction. �e
volume of each “cell” in k⃗-space is (π/L). �e error in the integral approximation is of order L−.
�e integral computes the volume of the sphere U . �is gives

N ≈ ( L
π

)
 π

kF . (.)

We observe that N becomes proportional to Ω = L. Dividing out,

ρ̄ = 
π

kF . (.)

�e error in this last equality is O(L−), which we safely ignore. We note that kF can be used as a variable
to describe the non-interacting gas, equivalent to ρ̄ via Eq. (.),

kF = (π ρ̄)/ . (.)

We can also express the density in terms of the Fermi energy,

ρ̄ = (m)/

πħ
є/F . (.)

We observe that the integral approximation argument is valid in more general terms: suppose we are
given a subset V ⊂ K and want to compute

S = ∑
k⃗∈V

f (k⃗). (.)

Repeating the above trick,

S
L

= L− ( L
π

)


∑
k⃗∈V

(π
L

)

f (k⃗) ≈ (π)− ∫

V
f (k⃗) dk⃗, (.)

with error O(L−), a good approximation for large L.
We now compute the ground-state energy:

E
L

=  ∑
∣k⃗∣<kF

ħk

m
≈ (π)− ħ



m ∫∣k⃗∣<kF
k dk⃗ = ħ

(π)m
π∫

kF


k dk = 


ħ

m


(π)
kF . (.)





�e le�-hand side is actually the energy density. Using Eq. (.) we obtain

E
Ω

= ħ

m
π//


ρ̄/ . (.)

Finally, we compute the energy per particle in terms of the Fermi energy,

E
N

= E
Ωρ̄

= 

єF . (.)

.. Interacting jellium: Hamiltonian
Gross/Runge/Heinonen Chapter  is useful here. Also, Ref. [].
For interacting electrons, the Hamiltonian reads

Ĥ = T̂ + Ŵ + V̂b-e + V̂b-b , (.)

where T̂ is the kinetic energy of the electrons, and Ŵ is the inter-electronic repulsion, and where V̂b-e and
V̂b-b are the potential energy terms from interactions between the background and the electrons and the
background with itself, respectively.
We writew(r⃗) = ke/∣r⃗∣ for the Coulomb potential. w(r⃗− s⃗) is the potential energy felt by a unit charge

at r⃗ from another unit charge at r⃗,

Ŵ = 


N

∑
i≠ j
w(r⃗ i − r⃗ j). (.)

Given two charge densities ρ(r⃗) and ρ(r⃗) (in units of the electron charge e), the total potential energy
becomes

V = 
∬

ρ(r⃗)ρ(s⃗)w(r⃗ − s⃗) dr⃗ds⃗. (.)

�e background charge density is a static and uniform over the box, with charge density ρb(r⃗) = ρ̄ (so that
the system in total is neutral). �us, V̂b-b becomes

V̂b-b =

 ∫B ∫B

ρb(r⃗)ρb(s⃗)w(r⃗ − s⃗) dr⃗ds⃗ = 

ρ̄ ∫

B
∫
B
w(r⃗ − s⃗) dr⃗ds⃗. (.)

�is is just a constant number, which is very large but �nite, for �nite L. However, we note that in the
thermodynamic limit, V̂b-b grows without bound and represents a singularity of the model in this limit.
Next, consider V̂e-b,

V̂e-b = −ρ̄
N

∑
i=
∫
B
w(r⃗ − r⃗ i) dr⃗. (.)

In a similar fashion as V̂b-b, the integral on the right-hand side is �nite, but very large and negative. In the
limit of a large box, the integral blows up.
�e term Ŵ will also blow up in the thermodynamic limit, since then we both have a very large box

and a very large number of electrons.
�e problem with the in�nities is that the Coulomb interaction has in�nite range (in the sense of scat-

tering theory). We therefore introduce the Yukawa potential as a regularization

w(r⃗; µ) = e−µr 
r
, µ > , (.)

which has �nite range ∼ µ− and gives the Coulomb potential in the limit µ → . �e idea is to use the
Yukawa potential for a �nite N and L, and see that the nasty in�nities cancel each other out. �en we can
take the thermodynamic limit, and observing that our results are have a well-de�ned limit as µ → .





�e Fourier transform of the Yukawa potential is

w̃(q⃗; µ) ≡ ∫
B
w(r⃗; µ)e−i q⃗⋅r⃗ , (.)

so that
w(r⃗; µ) = 

Ω ∑
k⃗∈K

w̃(q⃗; µ)e i q⃗⋅r⃗ , r⃗ ∈ B. (.)

If we assume that the box is large enough, this integral becomes, to an expoentially good approximation,

w̃(q⃗; µ) ≈ π
µ + k

. (.)

�is is an exercise.
We rewrite the Hamiltonian in terms of the Fourier transform (.). First, we de�ne

n̂q⃗ ≡
N

∑
i=
e−i q⃗⋅r⃗ i , (.)

a one-body operator. �is gives

Ŵ = 
∑i≠ j

w(r⃗ i − r⃗ j) =

Ω∑i≠ j

w̃(q⃗; µ)e i q⃗⋅(r⃗ i−r⃗ j)

= 
Ω ∑q⃗∈K

w̃(q⃗; µ)(n̂−q⃗ n̂q⃗ − N̂),
(.)

where the number operator compensates for including i = j in the sum.
Next, we consider V̂b-b: It can be shown, that to a good approximation, and for a large enough box,

∫
B
∫
B
w(r⃗ − s⃗)dr⃗ds⃗ ≈ Ωw̃(⃗, µ). (.)

�is gives

V̂b-b =


ρ̄Ωw̃(⃗, µ). (.)

Similarly,
V̂e-b = −ρ̄Nω̃(⃗, µ). (.)

We note that V̂b-b and V̂e-b diverge for large boxes and large N . We therefore consider the q⃗ = ⃗ term of
Ŵ ,

Ĥ = T̂ + Ŵ +

Ω

w̃(⃗, µ)(N − N) − ρ̄Nw̃(⃗, µ) + 

ρ̄Ωw̃(⃗, µ) (.)

We note that the divergencies are canceled, since


Ω

(N − N) − ρ̄N + 

ρ̄Ω = 

Ω
(N − N) − 

Ω
N + 

Ω
N = − 


ρ̄. (.)

�us, the Hamiltonian becomes

Ĥ = T̂ + Ŵ , Ŵ =

Ω ∑q⃗≠

w̃(q⃗, µ)(n̂−q⃗ n̂q⃗ − N̂), (.)

which does not contain any problematic terms, even for µ → .





.. Hamiltonian in second quantization
We now express the Hamiltoninan in second quantization using the plane-wave basis. To this end, �rst we
consider the matrix elements of n̂q⃗ = ∑i e−i q⃗⋅r⃗ i , which is instructive:

(φ k⃗ ∣e
−i q⃗⋅r⃗ ∣φ ℓ⃗) =


Ω ∫

e−i k⃗⋅r⃗e−i q⃗⋅r⃗e+i ℓ⃗⋅r⃗ dr⃗ = 
Ω ∫

e i(−k⃗−q⃗+ℓ⃗)⋅r⃗ dr⃗ = δ−k⃗−q⃗+ℓ⃗ ,⃗ , (.)

by the orthonormality of the φ k⃗ , for k⃗ ∈ K.
Summing up the operator, we obtain

n̂q⃗ =∑
k⃗ , ℓ⃗
∑
α
(φ k⃗ ∣e

−i q⃗⋅r⃗ ∣φ ℓ⃗)c
†
k⃗α
c ℓ⃗α =∑

k⃗ ,α

c†
k⃗ ,α
c k⃗+q⃗ ,α , (.)

where we used that n̂q⃗ does not depend on spin. �us, n̂q⃗ is a shi� operator, that annihilates a particle with
wavenumber ℓ⃗ and inserts one with wavenumber ℓ⃗ − q⃗.
We note that

n̂†q⃗ = n̂−q⃗ . (.)

Exercise .. Using the fundamental anticommutator and Eq. (.), show that

n̂−q⃗ n̂q⃗ = N̂ +∑
k⃗ , ℓ⃗
∑
α ,β

c†
k⃗ ,α
c†
ℓ⃗ ,β
c ℓ⃗+q⃗ ,βc k⃗−q⃗ ,α . (.)

Explain that n̂−q⃗ n̂q⃗ conserves totalmomentum ħkK⃗ = ħk∑N
i= k⃗ i for any Slater determinant ∣(k⃗α)⋯(k⃗NαN)⟩.

△

Plugging into Ŵ we obtain

Ŵ =

Ω ∑q⃗≠

w̃(q⃗, µ)∑
k⃗ , ℓ⃗
∑
α ,β

c†
k⃗ ,α
c†
ℓ⃗ ,β
c ℓ⃗+q⃗ ,βc k⃗−q⃗ ,α . (.)

