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UNIVERSITY OF OSLO
FACULTY OF MATHEMATICS AND NATURAL SCIENCES

Exam in FYS3150 Computational Physics, Fall 2011
Day of exam: Tuesday December 13, 9am
Exam hours: Four (4) hours
This examination paper consists of five (5) pages.

Allowed material: Rottmann: Matematische Formelsamlung (In Norwe-
gian, English or German)
Two A4 sheets with own notes (totaling 4 pages).
Approved numerical calculator.

Make sure that your copy of this examination paper is complete before answer-
ing. Check the number of pages. You can answer in English or Norwegian.
The final written exam counts 50% of the final mark. The remaining 50% is
accounted for by project 5.

Exercise 1, Ordinary differential equations

We have the second-order differential equation for a so-called RLC electric circuit

L
d2Q

dt2
+
Q

C
+R

dQ

dt
= A cos (t),

where t stands for time. The other quantities are the charge Q, the resistance R, the
current I , the inductance L, the capacitance C and the applied voltage V (t) = A cos (t),
with A the amplitude of the applied voltage.

a) Rewrite the above second-order differential equation as two coupled first-order dif-
ferential equations (hint: you will need one equation for the derivative of the charge
dQ/dt = I and one for the current I , namely dI/dt = d2Q/dt2).

b) Derive the equations for Euler’s algorithm with an estimate for the error in ∆t for
the two coupled differential equations. Set up the essential steps in the algorithm
for solving the equation. The algorithm for solving the equations can be written
out as pseudocode or as a program.

c) Repeat the steps from the previous exercise but derive now the equations for the
second-order and the fourth-order Runge-Kutta methods. Find also the error ∆t.
Write down the final algorithm either as pseudocode or as a program.
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Exercise 2, Numerical integration

We have the three-dimensional integral

I =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dxdydz
exp (−r)

r
,

with r =
√
x2 + y2 + z2. The integral is easy to solve and the result is, using spherical

coordinates,

I =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dxdydz
exp (−r)

r
= 4π

∫ ∞
0

exp (−r)rdr = 4π.

There is no depedence on the angles θ, φ in the integrand.

a) Derive the equations for the Trapezoidal rule (with an error estimate) and set up
an algorithm for integrating the above integral, either in cartesian or spherical co-
ordinates. Explain the basic philosophy behind methods based on Newton-Cotes
quadrature.

b) We switch now to integration by Gaussian quadrature. Explain the basic philosophy
behind the determination of integration points xi and derive the equation for finding
the integration weights wi.

c) We choose now to perform the integration using Gaussian quadrature and Leg-
endre polynomials. These are orthonormal polynomials defined in the interval
x ∈ [−1, 1]. However, for a general interval t ∈ [a, b] we can always use the
mapping

t =
b− a

2
x+

b+ a

2
.

If we have an integral on the form ∫ ∞
0

f(t)dt,

we can choose new integration points using the mapping

ti = tan

{
π

4
(1 + xi)

}
,

and integration weights

ξi =
π

4

ωi
cos2

(
π
4 (1 + xi)

) ,
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Table 1: integration points and weights for the interval x ∈ [−1, 1] with N = 2 using
Legendre polynomials.

i xi ωi
1 −1/

√
3 1

2 1/
√

3 1

where xi and ωi are the original integration points and weights in the interval
[−1, 1], while ti and ξi are the new integration points and weights for the inter-
val [0,∞), respectively. The polynomials obey the orthogonality relation∫ 1

−1
Li(x)Lj(x)dx =

2

2i+ 1
δij .

The first three Legendre polynomials are

L0(x) = 1,

L1(x) = x,

and
L2(x) = (3x2 − 1)/2.

Set up the algorithm for computing the above integral, using either cartesian or
spherical coordinates. Explain your choices of integration domains. Assume that
the function which sets up the integration points and weights is known (you don’t
need to write the algorithm for that). Calculate thereafter the integral using two
integration points only, using the integration points and weights set up for x ∈
[−1, 1] in Table 1.

d) The integrand in

I = 4π

∫ ∞
0

exp (−r)rdr,

is well suited for using Laguerre polynomials. In that case, we identify a weight
function W = exp (−r)r. Set up the algorithm for computing the integral using
Laguerre polynomials (again either in pseudocode form or as a program) and find
the value of the integral using N = 2 integration points and the values for the
integration points and weights listed in Table 2. Again, assume that the function
which sets up the integration points and weights is known (you don’t need to write
the algorithm for that).
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Table 2: integration points and weights for the interval x ∈ [0,∞) withN = 2 only using
Laguerre polynomials with a weight function exp (−r)r.

i xi ωi
1 1.26795 0.788675
2 4.73205 0.211325

e) Explain then the philosophy behind Monte Carlo integration and set up an algo-
rithm for brute force calculation of

I =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dxdydz
exp (−r)

r
.

using the uniform distribution. Discuss thereafter how you could rewrite the above
integral using spherical coordinates and importance sampling (hint: you need to
map your random variables generated with the uniform distribution to the exponen-
tial distribution). Set up the final algorithm for performing importance sampling.

f) Discuss finally also which method you would prefer for calculating this particular
integral, that is, discuss the pros and cons of the methods discussed in exercises a),
c), d) and e).

Exercise 3, Eigenvalue Problems

a) We have the eigenvalue problem

Ax = λx,

where we assume that the matrix A is non-singular and A ∈ Rn×n. The matrix is
symmetric and real. The vector x ∈ Rn and the eigenvalues λ are unknown.

To obtain the eigenvalues of A ∈ Rn×n, the strategy is to perform a series of so-
called similarity transformations on the original matrix A, in order to reduce the
matrix to a diagonal form. Show that such similarity transformations do not change
the eigenvalues λ.

b) We have the following two-point boundary value differential equation

d2y

dx2
+ v(x)y(x)− εy(x) = 0, x ∈ (0, 1), y(0) = y(1) = 0.
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The function v(x) and the constant ε are real. The function v(x) is known while ε
is unknown. Show that (when discretizing y and x) this equation can be rewritten
as an eigenvalue problem

Ay = λy,

where now y is a discretized version of the unknown y(x). Find the matrix A.
How does this matrix change if we modify the differential equation to

d2y

dx2
+ α

dy

dx
+ v(x)y(x)− εy(x) = 0, x ∈ (0, 1), y(0) = y(1) = 0,

where α is a constant.

c) Set up an algorithm for solving

d2y

dx2
+ v(x)y(x)− εy(x) = 0, x ∈ (0, 1), y(0) = y(1) = 0,

using Jacobi’s method. Explain the basic steps in the algorithm and how you would
choose the similarity transformations. Write up a final algorithm (only for finding
the eigenvalues and without the computation of the eigenvenctors) either as a pseu-
docode or as a program.

Discuss at least one point in favour and one against using the Jacobi algorithm.


