Format for delivery of report and programs

The format of the project is that of a printed file or hand-written report. The programs should also be
included with the report. Write only your candidate number on the first page of the report and state
clearly that this is your report for project 5 of FYS3150/FYS4150, fall 2013. There will be a box marked
"FYS3150/FYS4150’ at the reception of the Department of Physics (room FV128).

Project 5, N-body simulation of an open galactic cluster, deadline
Monday December 9, 12pm (noon)

The goal in this project is to develop a code that can perform simulations of an open cluster using Newtonian
gravity. First, however we will compare the stability of two different methods. This is because when we
are looking at a system with a large number of particles, we are more interested in the statistical properties
of the system than in the individual motion of each of the particles. This means that the stability of the
solution method is more important than its short term accuracy. This project is inspired by the preprint by
Joyce et al., see Ref. [1] below. When solving this project, we recommend downloading this article. It is a
good companion to understand the physics discussed here.

In the first part of this project we will explore the stability of two well-tested numerical methods for
solving differential equations. Here you can use the algorithms and program you developed for the solar
system in project 3. The algorithms to test and implement are the fourth-order Runge-Kutta method and
the so-called Leap-Frog method. The latter is derived here.

Consider a second-order differential equation like Newton’s second law, whose one-dimensional ver-
sion reads

d*x
mﬁ = F(J?, t),
which we rewrite in terms of two coupled differential equations
d d
d—f =v(x,t) and d—;} = F(z,t)/m = a(x,t).

If we now perform a Taylor expansion
h2
z(t+h) = z(t) + haM (1) + 7x<2> (t) + O(h%).

In our case the second derivative is know via Newton’s second law, namely z(?)(t) = a(x,t). If we add
to the above equation the corresponding Taylor expansion for (¢ — h), we obtain, using the discretized
expressions

x(t;i £ h) = zixq and x; = x(t;),

Tip1 = Z.I‘i —ZTi—1+ th',E?) + O(h4)

We note that the truncation error goes like O(h*) since all the odd terms cancel when we add the two
Taylor expansions. We see also that the velocity is not directly included in the equation since the function
z®? = a(x,t) is supposed to be known. If we need the velocity however, we can compute it using the
well-known formula
(_1) _ Ti4+1 — Ti—1 O(h2

We note that the velocity has a truncation error which goes like O(h?). In for example so-called Molecular
dynamics calculations, since the acceleration is normally known via Newton’s second law, there is seldomly
a need for computing the velocity. The above sets of equations for the position z(¢) and the velocity defines
the Verlet formula. The Leapfrog algorithm is also easily derived.

We can rewrite the above Taylor expansion for z(t + h) as (skipping higher terms in h)

z(t+h) =z(t) +h <x<1>(t) + ;Lx@)(t)) :



Noting that
h
2 (t+h/2) = (x(”@) + 2””(2)(t)> ’

we obtain
z(t 4 h) = z(t) + haW(t + h/2),

which needs to be combined with
et +h/2) = 2V (t — h/2) + ha@(t).

Again, there is a lower truncation error in h for the velocity. Furthermore, the positions and the velocities
are evaluated at different time steps. If one needs () (¢), this can be computed using

2O (1) = (x(l)(t T h/2) 4 gx@)(t)) .

The initial conditions can be handled in similar ways and the inaccuracy which arises between z(*)(0) and
(M (h/2) is normally ignored. Summarizing, the popular Leapfrog algorithm implies the evaluation of
position and velocity at different time steps. The final algorithm is given by the following steps

st +h/2) =2 () + gx@) (t),

which is used in
z(t +h) = z(t) + haW(t + h/2),

and finally
h
eVt +n) =2Vt +n/2) + 59:(2) (t+h),

The last three steps constitute the Leap-Frog method. Convince yourself that the above steps are correct.
Can you find the approximation error, that is the factor n in O(h™)?

a) Implement the Newtonian two-body (you can choose masses and dimensionalities as you wish) prob-
lem in three dimensions using the fourth order Runge-Kutta method and the so-called Leap-Frog
method discussed in the lecture notes and restated above here.

You can build on the code you developed for project 3. Compare the stability of the two different
methods. How do they work for large time steps? How do they work for very long times? Compare
also the time used to advance one timestep for the two different methods. Comment your results.
Which algorithm would you use for simulating systems that require long times?

We will now try to build a simple model of an open cluster, see Ref. [2]. An open cluster is a group
of up to a few thousand gravitationally bound stars created from the collapse of a molecular cloud. This
collapse leads to a flurry of star formation. Open clusters are usually found in the arms of spiral galaxies,
or in irregular galaxies. Since stars in an open cluster have roughly the same age, and are made from the
same material, they are interesting in the study of stellar evolution, since many of the variable parameters
we have when comparing two stars are kept constant.