A useful observation is that the operator T̂ + Ŵ conserves the total wavenumber ∑i k⃗ i . �e same is of
course true for the kinetic energy operator, which is diagonal in the plane-wave basis.
We now compute the matrix elements of Ŵ in the plane-wave basis. We start with the space integrals

of n̂−q⃗ n̂q⃗ :

(φ k⃗φ k⃗ ∣n̂−q⃗ n̂q⃗ ∣φ ℓ⃗φ ℓ⃗) =

Ω∬ e−i k⃗ ⋅r⃗ e−i k⃗ ⋅r⃗(e i q⃗⋅r⃗ + e i q⃗⋅r⃗)(e−i q⃗⋅r⃗ + e−i q⃗⋅r⃗)e i ℓ⃗ ⋅r⃗ e i ℓ⃗ ⋅r⃗ dr⃗dr⃗

= 
Ω∬ e i(ℓ⃗−k⃗)⋅r⃗ e i(ℓ⃗−k⃗)⋅r⃗( + e i q⃗⋅r⃗−i q⃗⋅r⃗ + e−i q⃗⋅r⃗+i q⃗⋅r⃗) dr⃗dr⃗

= δ ℓ⃗ , k⃗δ ℓ⃗ , k⃗ +

Ω ∫ e i(ℓ⃗−k⃗+q⃗)⋅r⃗dr⃗ ∫ e i(ℓ⃗−k⃗−q⃗)⋅r⃗dr⃗

+ 
Ω ∫ e i(ℓ⃗−k⃗−q⃗)⋅r⃗dr⃗ ∫ e i(ℓ⃗−k⃗+q⃗)⋅r⃗dr⃗

= δ ℓ⃗ , k⃗δ ℓ⃗ , k⃗ + δ ℓ⃗ , k⃗−q⃗δ ℓ⃗ , k⃗+q⃗ + δ ℓ⃗ , k⃗+q⃗δ ℓ⃗ , k⃗−q⃗
(.)

For the matrix elements (not antisymmetrized) of Ĝq⃗ = n̂−q⃗ n̂q⃗ − N̂ we then obtain

⟨ϕ k⃗αϕ k⃗α ∣Ĝq⃗ ∣ϕ ℓ⃗βϕ ℓ⃗β⟩ = δαβδαβ[δ ℓ⃗ , k⃗−q⃗δ ℓ⃗ , k⃗+q⃗ + δ ℓ⃗ , k⃗+q⃗δ ℓ⃗ , k⃗−q⃗] (.)





Let us consider the matrix elements of Ŵ, which we can write

⟨ϕ k⃗αϕ k⃗α ∣ŵ∣ϕ ℓ⃗βϕ ℓ⃗β⟩ =

Ω ∑q⃗≠

w̃(q⃗; µ)δαβδαβ[δ ℓ⃗ , k⃗−q⃗δ ℓ⃗ , k⃗+q⃗ + δ ℓ⃗ , k⃗+q⃗δ ℓ⃗ , k⃗−q⃗] (.)

�e sum over q⃗ can be collapsed using the Kronecker deltas. However, if a Kronecker delta implies that
q⃗ = , it is not allowed. �erefore we, must eplicitly include q⃗ =  in the sum by de�ning

w̃(q⃗; µ) = w̃(q⃗; µ)( − δq⃗ ,⃗). (.)

We can then write

⟨ϕ k⃗αϕ k⃗α ∣ŵ∣ϕ ℓ⃗βϕ ℓ⃗β⟩ =

Ω∑q⃗

w̃(q⃗; µ)δαβδαβ[δ k⃗−ℓ⃗ , q⃗δ ℓ⃗−k⃗ , q⃗ + δ ℓ⃗−k⃗ , q⃗δ k⃗−ℓ⃗ , q⃗]

= 
Ω
δαβδαβδ ℓ⃗+ℓ⃗ , k⃗+k⃗w̃(k⃗ − ℓ⃗; µ)

(.)

Notice how thematrix element is ecplicitly zero if the total momentum in the bra and the ket do notmatch.
Also note that w̃(k⃗ − ℓ⃗) = w̃(k⃗ − ℓ⃗) by momentum conservation.
Let us sum up the wole operator:

Ŵ =

Ω ∑

k⃗ k⃗

∑
ℓ⃗ ℓ⃗

δ k⃗+k⃗ , ℓ⃗+ℓ⃗w̃(k⃗ − ℓ⃗)∑
αβ
c†
k⃗α
c†
k⃗β
c ℓ⃗βc ℓ⃗α , (.)

where we used Eq. (.), where the matrix elements are not antisymmetric, just as in the present case. An
alternative form is obtained by introducing a new summation variable K⃗ = k⃗ + k⃗, the total momentum:

Ŵ =

Ω∑K⃗

∑
k⃗ , ℓ⃗

w̃(k⃗ − ℓ⃗)∑
αβ
c†
k⃗α
c†
K⃗−k⃗ ,β

cK⃗−ℓ⃗ ,βc ℓ⃗α . (.)

�e range of the summation index K⃗ is KL , just like k⃗ and ℓ⃗. �e nice thing about Eq. (.) is that it
explicitly shows the momentum conservation, and contains one less summation index.

.. Hartree–Fock treatment
We now observe the remarkable fact that the plane-wave basis is a solution to the canonical Hartree–Fock
equations. To show this, we demonstrate that the Fock operator F̂ = T̂ + V̂direct − V̂ exchange is diagonal in
this basis.
�us, we are going to assume that ϕ k⃗ ,α are our canonical HF single-particle functions. N of these

are occupied in the HF wavefunction. We assume that each orbital is doubly occupied, so we have N/
wavenumbers i⃗ that are occupoed. For the rest, we use an index a⃗, b⃗, etc.
We have at our disposal Eq. (.). We compute V̂direct:

V̂direct = ∑
k⃗ ,β

∑
k⃗ ,β

∑
i⃗ ,α

⟨ϕ k⃗βϕ i⃗ α ∣Ŵ∣ϕ k⃗βϕ i⃗ α⟩ c
†
k⃗β

c k⃗β

=∑
i⃗ α
∑
k⃗β

⟨ϕ k⃗βϕ i⃗ α ∣Ŵ∣ϕ k⃗βϕ i⃗ α⟩ c
†
k⃗β
c k⃗β = .

(.)

To see the last equality, note that since the bra and the ket state are identical, we are le� with terms from
(.) containing w̃(i⃗ − i⃗) = w̃(k⃗ − k⃗) = w̃(⃗) only, and these are identically zero.





We now durn to the exhange potential:

V̂ exchange = ∑
k⃗ ,β

∑
k⃗ ,β

∑
i⃗ ,α

⟨ϕ k⃗βϕ i⃗ α ∣Ŵ∣ϕ i⃗ αϕ k⃗β⟩ c
†
k⃗β

c k⃗β

=∑
i⃗ α
∑
k⃗

⟨ϕ k⃗αϕ i⃗ α ∣Ŵ∣ϕ i⃗ αϕ k⃗α⟩ c
†
k⃗α
c k⃗α

=∑
k⃗

⎛
⎝∑i⃗


Ω
w̃(k⃗ − i⃗; µ)( − δ k⃗ , i⃗)

⎞
⎠∑α

c†
k⃗α
c k⃗α

(.)

�e exchange operator does not vanish. We obtain for the Fock operator

F̂ = T̂ − V̂ exchange =∑
k⃗

⎡⎢⎢⎢⎢⎣

ħk

m
−
⎛
⎝∑i⃗


Ω
w̃(k⃗ − i⃗; µ)( − δ k⃗ , i⃗)

⎞
⎠

⎤⎥⎥⎥⎥⎦
∑
α
c†
k⃗α
c k⃗α ≡∑

k⃗

є k⃗∑
α
c†
k⃗α
c k⃗α . (.)

�eFock operator ismanifestly diagonal in the plane-wave basis, and the diagonal elements є k⃗ are therefore
the canonical HF energies, which are doubly degenerate due to spin, and the spin-orbitals ϕ k⃗α are the
canonical HF functions.
�e HF energy depends only on k = ∣k⃗∣, and we have:

є k⃗ ≡ єk =
ħk

m
− 
Ω∑i⃗

w̃(k⃗ − i⃗; µ)( − δ k⃗ , i⃗). (.)

�e HF energy is

EHF = ⟨Φ∣T̂ + Ŵ∣Φ⟩ =∑
i⃗ α

t i⃗ −

∑i⃗ j⃗α

⟨ϕ j⃗αϕ i⃗ α ∣Ŵ∣ϕ i⃗ αϕ j⃗α⟩ ≡ EK − Eexchange (.)

where we used that the direct potential is identically zero, and only the exchange parts of the interaction
matrix elements contribute.
Note that we have not speci�ed which of the indices k⃗ that are the occupied i⃗s! We can choose any set

of N/ indices. It is natural to expect – but not at all trivial – that the minimum HF energy is obtained
by choosing those indices corresponding to the lowest energy. When studying the thermodynamic limit,
we take this approach. �us, exactly as for the noninteracting electron gas, we let L and kF be given, and
compute N such that all φ k⃗ with ∣k⃗∣ < kF are doubly occupied. In the thermodynamic limit, the number
of electrons are then expressed in terms of the average density ρ̄ and the Fermi wavenumber kF. Note
however, that the fermi energy in the HF model is not the kinetic energy of the electrons with ∣k⃗∣ = kF, but
rather the HF eigenvalue, єF = єkF .

