
Format for delivery of report and programs

The format of the project is that of a printed file or hand-written report. The programs should also be
included with the report. Writeonly your candidate number on the first page of the report and state
clearly that this is your report for project 5 of FYS3150/FYS4150, fall 2013. There will be a box marked
’FYS3150/FYS4150’ at the reception of the Department of Physics (room FV128).

Project 5, Diffusion in one and two dimensions, deadline Monday De-
cember 9, 12pm (noon)

This project consists of two parts. The first part is a continuation of project 4, but solves the diffusion
equation in one dimension using Markov processes. The second part deals with the diffusion equation in
two dimensions and the development of both an explicit and animplicit scheme for solving the equations.

We repeat here parts of the motivation for project 4. The dominant way of transporting signals between
neurons (nerve cells) in the brain is by means of diffusion ofparticular signal molecules calledneurotrans-
mittersacross the synaptic cleft separating the cell membranes of the two cells. A drawing of a synapse is
given in Fig. 1.

Figure 1:Drawing of a synapse. The axon terminal is the knoblike structure and the spine of the receiving neuron is
the bottom one. The synaptic cleft is the small space betweenthe presynaptic (axon) and postsynaptic (dendritic spine)
membrane. (From Thompson: “The Brain”, Worth Publ., 2000)

Following the arrival of an action potential in the axon terminal a process is initiated in which (i)
vesicles inside the axon terminal (filled with neurotransmitter molecules) merge with the presynaptic (axon)
membrane and (ii) release neurotransmitters into the synaptic cleft. These neurotransmitters diffuse across
the synaptic cleft to receptors on the postsynaptic side which “receives” the signal. A schematic illustration
of this process is shown in Fig. 2(left). Since the transportprocess in the synaptic cleft is governed by
diffusion, we can describe it mathematically by

∂u

∂t
= D∇2u, (1)

whereu is the concentration of the particular neurotransmitter, and D is the diffusion coefficient of the
neurotransmitter in this particular environment (solventin synaptic cleft).
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Figure 2:Left: Schematic drawing of the process of vesicle release from the axon terminal and release of transmitter
molecules into the synaptic cleft. (From Thompson: “The Brain”, Worth Publ., 2000). Right: Molecular structure of
the two important neurotransmittersglutamateandGABA.

If we assume (i) that the neurotransmitter is released roughly equally on the “presynaptic” side of the
synaptic cleft, and (ii) that the synaptic cleft is roughly equally wide across the whole synaptic terminal,
we can, given the large area of the synaptic cleft compared toits width, assume that the neurotransmitter
concentration only varies in the direction across the synaptic cleft (from presynaptic to postsynaptic side).
We choose this direction to be thex-direction (see Fig. 3). In this caseu(r) = u(x), the diffusion equation
reduces to

∂u

∂t
= D

∂2u

∂x2
. (2)

Immediately after the release of a neurotransmitter into the synaptic cleft (t = 0) the concentration profile
in thex-direction is given by

u(x, t = 0) = N δ(x), (3)

whereN is the number of particle released into the synaptic cleft per area of membrane.
To get an idea over the time-dependence of the neurotransmitter concentration at the postsynaptic side

(x = d), we can look at the solution of a “free” random walk (i.e., noobstacles or particle absorbers in
either direction). The solution of Eq. (2) with the initial condition in Eq. (3) is given by (see Nelson:
Biological Physics, p. 143 or Lectures notes chapter 12.3)

u(x, t) =
N√
4πDt

e−x2/4Dt . (4)

The concentration at the postsynaptic sideu(d, t) approaches 0 in the limitt → 0 andt → ∞.
The above assumption regarding the neurotransmitter molecules undergoing a “free” random walk, is

obviously a simplification. In the true diffusion process inthe synaptic cleft the neurotransmitter molecules

x=d

x=0

x

dendrite (postsynaptic)

axon (presynaptic)

synaptic cleft

Figure 3:Schematic drawing of the synaptic cleft in our model. The black dots represent neurotransmitter molecules,
and the situation shown corresponds to the situation immediately after neurotransmitter release into the synaptic cleft.
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will, for example, occasionally bump into the presynaptic membrane they came from. Also at the postsy-
naptic side the neurotransmitters are absorbed by receptors located on the postsynaptic cell membrane and
are thus (temporally) removed from the solution.