Once open clusters are formed they gradually dissipate as members get ejected from the cluster due to
random collisions, this means that open clusters generally last only a few hundred million years. In figure
1, we see the Hertzsprung-Russell diagrams for two open clusters.

We will look at a simple model for how an open cluster is made from the gravitational collapse and
interaction among a large number of stars. We want to study this collapse, and the statistical properties of
the collapsed system.

One particle in our model represents one or a few stars, and we will work with a few hundred particles.
We will simulate what is called a “cold collapse”, this means that we start the particles with little or no
initial velocity.



M 67
NGC 188

)
°
-
=
c
o
©
=
2
3
o]
w
el
<

<— Temperature

Figure 1: Hertzsprung-Russell diagrams for two open clusters, M67 and NGC 188. We see that most of the
stars are on the main sequence. In the older cluster, NGC 188, we see that the heaviest stars are just now
leaving the main sequence, while the younger cluster, M67, is following closely after.

b)

d)

Extend your code to an arbitrary number of particles, [V, starting with a uniform (random) distribu-
tion within a sphere of a given radius Ry. Start the particles at rest, with masses randomly distributed
by a Gaussian distribution around ten solar masses with a standard deviation of one solar mass. Use
solar masses and light years as units of mass and length and make your equations dimensionless.
The function GaussPDF included with this project can be used to generate random numbers which
follow a Gaussian (or normal) distribution.

How large timesteps are required given Ry = 20ly (light years), and a N = 100? Do we have
any units of time that fits this timescale? In the limit where N — oo, keeping py constant, we get
a continuous fluid. In this case the system collapses into a singularity at a finite time Terynch =

3
32Gpo

Friedman equations [3].

. (For the especially interested (Not required!): Can you derive this result? Hint: recall the

Why do we not observe this singularity in our model? Use T¢pyncn as the unit of time, and find G
in these units (G will become a function of the number of particles N, and the average mass of the
particles, 1t).

You should run these calculations with both the fourth-order Runge-Kutta algorithm and the Leap-
Frog method. Which method would you prefer? Give a critical discussion.

For the remaining exercises, you should use only one of the above methods.

Run the system for a few 7.,4ncn. Save the positions of the particles at different times to file, and
make an animation of the time evolution using your preferred software? Does the system reach an
equilibrium? How long time does this take ?

Make a function that calculates the kinetic and potential energy of each particle. Is the energy
conserved? Some of the particles are ejected from the system, how can we identify these particles
from the energies we have calculated? How much of the energy of the system is taken away by
particle ejection? How does this change with different values of N? Are there still particles being
ejected after the system reaches equilibrium?



e) We will now introduce a smoothing function to take care of the numerical instability that arises when
two of the particles come very close. There is a lot of ways to insert such a smoothing, but we will
just look at a very simple one. We will modify the Newtonian force law to make it finite at short
ranges

GM; M,

Fmod:_ 7’2+62 .

The parameter € is a small real constant that we can set to e = 0.15/y. We can justify this correction
to the pure Newtonian force by noting that our particles do not represent actual point particles but
rather mass distributions of some finite extent. Does the addition of this correction change any of the
results from part d) ?

f) Now we will look at the particles that are bound (not ejected). What is the distribution of potential
and kinetic energy?

The virial theorem says that for a bound gravitational system in equilibrium we have

where (K) is the average kinetic energy of the particles and (V) is the average potential energy.

Are your results consistent with the virial theorem?

2) This part is optional but gives you an additional 30% on the final score! Try to plot the radial density
of the particles (the particle density as a function of radius) in the equilibrium state. How would you
extract such an information from your calculations? (Hint: make a histogram for the radial particle
density) What is the average distance? What is the standard deviation? Plot the radial distribution of
particles.

Run the code for different number of initial particles, keeping the total mass constant. What is the
average distance as a function of N?

The radial distribution of particles in this kind of cold collapse can often be fit very well with the

simple expression
no

-
(1+(2))

70
Try to fit your data to this curve, what is the value ny and r9? Can you find how these values depend
on N?

How many particles can you simulate?

n(r) =

Compare your results with those found in Ref. [1].

References

[1] M. Joyce, B. Marcos, and F. Sylos Labini, Cold uniform spherical collapse revisited,
arXiv1011.0614 (2011), http://arxiv.org/abs/1011.0614.

[2] P.J. E. Peebles, The Large-Scale Structure of the Universe, Princeton University Press, 1980. See
also C. Payne-Gaposchkin, Stars and clusters, (Cambridge, Harvard University Press, 1979).

[3]1 A. Friedman, On the Curvature of Space, General Relativity and Gravitation 31, 1991 (1999).