.. Evaluation of sums in HF energies
We now evaluate the HF eigenvalue єk and the total HF energy EHF in the thermodynamic limit. We
consider �rst the sum

Sk ≡

Ω∑i⃗

w̃(k⃗ − i⃗; µ)( − δ k⃗ , i⃗), (.)

so that єk = ħk/m − Sk . We evaluate the sum as an integral, and set µ =  since the integral converges
also for this limit:

Sk =
πe

(π) ∫∣s⃗∣<kF


∣s⃗ − k⃗∣
ds⃗. (.)





To evaluate the integral, we choose the z-axis in s⃗-space along k⃗, introduce spherical coordinates, and get

∣s⃗ − k⃗∣ = s + k − ks cos(θ). (.)

Inserting into the integral, we get

Sk =
πe

(π)
π∫

π/

−π/
sin(θ)dθ ∫

kF


sds[s + k − ks cos(θ)]− . (.)

Introducing x = cos(θ) as integration variable, we can complete the calculation and obtain

Sk =
e

π
[kF +


k

(kF − k) ln ∣ kF + k
kF − k

∣] . (.)

Exercise .. Fill in the details of the above integration. △

�us, we obtain

єk =
ħk

m
− e

π
[kF +


k

(kF − k) ln ∣ kF + k
kF − k

∣] (.)

We now turn to the calculation of EHF. First, we note that the kinetic energy EK was calculated in the
section about the noninteracting gas. �ere, kF was expressed in terms of the density ρ̄ and vice versa,

ρ̄ = 
π

kF . (.)

�e density is the same in the HF model, since the state ∣Φ⟩ is the same. �e kinetic energy in terms of kF
becomes

EK = Ω ħ

m
π//


[(π)kF]/ = Ω

ħ

m


π
kF . (.)

Now to the exchange energy.

Eexchange =

∑i⃗ j⃗α

⟨ϕ i⃗ αϕ j⃗α ∣Ŵ∣ϕ j⃗αϕ i⃗ α⟩ =

Ω∑i⃗ j⃗

w̃(i⃗ − j⃗) =∑
j⃗

S j

≈ Ω
(π) ∫∣ j⃗∣<kF

S j =
Ω

(π)
π∫

kF


kSk dk.

(.)

�is integral can be carried out by elementary means, to give

Eexchange = Ω
e

(π)
kF . (.)

In total, therefore, we get the energy density

EHF

Ω
= ħ

m


π
kF −

e

(π)
kF , (.)

valid in the limit Ω → +∞.

Exercise .. Fill in the details: Compute the integral in Eq. (.) to obtain Eq. (.) △





Exercise .. a) Show that the HF energy density (.) as a function of the average electron density
ρ̄ can be written

EHF

Ω
= ħ

m
/π/


ρ/ − e 

/

π/
ρ/ . (.)

b) Show that the HF energy per particle can be written

EHF

N
= ħ

m
/π/


ρ/ − e 

/

π/
ρ/ . (.)

△

.. Perturbation theory for jellium is divergent
In this section, we demonstrate that the second-order energy correction of Rayleigh–Schrödinger pertur-
bation theory is divergent in itself. �us, it is not the series as such, but the individual terms in the series
that are problematic in PT for jellium.
We treat Ŵ as a perturbation of T̂ , i.e., in the terminology of Sec. ., K̂ = T̂ and L̂ = Ŵ.
�e treatment follows Raimes Ch. . closely, but with our own notation.
�e zeroeth order state ∣Φ⟩ is the ground-state of T̂ , the sate where all (k⃗, α) are occupied with ∣k⃗∣ < kF.

In the thermodynamic limit, we have
E()

Ω
= EK
Ω
, (.)

as computed previously.
�e �rst-order energy is

E()

Ω
= 
Ω

⟨Φ∣Ŵ∣Φ⟩ = − 
Ω
Eexchange . (.)

Here, we used that ∣Φ⟩ is actually the HF state. �us,


Ω

(E() + E()) = 
Ω
EHF . (.)

Now to the second-order energy correction. Since ∣Φ⟩ is the HF state, Brillouin’s �eorem gives that
the second-order energy correction does not have contributions from one-particle-one-hole Slater deter-
minants. We are le� with


Ω
E() = 

Ω ∑i jab
(t i − ta + t j − tb)−∣ ⟨ϕaϕb ∣ŵ∣ϕ iϕ j⟩AS ∣

 , (.)

where i j and ab enumerate the occupied and virtual spin-orbitals, respectively, and where tp is the kinetic
energy of spin-orbital ϕp . �us,

i = (i⃗ , α), j = ( j⃗, α′), a = (a⃗, β), b = (a⃗, β′). (.)

tk =
ħ

m
∣k⃗∣ . (.)

We have

⟨ϕ iϕ j ∣ŵ∣ϕaϕb⟩AS = ⟨ϕ i⃗ ,αϕ j⃗ ,α′ ∣ŵ∣ϕ a⃗ ,βϕb⃗ ,β′⟩ − ⟨ϕ i⃗ ,αϕ j⃗ ,α′ ∣ŵ∣ϕb⃗ ,β′ϕ a⃗ ,β⟩ , (.)





where
⟨ϕ k⃗ ,αϕ k⃗ ,α ∣ŵ∣ϕ ℓ⃗ ,βϕ ℓ⃗ ,β⟩ =


Ω
δαβδαβδ k⃗+k⃗ , ℓ⃗+ℓ⃗w̃(k⃗ − ℓ⃗; µ). (.)

�us,

⟨ϕ iϕ j ∣ŵ∣ϕaϕb⟩AS =

Ω
δ i⃗+ j⃗ , a⃗+b⃗ [δαβδα′β′w̃(i⃗ − a⃗; µ) − δαβ′δβα′w̃(i⃗ − b⃗; µ)]

= πe

Ω
δ i⃗+ j⃗ , a⃗+b⃗ [δαβδα′β′(µ

 + ∣i⃗ − a⃗∣)− − δαβ′δβα′(µ + ∣i⃗ − b⃗∣)−]
(.)

We are going to sum over a, b, i, and j, and we note that total spin projection must be conserved, α + α′ =
β+β′. For a simpler integral analysis later on, we split the contributions into the cases α = −α′ (anti-parallel
spins) and α = α′ (parallel spins),

E()
↑↓ + E()

↓↓ . (.)

For anti-parallel spins, we obtain


Ω
E()
↑↓ = 

Ω
(πe



Ω
)
 m
ħ

∑
i⃗ j⃗ a⃗ b⃗

(∣i⃗∣ − ∣a⃗∣ + ∣ j⃗∣ − ∣b⃗∣)− [(µ + ∣i⃗ − a⃗∣)−]

δ i⃗+ j⃗ , a⃗+b⃗ (.)

the factor  comes from identi�cation of several identical contributions. We are interested in showing that
this energy diverges. �e proof for the parallel spin case is similar, and will not cancel the divergence in
E()
↑↓ . (�e eager student can study the parallel spin case in Raimes.)
To get rid of the Kronecker delta, which expressesmomentum conservation, we introduce themomen-

tum vector q⃗ ≡ a⃗ − i⃗. We then obtain from momentum conservation

a⃗ = i⃗ + q⃗, b⃗ = j⃗ − q⃗. (.)

�e summation over a⃗ and b⃗ is replaced by a single summation over q⃗. We introduce integrals, obtaining


Ω
E()
↑↓ = C ∫

∣ i⃗∣<kF
d i⃗ ∫

∣ j⃗∣<kF
d j⃗∫

q⃗
dq⃗θ(∣ j⃗ − q⃗∣ − kF)θ(∣i⃗ + q⃗∣ − kF)

× (∣i⃗∣ + ∣ j⃗∣ − ∣i⃗ + q⃗∣ − ∣ j⃗ − q⃗∣)−(µ + ∣q⃗∣)− .
(.)

where C is a constant independent of Ω. �e theta function is de�ned by θ(x) =  if x < , and θ(x) = 
if x > . Notice that all powers of Ω have been cancelled, leaving an integral as a function of µ only.
Let us study the integrand, and let us assume that µ is very small. �e integrand then gets its main

contribution from small q = ∣q⃗∣. To see this, note that

∣i⃗∣ + ∣ j⃗∣ − ∣i⃗ + q⃗∣ − ∣ j⃗ − q⃗∣ = i + j − a − b <  (.)

becomes closest to  when q⃗ is small. Similarly (q+µ) is the smallest when q is small. �us the integrand
has its largest values for q small.
When q is small, i ≲ kF: otherwise it is not possible that ∣a⃗∣ = ∣i⃗ + q⃗∣ > kF.