To approach this situation in our mathematical model we can impose the following boundary and initial
conditions withx ∈ [0, d]

u(x = 0, t > 0) = u0, u(x = d, all t) = 0, u(0 < x < d, t < 0) = 0 . (5)

Hereafter we setd = 1. This corresponds to that (i) fort < 0 there are no neurotransmitters in the synaptic
cleft, (ii) for t > 0 the concentration of neurotransmitters at the presynapticboundary of the synaptic cleft
(x = 0) is keptfixedatu = u0 = 1 in our case, and (iii) that the postsynaptic receptors immediately absorb
nearby neurotransmitters so thatu = 0 on the postsynaptic side of the cleft (x = d = 1).

We are thus looking at a one-dimensional problem

∂2u(x, t)

∂x2
=

∂u(x, t)

∂t
, t > 0, x ∈ [0, d]

or
uxx = ut,

with initial conditions, i.e., the conditions att = 0,

u(x, 0) = 0 0 < x < d

with d = 1 the length of thex-region of interest. The boundary conditions are

u(0, t) = 1 t > 0,

and
u(d, t) = 0 t > 0.

The full solution of the diffusion equation with boundary/initial conditions in Eq. (5) can be found in a
closed form. In project 4 you solved this equation using three finite difference methods and compared the
numerical solution with the closed-form solution.

You will need these results here as well. We will now solve theequations using Monte Carlo methods.

a) The above problem can be solved using Monte Carlo methods and random walks. We follow here
Farnell and Gibson in Journal of Computational Physics, volume208, pages 253-265 (2005). Choose
a constant step lengthl0 =

√
2D∆t and equal probability for jumping left and right. Set up an

algorithm for solving the above diffusion problem using a random walk model and write a code to
do it. Compare your results with those from the partial differential equation solution and comment
the results.

b) Change the above stepsize by using a Gaussian distribution with mean value0 and standard deviation
1/

√
2. The step length of the random walker is nowl0 =

√
2D∆tξ, whereξ is random number

chosen from the above Gaussian distribution. Implement this stepsize to the program from f) and
compare the results and comment. You can include the resultsfrom project 4 in your discussions
here.

c) Extend the code you have developed here to two dimensions.It means that we deal with a2 + 1
dimensional problem. Our differential equation becomes

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
=

∂u(x, y, t)

∂t
, t > 0, x, y ∈ [0, 1],

where we now have made a model with a square lattice forx andy. How would you extend the
boundary conditions from one dimension to two dimensions? And can you find a closed form so-
lution here as well? It is left to you to decide upon what kind of boundary conditions you deem
appropriate.
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The next part deals with the development of an explicit and animplicit finite difference scheme for solving
the diffusion equation in two dimensions. We will stay with the same problem as in c), that is we employ
the same boundary and initial conditions as those you definedin c).

d) In this exercise you are asked to set up an explicit scheme for solving the above equation. You
should also discuss convergence criteria and the numericalstability of the explicit scheme. Outline
the algorithm for solving the two-dimensional diffusion equation and implement the explicit scheme
as function of∆x (assuming∆x = ∆y) and∆t. Solve the equations numerically and give a critical
discussion of your results. Compare your results with the closed-form answer.

e) This part is optional and gives you an additional score of 30%. Implement the implicit scheme
discussed in chapter 10 of the lecture notes using Jacobi’s method as the iterative method. Outline
the algorithm for solving the two-dimensional diffusion equation and implement the implicit scheme
as function of∆x (assuming∆x = ∆y) and∆t. Solve the equations numerically and give a critical
discussion of your results. Compare your results with the closed-form answer and the explicit scheme
from the previous exercise. Discuss the stability of the solution as function of different values of∆x
and∆t.
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