∣i⃗ + q⃗∣ = i + q + iqx > kF , (.)

where

x ≡ i⃗ ⋅ q⃗
iq

≡ cos(θ i). (.)





For future reference we also de�ne

y ≡ − j⃗ ⋅ q⃗
jq

≡ − cos(θ j). (.)

Here, θ i (θ j) is the angle between q⃗ and i⃗ ( j⃗). Now, for small q, we can do a �rst-order consideration,
neglect terms of order q and higher, and a geometrical consideration shows that i ≈ kF( − cq) + O(q)
for some small number c > . Equation (.) becomes, to �rst order in q,

kF( − cq) + kFqx > kF . (.)

Rearranging, we obtain
qx > (kF − i), (.)

and thus the function θ(∣i⃗ + q⃗∣ − kF) is, for small q, equivalent to the integration limits

i ∈ [kF − q cos(θ i), kF], and cos(θ i) ≥ . (.)

A similar analysis for ∣ j⃗ + q⃗∣ > kF gives the integration limits

j ∈ [kF + q cos(θ j), kF], and cos(θ j) ≤ . (.)

We write down the integral contribution from q ≤ є (≪ µ ≪ kF),

F(є, µ) ∶= ∫
q<є


(µ + q)

[∫
A(q⃗)

d i⃗ ∫
B(q⃗)

d j⃗


q(y j + xi)
] dq⃗ (.)

Here, A(q⃗) and B(q⃗) denote the integration limits in Eqs. (.) and (.).
We now introduce spherical coordinates in i⃗-space, letting the z-axis point in the direction of q⃗. �us,

the elevation angle θ = θ i , while the azimuthal angle is φ ∈ [, π]. �e integration over A(q⃗) can be
written

∫
A(q⃗)

d i⃗ = ∫
π


dφ∫

π/


sin(θ)dθ ∫

kF

kF−q cos(θ)
idi , (.)

where cos(θ) = cos(θ i) ≥  is enforced by integrating over [, π/]. Reintroduce x = cos(θ), to obtain

∫
A(q⃗)

d i⃗ = π∫



dx ∫

kF

kF−qx
idi , (.)

Similarly, using y = − sin(θ j) with θ j ∈ [π/, π] to enforce the limits,

∫
B(q⃗)

d j⃗ = π∫



dy∫

kF

kF−qy
jd j. (.)

We now note that in the integration region, j ≈ kF, i ≈ kF, and thus

i j

yi + x j
≈ kF
y + x

, (.)

the error being small and causing no problems. �us, to within an error of order є,

F(є, µ) = π ∫
∣q⃗∣<є

dq⃗
(µ + q)q ∫




dx ∫




dy∫

kF

kF−qx
di ∫

kF

kF−qx
d j

kF
x + y

= kFπ ∫∣q⃗∣<є
dq⃗q

(µ + q)q ∫



dx ∫




dy

xy
x + y

.
(.)





�e integral over x and y yields a constant independent of q⃗, thus, noting that the remaining q⃗-integrand
does only depend on the magnitude q,

F(є, µ)∝ ∫
є



q

(µ + q)
dq. (.)

Consider inde�nite integral

∫
q

(µ + q)
dq = 


[ µ

µ + q
+ log(µ + q)] . (.)

For µ >  we see that F(є, µ) is �nite, but that the limit µ →  is in�nite.
In total, we see that there is an in�nite contribution to E() in the physical limit µ → .
It can be shown that all E(n)/Ω for n ≥  diverge in a similar manner in the thermodyncamic limit.

�us, RSPT fails badly for the electron gas. �is is not to say that the ground-state energy is not well-
de�ned! One can prove that the energy per particle must be �nite in the thermodynamic limit. What
fails here are the conditions for RSPT to converge. A necessary condition for convegence is that when we
introduce a coupling constant λ, the ground-state energy of Ĥ(λ) = T̂ + λŴ is analytic at λ = . �e
in�nite perturbation series terms contradicts this assumption.





Chapter 

Common basis sets

In large ab initio calculations for realistic systems, one needs a single-particle basis set in which we develop
thewavefunction. In this brief chapter, we give a brief overview of the various common choices in quantum
chemistry, in solid-state physics, quantum dot studies, and in nuclear physics.
Using L single-particle functions, the Hilbert space scales as (NL). �us, our basis needs to

. Yield a good approximation to the exact wavefunction, i.e., capture “the physics”,

. Allow e�cient calculation of two-body (or higher!) matrix elements.

�ese criterions are not always compatible.

. Harmonic oscillator basis functions
In several models, the N-body Hamiltonian can be written

Ĥ ≈
N

∑
i=
ĥHO(i) + Ŵ , (.)

whereW is a residual part, and where ĥHO is the harmonic oscillator (HO),

ĥHO = − ħ

m
∇ + 


mωr =

d

∑
j=
h(r j). (.)

Here d is the spatial dimension of the single-particle space, where the fermions “live”. Typically, d = , ,
or . �e HO can be exactly solved, giving a convenient basis of single-particle orbitals for manybody
treatments.
Harmonic oscillator functions are useful in quantum dot models and very common in the nuclear

manybody problem as well.
Consider �rst a harmonic oscillator in one space dimension (no spin). �is simple problem has the

Hamilatonian

ĥ = − ħ

m
∂

∂x
+ 

mωx . (.)

�e the solutions to the eigenvalue problem ĥ fn = en fn are well-known, and on the form

fn(x) =
√ α

nn!
π−/Hn(αx)e−α

x/ (.)





− −  









αx

fn(x)

Figure .: �e �rst few Hermite functions fn(x), n = , ,  and n = . �ey are shi�ed vertically with
their energy eigenvalue. �e �rst eigenvalues are also shown as dashed lines.

where

α = (mω
ħ

)
/
. (.)

�e eigenvalues are

en = ħω(n +


). (.)

�e functions Hn(x) are the Hermite polynomials, which have the compact expression

Hn(x) = (−)nex
 dn

dxn
e−x


. (.)

�eWikipedia page has tons of information.

.. d-dimensional HO in cartesian coordinates
�e d-dimensional HO can be solved with separation of variables, since ĥHO = ĥ(r) + ⋯ĥ(rd). �e
eigenfunctions become

φn⋯nd (r⃗) = fn(r) fn(r)⋯ fnd (rd) (.)

with eigenvalues

en⋯nd = ħω (n + n +⋯ + nd +
d

) . (.)

�e eigenfunctions are orthonormal,

⟨φn⃗ ∣φn⃗′⟩ = δn⃗ , n⃗′ . (.)

For d =  we obtain the eigenfunctions

φn ,n(r⃗) = α [πn+nn!n!]
−/ Hn(αx)Hn(αx)e−α

 r/ , r = r + r . (.)



https://en.wikipedia.org/wiki/Hermite_polynomials


For d = , we obtain

φn ,n ,n(r⃗) = α/π−/ [n+n+nn!n!n!]
−/ Hn(αx)Hn(αx)Hn(αx)e−α

 r/ , r = r + r + r .
(.)

�e energy levels group into shells of equal energy. De�ne the shell number N(n⃗) = ∑ j n j , such that

en⃗ = ħω(N(n⃗) + d/). (.)

�e degeneracy g(N , d) of the energy e = ħω(N + d/) depends on the dimension d. Let us look at some
examples. Suppose that N = , and d = . �en, we have the possibilities

(n , n) ∈ {(, ), (, ), (, )} , (.)

giving a degeneracy of g(, ) = . For d =  we obtain

(n , n , n) ∈ {(, , ), (, , ), (, , ), (, , ), (, , ), (, , )} , (.)

giving g(, ) = .
In general, g(N , ) = , and one can show (exercise!) that g(N , ) = N + , while for g(N , ) =


 (N + )(N + ).
In d = ,  one can also �nd the eigenfunctions of theHOusing polar coordinates. �emain observation

is that ĥHO is rotationally invariant, meaning that it commutes with the generators for the group of space
rotations: the angular momentum operators.

Exercise .. For the Harmonic oscillator, compute the degeneracy of the eigenvalue ħω(N + d/) for
d = , d = , and d = . △

Exercise .. Using your method of choice, plot the cartesian coordinate eigenfunctions for d =  for
N ≤ . (�is constitutes  plots.) Set α = . △

.. Polar coordinate HO eigenfunctions, d = 
�e case d = : Polar coordinates are de�ned by

(xy) = (r cos ϕr sin ϕ) . (.)

�e group of rotations is generated by the angular momentum operator

L̂z = −iħ
∂
∂ϕ

. (.)

�e Laplace operator can be written

∇ = 
r
∂
∂r
r
∂
∂r

+ 
r

∂

∂ϕ
. (.)





�eHOHamiltonoan for d =  becomes

ĥHO = − ħ

m
[ 
r
∂
∂r
r
∂
∂r

+ 
r

∂

∂ϕ
] + 


mωr . (.)

Attempting an eigenfunction of ĥHO on the form

φ(r, ϕ) = R(r)u(ϕ), (.)

we obtain a�er some simple algebra the solution u(ϕ) = e i lzϕ with lz ∈ Z, and the radial equation

[− ħ

m

r
∂
∂r
r
∂
∂r

+ ħ

m
l z
r
+ 

mωr]R(r) = eR(r). (.)

We note that e i lzϕ are eigenfunctions of L̂z with eigenvalue ħlz .
�e radial equation can also be solved, giving Rnlz(r), n = , ,⋯, and a total normalized eigenfunction

φnlz(r, ϕ) = α [ n!
π(∣lz ∣ + n)!

]
/

(αr)∣lz ∣e−α
 r/L∣lz ∣n (αr)e i lzϕ , (.)

where Lkn(x) are the associated Laguerre polynomials. �ese are given by

Lkn(x) =

n!
exx−k

dn

dxn
(e−xxn+k), (.)

and are polynomials of degree n. It should be observed that the space part of φnlz is a Gaussian multiplied
with a polynomial of degree n + ∣lz ∣ (in r). �e energy eigenvalue of φn , lz is given by

enlz = ħω(n + ∣lz ∣ + ), (.)

and we see that each shell is given by N = n+ ∣lz ∣. It is a fact that L∣lz ∣n has n nodes (which are all nonzero).
�us, n counts the nodes of the radial wavefunction except for r = , which is a node for lz ≠ .
Note well that the quantum numbers (n, lz) are not identical to the cartesian coordinate quantum

numbers (n , n) used previously, even though our notation for the eigenfunctions is the same.

Exercise .. Using your method of choice, plot the polar coordinated eigenfunctions for d =  for N =
n + ∣lz ∣ ≤ . (�is constitutes  plots.) Set α = . △

.. Polar coordinate HO eigenfunctions, d = 

For d = , [ĥ, L̂z] = [ĥ, L̂] = [L̂z , L̂] = , so we can �nd a common set of eigenvectors for the three
operators ĥ, L̂z , and L̂.
Polar coordinates in D (aka spherical coordinates) are de�ned by

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

r sin θ cos ϕ
r sin θ sin ϕ
r cos θ

⎞
⎟
⎠
, r ∈ [,+∞), θ ∈ [, π], ϕ ∈ [, π]. (.)

�e Laplacian in polar corrdinates becomes

∇ = 
r

∂
∂r
r
∂
∂r

− 
ħr

L̂ , (.)





where L̂ = L̂x + L̂y + L̂z is, in polar coordinates,

ħ− L̂ = − 
sin θ

∂
∂θ

sin θ
∂
∂θ

− 
sin θ

∂

∂ϕ
. (.)

As for the d =  case, we attempt an eigenfunction of ĥHO on the form φ(r, θ , ϕ) = R(r)Y(θ , ϕ). Straight-
forward algebra leads to Y being an eigenfunction of L̂. �e spherical harmonics Yl lz(θ , ϕ) form a com-
plete set of eigenfunctions of L̂ (and L̂z),

L̂Yl lz(θ , ϕ) = ħ
 l(l + )Yl lz(θ , ϕ), (.)

L̂zYl lz(θ , ϕ) = ħlzYl lz(θ , ϕ). (.)

�e explicit expression is

Yl lz(θ , ϕ) = [l + 
π

(l − lz)!
(l + lz)!

] P lzl (cos θ)e i lz θ , ∣lz ∣ ≤ l ∈ N. (.)

�e radial equation becomes

[− ħ

m

r

∂
∂r
r
∂
∂r

+ ħ l(l + )
mr

+ 

mωr]R(r) = eR(r). (.)

Note that the radial equation depends on l , but not on lz . �e radial equation can be solved, giving (see
Moshinsky’s book []), solutions Rnl(r) for n = , , ,⋯,

Rnl(r) = α/ [
(n!)

Γ(n + l + /)
]
/

(αr)lL l+/n (αr)e−αr
/ . (.)

(Remark: in some texts, a di�erent convention for n is used. Note carefully that l is not restricted with
respect to n.)
�e HO energy is

enl = ħω(n + l + /), (.)

which is independent of lz since the radial equation was independent of lz .

Exercise .. Using your method of choice, plot the polar coordinated eigenfunctions for d =  for N =
n + l ≤ . Set α = . Use only lz ≥ . △

. Plane-wave basis set
Already covered

. �e nuclear manybody problem in a non-relativistic approxima-
tion

�e atomic nucleus consists of neutrons n and protons p. �ese are compound particles, consisting of
three quarks each. �e neutron consists of  up quarks of charge +(/)e, and  down quarks of charge





−(/)e. �e proton consists of  up quarks and  down quark. �us, in total the neutron has no charge,
while the proton has charge +e.
Experimental evidence demonstrates that p and n behave almost identically in the nucleus, with almost

equal mass, spin +ħ/, and that they do not decompose into their constituent quarks at low energy. �eir
interactions in a nucleus is also almost identical, except that two protons repel each other via the Coulomb
force. �erefore, Werner Heisenberg postulated a non-relativistic description where p and n are di�erent
states of one kind of particle, a nucleon, with an additional spin-/ degree of freedom called isospin: a
nucleon with isospin +/ is a proton, and a nucleon with isospin −/ is a neutron. (It was EugeneWigner
who coined the term “isospin” in .)
�us, the Hamiltonian of an A-particle nucleus is

Ĥ = T̂ + Û =
N

∑
i=
t̂(i) + 



A

∑
i≠ j
û(i , j), (.)

where û(i , j) is the interaction potential between nucelons i and j. Note well, that the interaction potential
depends on the isospin of nucleons i and j.
�e interaction potential is not known a priori, in contrast to electronic systems. One needs to �t semi-

empirical models to experimental data, or, as is the current trend, derive potential approximations from
QCD.
Suppose we are given a spatial orbital basis φp(r⃗), sa, the HO function with p = (n, l , lz). Since we

have both spin and isospin in in our single-particle space, we obtain single-particle functions on the form

ϕp ,α , ι(r⃗, σ , τ) = φp χα(σ)χι(τ), (.)

where χ±/ are the orthonormal spin-/ basis functions. It can be considered standard to use the HO
basis functions for nonrelativistic treatments of the nucleus.
A Slater determinant with N neutrons and Z protons, in total A = N +Z nucleons, can then be written

∣(pα ,+/)⋯(pZαZ ,+/)(pZ+αZ+ ,−/)(pZ+αZ+ ,−/)⋯(pAαA,−/)⟩ (.)

Suppose we have in total L values for (pα), i.e., L spin-orbitals. Since the isospin valies for neutrons and
protons are di�erent, neutrons and protons can occupy spin-orbitals independently of each other, meaning
that the dimension of the Hilbert space becomes

D = (L
N
) × (L

Z
). (.)

.. �e self-bound property of the nucleus, and removal of centre-of-mass degree
of freedom

�enucleus is self-bound. �ere is no external potential in the one-body part of theHamltonian to bind the
nucleons in space. �eHamiltonian is translationally invariant, i.e., it commutes with the total momentum
operator P̂ = ∑i p̂(i). �e spectrum of Ĥ becomes purely continuous, there are no isolated eigenvalues.
�is complicatesmatters formost comonmanybody techniques. It is therefore a common technique to add
a weack �ctitious harmonic oscillator potential µω

r term to the Hamiltonian to weakly bind the nucleus,
producing a discrete spectrum, and then a�er the calculations remove the ω dependence.
NB: To be added, material not lectured: centre-of-mass transformation.





. Molecular systems and Gaussian basis sets

.. �e Born–Oppenheimer molecular Hamiltonian
Classically, a molecule is a collection of nuclei with masses Mα , charges eZα , and positions R⃗α , α =
, ,⋯,Nat, and a collection of N electrons with charge −e and positions r⃗ i , i = , ,⋯,N . Quantum me-
chanically, both the nuclei and the electrons obtain spin, and a wavefunction depending on all the N +Nat
space-spin coordinates. In all but the simplest cases, this is an intractable problem.
�e way out is the Born–Oppenheimer (BO) approximation: Roughly speaking, the nuclei are so heavy

compared to the electrons that their movement occurs on a time-scale much larger than the motion of
the electrons. In the BO approximation we therefore treat the nuclei as classical particles, setting up an
external classical electrostatic potential v(r⃗) felt by an electron,

v(r⃗) =
Nat

∑
α=

−eZα
∣r⃗ − R⃗α ∣

. (.)

�e molecular Hamiltonian is therefore an N-electron Hamiltonian with a parametric dependence on the
nuclear geometry,

Ĥ = Ĥ(R⃗ , R⃗ ,⋯, R⃗Nat). (.)

�e total BO Hamiltonian becomes

Ĥ = Ĥe-e + Ĥn-e + Ĥn-n (.)

where
Ĥe-e = T̂ + Ŵ (.)

describes the kinetic energy and Coulomb repulsion among the electrons. Furthermore,

Ĥn-e = V̂ =
N

∑
i=
v(r⃗ i) =∑

iα

−eZα
∣r⃗ i − R⃗α ∣

(.)

is the interactions between the electrons and the nuclei. Finally,

Ĥn-n =



Nat

∑
α≠β=

eZαZβ
∣R⃗α − R⃗β ∣

(.)

is a constant term depending on the nuclear geometry. Let us recall the expressions for T̂ and Ŵ ,

T̂ =
N

∑
i=

(− ħ

m
∇
i ) (.)

Ŵ = 


N

∑
i≠ j=

e

∣r⃗ i − r⃗ j ∣
. (.)

�e eigenvalues Ek and eigenfunctions ∣Ψk⟩ of Ĥ obtain a parametric dependence on the nuclear
geometry. Of particular usefulness in chemistry is the potential energy surface: the ground-state energy
E(R⃗ ,⋯, R⃗Nat) as a function of the nuclear coordinates.
�e equilibrium geometry is the con�guration of the nuclei thatminimizes E. �is usually corresponds

to the con�guration observed in nature.
We will not have more to say on the topic. �e interested student should consult for example the book

by Szabo and Ostlund [] – a great read. �e book [] is the de�nite guide to modern electronic-structure
theory.

�e BO approximation has some subtleties, but these are beyond the scope of this course.
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Figure .: Schematic illustration of a potential energy surface.

.. Hartree–Fock and Post-Hartree–Fock methods
It is a fact that Hartree–Fock in most cases works really well for molecular systems. Most of the contribu-
tions to the eigenenergies are captured by this approximation. �erefore, it is almost universally accepted
in the quantum chemistry community to �rst do a HF calculation (RHF or UHF, but rarely general HF).
One then introduces amore advanced description using theHForbitals thus obtained. �is places (Møller–
Plesset) perturbation theory, CI and CC methods in the category post-Hartree–Fock methods.
Since HF is a mean-�eld model where the wavefunction is on Slater determinant form, it is referred to

as “uncorrelated”. One de�nes the correlation energy as the di�erence

∆E = E − EHF . (.)

�e correlation energy ∆E is usually, but not always small.
�e usual strategy is as follows:

. Choose a set of atomic orbitals χp(r⃗). �ese may or may not be orhonormalized. Usually, they are
not, for practical reasons.

. Evaluate matrix elements of the one-body Hamiltonian Ĥ = T̂ + V̂ and the two-body Hamiltonian
Ŵ , i.e., obtain (χp ∣ĥ∣χq) and (χp χq ∣ŵ∣χr χs). �is is usually done by library functions that are highly
complicated in their own.

. Perform either a RHF or a UHF (but rarely a general HF) calculation to obtain molecular orbitals
φp . �us, molecular orbitals (MOs) are usually a synonym for HF orbitals. See the section on RHF
in a given basis. �e MOs are thus given as linear combinations of AOs,

φp =∑
q
χqUqp , (.)

and thematrix elements (φpφq ∣ŵ∣φrφs) are thus given as linear combinations of thematrix elements
(χp χq ∣ŵ∣χr χs).

. Use the molecular orbitals φp in a many-body treatment such as MPPT, CI, or coupled-cluster the-
ory.





.. From hydrogenic to Gaussian orbotals
How do we choose a single-particle basis (atomic orbitals) for the BO Hamiltonian? Clearly, the basis
must depend on the nuclear arrangement: we would like our results to be independent of translations of
the whole molecule, as this is a fundamental symmetry in the problem. �e intuition behind the BO ap-
proximation also indicates that that each individual atom in themolecule roughly retains its indpeendence
as an entity in itself: the electron cloud of a molecule is a perturbation of the electron cloud obtained by
treating each atom by itself, eliminating inter-atom intreractions.
We therefore consider �rst an individual atom for guidance, located for convenience at R⃗ = , with

nuclear charge eZ. We assume that the atom has N electrons, and we �rst consider the non-interacting
problem. We thus need to solve for the eigenvalues and eigenstates of a hydrogen-like atom with a single
electron. �e Hamiltonian reads

ĥ = − ħ

m
∇ − Ze

r
. (.)

�e diagonalization of this problem is textbook material, see for instance [] or []. On �nds a sequence
of eigenvalues

en = −
m
ħ

(Ze)

n
, n = , ,⋯, (.)

degenerate in the angular momentum quantum numbers l ≤ n and lz , ∣lz ∣ ≤ l . �e eigenfunctions are
given by

ψnl lz(r⃗) = Rnl(r)Yl lz(θ , ϕ), Rnl(r) =

¿
ÁÁÀ( 

na
)
 (n − l − )!
n(n + l)!

e−ρ/ρ lL l+n−l−(ρ) (.)

with

ρ = Ze

n
m
ħ
r, a =

ħ

mZe
(.)

Intuitively, the functions ψnl lz should be a good single-particle basis for the interacting N-electron
atom, obtained by throwing N −  more electrons into this atom and turning on interactions. However,
this basis set has major de�cienies:

• �ey are incomplete (and thus not an actual L(X)-basis!), as the hydrogen atom also has a contin-
uous spectrum for energies e > . �us, we cannot expect convergence to the exact ground-state
energy of the N-electron atom as we include more and more ψnl lz .

• Computing the matrix elements of Ŵ becomes complicated.

• �e functions become very di�use with higher n, allowing few details to be resolved around the
nucleus for moderate basis sizes.

On the other hand, the basis set displays other very useful features in its asymptocic behavior:

• A nuclear cusp at the origin, stemming from the singular nature of the Coulomb potential. �is cusp
is always present in an atom, and gives a large contribution to the total electronic energy.

• Exponential fall-o� of the radial part. �is is responsible for physics of the N-electron atoms and
molecules, such as an R−-dependence of the inter-atomic forces in a molecule, where R is the dis-
tance between two atoms.

A partial remedy to the problems is the use of Laguerre radial functions, see []. �ese have nuclear
cusps and exponential fall-o�, while forming a complete set. �ese functions do not solve the problems of
the complicated Ŵ matrix elements, however. We will not study these functions in detail here.





.. Gaussian basis sets
Selecting a single-particle basis for molecular systems is an art, due to the conicing constraints of e�-
ciency, compactness and accuracy. Moreover, di�erent manybody methods put di�erent requirements on
the basis set. �ere are probably hundreds of di�erent basis sets, with acronyms like “STO-kG”, “cc-PVXZ”,
etc. �ey are all tailored to have speci�c behaviour, and to be useful under di�erent conditions. �ey all
have one thing in common, however: they are linear combinations of Gaussians.
�us, the almost universally used approach in quantum chemistry today is a pragmatic one: One uses

Gaussian functions to approximate single-particle basis functions. A Gaussian is a function on the form

g i jk(r⃗; ζ) = N x ix jxk e−ζr

, (.)

where the exponent ζ >  is a parameter, andwhereN is a normalization constant. �ese are closely related
to the harmonic oscillator eigenfunctions. In fact, the HO eigenfunctions are �nite linear combinations of
such g i jk , since Hn(x) is a polynomial. Conversely, the Gaussians can be expanded in a �nite number of
HO functions.
�eGaussian g i jk(⋅; ζ) is referred to as a cartesianGaussian since it is a tensor product of one-dimensional

Gaussians g i(x; ζ) = N x i e−ζx

.

A more compact description is obtained using spherical Gaussians on the form

gsphnl lz(r⃗; ζ) = N r
l e−ζr


Yl lz(θ , ϕ). (.)

�ese give a more compact description since they are eigenfunctions of L̂ and L̂z , unlike the cartesian
counterparts. But they are equivalent: the cartesian and spherical Gaussians can be expanded in terms of
each other, using �nite number of coe�cients.
A general basis of atomic orbitals is then on the form:

χp =∑
µ
Dpµ gµ(r⃗ − R⃗p ; ζpµ), (.)

gµ is either the spherical or cartesian Gaussian functions, and where where µ = (i jk) or µ = (nl lz).
Each χp needs to be located on some atom R⃗α . �e vector R⃗p therefore shi�s the Gaussian accordingly.
�e exponents depend on both p and µ, giving maximum exibility in the description. �e matrix D is
typically sparse.

.. Gaussians are useful because they give fast integration
�e reason why Gaussians are almost universally accepted is the fact that we can integrate the Coulomb
interaction matrix and the nuclear attraction matrix elements e�ciently. A large part of the reason is that
the product of two Gaussians is easily expressible in terms of other Gaussians – even if they are located
at di�erent atoms. Moreover, the actual integration over r⃗ and r⃗ in (χµ χν ∣ŵ∣χµ′ χν′) can be carried out
semi-analytically in a highly e�cient manner. We will not go into details, see [] for a detailed account of
molecular integrals.





Chapter 

Coupled-cluster theory (CC)

Recommended reading: Crawford and Schaefer [] is a very nice and pedagogical text. Shavitt andBartlett
[] is also recommended. We mostly follow Crawford and Schaefer here.

. Motivation and introduction: Cluster functions and the exponen-
tial ansatz

Consider a Slater determinant ansatz to the N-fermion wavefunction,

∣Φ⟩ = ∣ϕϕ⋯ϕN⟩ , (.)

where we for simplicity �ll the N �rst single-particle functions. �e fermions in this wavefunction are
uncorrelated, except for the Pauli principle. It is the simplest manybody ansatz we can make.
Assume that ∣Φ⟩ is a reasonable ansatz for the exact wavefunction ∣Ψ⟩, i.e., that at least ⟨Φ∣Ψ⟩ ≠ . By

scaling ∣Ψ⟩ by a number, we can write
∣Ψ⟩ = ∣Φ⟩ + ∣∆Ψ⟩ , (.)

How can we improve on ∣Φ⟩ in a systematical manner towards ∣Ψ⟩? �e Slater determinant is an antisym-
metrized tensor product,

Φ(, ,⋯,N) =
√
N!Aϕ()ϕ()⋯ϕN(N). (.)

Intuitively, if we add to the product ϕ()ϕ() a general function g(, ), we would obtain a wave-
function where “ of the fermions are correlated”, i.e., described with a general wavefunction, while the
rest are still independent,

Ψbetter(, ,⋯,N) =
√
N!A[ϕ()ϕ() + g(, )]ϕ()⋯ϕN(N)

≡ Φ(, ,⋯,N) + ⟨⋯N ∣gϕ⋯ϕN⟩
(.)

�e antisymmetrization operatorA ensures that the �nal wavefunction is fully antisymmetrized. �e latter
equation de�nes ∣gϕ⋯ϕN⟩ via the antisymmetrization operation on a product. �us, in ket notation,

∣Ψbetter⟩ = ∣Φ⟩ + ∣gϕ⋯ϕN⟩ . (.)

�e function g(x , y) is called a cluster function, since when applied to ∣Φ⟩ in the above manner it
describes the wavefunction of a system where all fermions are independent/uncorrelated (think far away





from each other), except for a sincle cluster of particles consisting of  fermions that are described in a
general manner (close to each other).
Suppose we instead introduce a correction on the occupied SPFs ϕ i and ϕ j , i < j.

Ψ′
better(, ,⋯,N) =

√
N!A[ϕ i(i)ϕ j( j) + g i j(i , j)]ϕ()⋯ϕ i (i)⋯ϕ j ( j)⋯ϕN(N)

= Φ(, ,⋯,N) + (−)i− j+ ⟨⋯N ∣g i jϕ⋯ϕ i⋯ϕ j⋯ϕN⟩
(.)

Here, we used antisymmetry of Slater determinants to �nd an expression for the correlated part, since i < j
are not necessarily next to each other. (However, note that ∣ϕ⋯g i , i+⋯ϕN⟩ is well-de�ned.)
An even better approach would be to introduce cluster functions g i j for all pairs of occupied SPFs, and

in all possible ways correlate pairs of SPFs. For example, for N =  for simplicity,

∣ΨCCD⟩ = ∣ϕϕϕϕ⟩ + ∣gϕϕ⟩ + ∣ϕgϕ⟩ + ∣ϕϕg⟩ − ∣ϕϕg⟩ − ∣gϕϕ⟩ + ∣gϕϕ⟩
+ ∣gg⟩ − ∣gg⟩ + ∣gg⟩

(.)

�is is the coupled-cluster doubles (CCD) wavefunction, for N = . �e terms with two cluster functions
are de�ned in a similar way as the terms with only one cluster function.
�e function g i j(x , y) of two one-particle coordinates, x , y ∈ X, can be expanded in the SPFs,

g i j(x , y) = ∑
p<q

tpqi j ϕp(x)ϕq(y). (.)

We sum only over p < q, because we will see that in the end the other coe�cients are not independent, by
antisymmetry properties of the wavefunction. Inserting this expansion leads to, for i j = ,

⟨⋯N ∣gϕ⋯ϕN⟩ = ∑
p<q

tpq
√
N!Aϕp()ϕq()ϕ()⋯ϕN(N). (.)

We now observe that the right-hand side is a linear combination of Slater determinants,

∣gϕ⋯ϕN⟩ = ∑
p<q

tpq ∣ϕpϕqϕ⋯ϕN⟩

= ∑
a<b

tab c
†
acc

†
bc ∣Φ⟩

(.)

In the last equality, we used the fact that only if pq = ab (virtual SPFs) can we get contributions, due to
antisymmetry of Slater determinants. We now note, that including a > b in the summation does not lead
to independent terms, justifying the restriction a < b in the summation.
Similarly, for the correction term in ∣Ψ′

better⟩,

(−)i− j+ ∣g i jϕ⋯ϕ i⋯ϕ j⋯ϕN⟩ = ∑
p<q

tpqi j (−)
i− j+ ∣ϕpϕqϕ⋯ϕ i⋯ϕ j⋯ϕN⟩

= ∑
p<q

tpqi j ∣ϕ⋯ϕp⋯ϕq⋯ϕN⟩

= ∑
a<b

tabi j c
†
ac i c

†
bc j ∣Φ⟩ .

(.)

We see that it is useful to de�ne cluster operators,

t̂ i j ≡ ∑
a<b

tabi j c
†
ac i c

†
bc j , (.)

�e N fermions in the system are identical. Hence, it is not meaningful to say “one fermion is here”, or “n fermions are there”,
since, in a sense, all N fermions are involved in such statements. Instead, one speaks of clusters of n fermions. �is term is then subtly
di�erent from a subset of the fermions.





and we observe that
∣Ψbetter⟩ = ∣Φ⟩ + t̂ ∣Φ⟩ , (.)

and similarly,
∣Ψ′

better⟩ = ∣Φ⟩ + t̂ i j ∣Φ⟩ . (.)

We now notice something curious and important: all operators t̂ i j commute among themselves. Why?
�ey are linear combinations of products of excitation operators c†ac i , and these commute:

[c†ac i , c†a′ c i′] = , (.)

since the creation operators always refer to virtual SPFs and the annihilation operators to occupied SPFs.

Exercise .. Prove Eq. (.). △

Using this fact, we can then write

∣ΨCCD⟩ = ∣Φ⟩ +∑
i< j
t̂ i j ∣Φ⟩ + 

∑i< j
t̂ i j ∑

i′< j′
t̂ i′ j′ ∣Φ⟩ . (.)

�e reader should check that this �nal equation actually reproduces Eq. (.). �e factor / in the last
term stems from double-counting of the cluster operators.

Exercise .. Prove that Eq. (.) becomes Eq. (.) when using the de�nition of t̂ i j . △

We simplify further. If we de�ne the doubles cluster operator

T̂ =∑
i< j
t̂ i j =


∑i j
∑
ab
tabi j c

†
ac i c

†
bc j , (.)

introducing antisymmetry of the amplitudes tabi j , we have

∣ΨCCD⟩ = ( + T̂ +


T̂
 ) ∣Φ⟩ . (.)

We now observe that in the function T̂
 ∣Φ⟩, no SPFs with indieces i ≤ N are le�, since N =. �us,

T̂
 ∣Φ⟩ = , and we have in fact

∣ΨCCD⟩ = e T̂ ∣Φ⟩ . (.)

�e choice N =  is not special: for any N , the wavefunction ∣ΨCCD⟩ = e T̂ ∣Φ⟩ is identical to the
wavefunction where we replace pairs of occupied SPFs by with pair cluster functions g i j in all possible
ways in the reference Slater determinant ∣Φ⟩.
Furthermore, there is nothing special about pair clusters. We may introduce a singles cluster operator

T̂ =∑
i
t̂ i =∑

i a
tai c

†
ac i , (.)

corresponding to adding to the various ϕ i the SPF g i = ∑a tai ϕa . We may also introduce a triples cluster
operator

T̂ = ∑
i< j<k

t̂ i jk =

! ∑i jk

∑
abc

tabci jk c
†
ac i c

†
bc jc

†
c ck , (.)





correlating a cluster of three particles, by adding to ϕ iϕ jϕk a function g i jk(x , y, z).
We de�ne a general cluster operator

T̂ = T̂ + T̂ + T̂ +⋯ + T̂N . (.)

�e expansion stops at T̂N because it is impossible to do further corrections!
�e wavefunction

∣Ψ⟩ = e T̂ ∣Φ⟩ (.)

is the most general wavefunction obtained from ∣Φ⟩ by correlating all  particle clusters,  particle clusters,
etc, in all possible ways. �e exponential ansatz is thus called the cluster expansion.
In fact, as we will show, any wavefunction ∣Ψ⟩ with ⟨Φ∣Ψ⟩ =  can be written as

∣Ψ⟩ = e T̂ ∣Φ⟩ . (.)

�us, the cluster expansion represents a systematic way to improve upon the reference wavefunction ∣Φ⟩. �e
parameters of this expansion are the cluster amplitudes tai , t

ab
i j , etc, and they occur in a nonlinear fashion.

What is so good about this particular systematic expansion of ∣Ψ⟩? �e answer is size-consistency.
We will have more to say about this later. However, here is a handwaving argument: Consider the CCD
wavefunction for N = , as above. Suppose that ϕ and ϕ have very small overlap with ϕ and ϕ. Since
∣Φ⟩ is supposed to be a reasonable guess for ∣Ψ⟩, this means that the fermions form -fermion clusters
that are “far apart”. It is therefore reasonable that g and g are the only contributing cluster functions to
∣ΨCCD⟩: all the other g i j couple clusters that are very far apart and are approximately zero. We obtain

∣ΨCCD⟩ ≈ ∣ϕϕϕϕ⟩ + ∣gϕϕ⟩ + ∣ϕϕg⟩ + ∣gg⟩ . (.)

�e last term comes from 
 T̂


 – a quadruples cluster operator. Compare this with the CI doubles wave-

function, which can be written

∣ΨCCD⟩ ≈ ∣ϕϕϕϕ⟩ + ∣gϕϕ⟩ + ∣ϕϕg⟩ . (.)

�e CID function contains all doubles excitations, but nothing more, while the CCD function adds those
quaddruples excitations that are doubles excitations on each cluster independently. It turns out that this
gives the exponential parameterization a great advantage.





Chapter 

Feynman diagrams for
Rayleigh–Schrödinger perturbation
theory

Recommended reading: Paldus and Čı́žek[]. Shavitt and Bartlett [].
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Mathematical supplement





A. Calculus of variations

A.. Functionals
In the calculus of variations, we compute the extrema of a possibly nonlinear function of a function. Such
objects are o�en called functionals. �us, a functional F[u] takes some function u and produces a number.
One can think of F depending on in�nitude of function values u(x). In the case of the energy expectation
value, the N-body wavefunction ∣Ψ⟩ is mapped to the number

E[∣Ψ⟩] = ⟨Ψ∣Ĥ∣Ψ⟩ / ⟨Ψ∣Ψ⟩ .

Suppose we expand the wavefunction in a basis, say, a Slater determinant basis,

∣Ψ⟩ =∑
I
AI ∣ΦI⟩ .

�en, E becomes a function of the vector A⃗, a possibly in�nite set of coe�cients. �is may be an easier
way to think of a functional: a function that depends on K variables, where K may be in�nite.
A functional can also depend on more than one function. In Hartree–Fock theory, the energy func-

tional depends on N single-particle functions ϕ i , i = ,⋯,N . Moreover, the Hartree–Fock Lagrangian
function that we actually optimize is a functional that also depends on amatrix λ = [λ i j] of Lagrange mul-
tipliers,L = L[ϕ ,⋯, ϕN , λ]. Given expansions of the ϕ i as ϕ i(x) = ∑p χp(x)U i p , we see thatL becomes a
function of the matrixU and the matrix λ. �us, functionals are not too di�erent from ordinary functions
of a vectors.
How do we go about computing the extrema of a functional? A function of a single real variable has

an intuitive notion of a local extremum, and most readers probably have an intuitive notion of extrema
of two-variable functions as well. But if we go to higher dimensions (or in�nite dimensions!) it becomes
more complicated.
We will therefore introduce the concept of a directional derivative in a rather informal way. �is is

very handy, and allows us to read o� the condition for an extremum in a straight-forward manner. �is
framework is called the calculus of variations, since we are computing the “variation in F[u]” with respect
to arbitrary “variations δu of the function u”.

A.. Functions of one real variable
Consider �rst a simple function F ∶ I → R, I ⊂ R being an interval. Suppose x ∈ I. Assuming that F can
be di�erentiated at leat twice, we can compute a second-order Taylor expansion around x, viz,

F(x + є) ≈ F(x) + єF′(x) +


єF′′(x). (A.)

�e error in this approximation vanishes as є → .
�e condition for an extremum at x is F′(x) = . �e second-order term tells us the nature of the

extremum: if F′′(x) >  then x is a local minimum. If F′′(x) <  then x is a local maximum. Finally,
if F′′(x) = , we cannot determine right away if we have a maximum or minimum. Wemay have neither,
as for F(x) = x, where x =  is a saddle point. A minimum and a saddle point is illustrated in Fig. A..

A.. Functions of two real variables
Consider yourself in a landscape of mountains and valleys. �e elevation is F(x , y). You are trying to
�nd, say, a local minimum (x , y) of elevation. On a map, a local minimum will show up as successively
smaller closed curves of equal elevation, see Fig. A.. (�e same is true for a maximum, and a saddle point
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Figure A.: Simple functions of one real variables with a local minimum (F′′(x) > ) (le�) and a saddle
point (F′′(x) = ) (right)..

is a crossing of lines of equal elevation.) We now observe, that if you move in a direction η = (δx , δy) ≠ 
from the local minium, you will always walk uphill, that is, the function

f (є) = F(x + єδx , y + єδy)

has a local minimum at є = , irrespective of η. If you were standing on a mountaintop (a local maximum)
you would always walk downhill, and f (є) would always have a local maximum at є = .
Finally, if you are standing between twomountaintops to the east andwest, and looking down at valleys

to the south and north, you are standing on a saddle point. You are walking downhill if you go north or
south, but uphill if you go east or west: f (є) has a local minimum for some η, and a maximum for other η.
We see that, at least intuitively, we can determine wheter F has a local extremum at (x , y) by studying

the behaviour of f (є), for all possible choices of η. We now prove this claim:
Let us compute the Taylor expansion of f (є):

f (є) ≈ f () + є f ′() + 
є

 f ′′()

= F(x , y) + є∇F(x , y)T (δxδy) +


є(δx δy)H(x , y)(

δx
δy) .

(A.)

We used the chain rule, and introduced the gradient and the Hessian matrix H, given by

∇F(x , y) =
⎛
⎝

∂F(x ,y)
∂x

∂F(x ,y)
∂y

⎞
⎠

(A.)

and

H(x , y) =
⎛
⎜
⎝

∂F(x ,y)
∂x

∂F(x ,y)
∂x∂y

∂F(x ,y)
∂y∂x

∂F(x ,y)
∂y

⎞
⎟
⎠
. (A.)

Now, F has an extremum at (x , y) if and only if ∇F(x , y) = , while f (є) has an extremum at є = 
if and only if the second term in Eq. (A.) vanishes. But if ∇F(x , y)Tη =  for all η ≠ , then clearly
∇F(x , y) =  and vice versa. QED.
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Figure A.: �e condition for a local minimum (x , y) for a function F(x , y): in all directions η ≠  you
walk uphill from (x , y).

We introduce the directional derivative of F at (x , y) in the direction η = (δx , δy),

F′(x , y; η) ≡
d
dє
F(x + єδx + y + єδy)∣

є=
(A.)

which is precisely the second term in Eq. (A.),

f (є) ≈ F(x , y) + єF′(x , y; η) +


єηTH(x , y)η. (A.)

�us, the extremum condition is equivalent to F′(x , y; η) =  for all η ≠ .
What about the nature of the extremum? If

ηTH(x , y)η >  (A.)

for all possible directions η, we have a local minimum. �is is precisely the condition that H(x , y) is
a positive de�nite matrix. Since H(x , y) is a symmetric matrix, this is equivalent to all the eigenvalues
being positive. �us, f (є)must have a local minimum at є =  for every η ≠ .
Similarly, if H(x , y) is negative de�nite,

ηTH(x , y)η < , ∀η (A.)

then we have a local maximum. However, � H(x , y) is neither positive nor negative de�nite, we cannot
say whether we have a maximum or minimum. We may in fact have a saddle point, as in the case of
standing between mountains and valleys.

A.. Extremalization of a functional
�e concept of the directional derivative is of course valid for more than two dimensions. For a function
F ∶ Rn → R, the localization of an extremum can be formulated as: �nd x ∈ Rn such that the directional
derivative vanishes for every nonzero η ∈ Rn :

F′(x; η) =
d
dє
F(x + єη)∣

є=
= , ∀η ∈ Rn , η ≠ . (A.)





�is condition is equivalent to ∇F(x)T = .
Turning to a functional F[u] for some function u, or set of functions, the directional derivative in the

direction of the function η is in principle straightforward:

F′[u; η] = d
dє
F[u + єη]∣

є=
. (A.)

Computing F[u + єη] as a series in є is usually straightforward, allowing an expression for F′[u; η] to be
read o�. Typically, this leads to a di�erential equation: the variational principle gave us the Schrödinger
equation, while extremalization of the Hartree–Fock energy gave us the Hartree–Fock equations.
�e term “calculus of variations” is historical, and comes from the idea that we are “computing in�nites-

imal variations δF[u] in the functional under in�nitesimal variations δu of the function” in all possible
ways, i.e., a di�erent way of saying that we are computing directional derivatives.
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