Format for delivery of report and programs

The format of the project is that of a printed file or hand-teritreport. The programs should also be
included with the report. Writenly your candidate number on the first page of the report and state
clearly that this is your report for project 5 of FYS3150/MS0, fall 2013. There will be a box marked

'FYS3150/FYS4150’ at the reception of the Department ofditg/(room FV128).

Project 5, Diffusion in one and two dimensions, deadline Monday De-
cember 9, 12pm (noon)

This project consists of two parts. The first part is a cordtimn of project 4, but solves the diffusion
equation in one dimension using Markov processes. The dguarn deals with the diffusion equation in
two dimensions and the development of both an explicit anidg@ficit scheme for solving the equations.

We repeat here parts of the motivation for project 4. The damiway of transporting signals between
neurons (nerve cells) in the brain is by means of diffusiopasficular signal molecules callegurotrans-
mittersacross the synaptic cleft separating the cell membrand®dfvo cells. A drawing of a synapse is
givenin Fig. 1.
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Figure 1:Drawing of a synapse. The axon terminal is the knoblike stinecand the spine of the receiving neuron is
the bottom one. The synaptic cleft is the small space betteepresynaptic (axon) and postsynaptic (dendritic spine)
membrane. (From Thompson: “The Brain”, Worth Publ., 2000)

Following the arrival of an action potential in the axon témed a process is initiated in which (i)
vesicles inside the axon terminal (filled with neurotrartgenimolecules) merge with the presynaptic (axon)
membrane and (ii) release neurotransmitters into the sinepft. These neurotransmitters diffuse across
the synaptic cleft to receptors on the postsynaptic sidelwheceives” the signal. A schematic illustration
of this process is shown in Fig. 2(left). Since the transpoocess in the synaptic cleft is governed by
diffusion, we can describe it mathematically by
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wherew is the concentration of the particular neurotransmitted B is the diffusion coefficient of the

neurotransmitter in this particular environment (sohiargynaptic cleft).
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Figure 2:Left: Schematic drawing of the process of vesicle releama fihe axon terminal and release of transmitter
molecules into the synaptic cleft. (From Thompson: “TheiBraMNorth Publ., 2000). Right: Molecular structure of
the two important neurotransmittegiitamateand GABA

If we assume (i) that the neurotransmitter is released dywggually on the “presynaptic” side of the
synaptic cleft, and (ii) that the synaptic cleft is roughtyually wide across the whole synaptic terminal,
we can, given the large area of the synaptic cleft compardd teidth, assume that the neurotransmitter
concentration only varies in the direction across the sioateft (from presynaptic to postsynaptic side).
We choose this direction to be thedirection (see Fig. 3). In this cas€r) = u(x), the diffusion equation
reduces to 5 52
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Immediately after the release of a neurotransmitter indosmaptic cleft{ = 0) the concentration profile
in the z-direction is given by
u(z,t =0) = N(x), 3)

whereN is the number of particle released into the synaptic clefpea of membrane.

To get an idea over the time-dependence of the neurotraesmincentration at the postsynaptic side
(z = d), we can look at the solution of a “free” random walk (i.e., olwstacles or particle absorbers in
either direction). The solution of Eq. (2) with the initiabredition in Eq. (3) is given by (see Nelson:
Biological Physicsp. 143 or Lectures notes chapter 12.3)

N
u(z,t) = ﬁfﬁ/wt : 4)

The concentration at the postsynaptic sidé, ¢) approaches 0 in the limit— 0 andt — oc.
The above assumption regarding the neurotransmitter mietecindergoing a “free” random walk, is
obviously a simplification. In the true diffusion processhe synaptic cleft the neurotransmitter molecules
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Figure 3:Schematic drawing of the synaptic cleft in our model. Thekidots represent neurotransmitter molecules,
and the situation shown corresponds to the situation imatelgli after neurotransmitter release into the synaptit. cle



will, for example, occasionally bump into the presynaptiembrane they came from. Also at the postsy-
naptic side the neurotransmitters are absorbed by resdptmated on the postsynaptic cell membrane and
are thus (temporally) removed from the solution.

To approach this situation in our mathematical model we ngrose the following boundary and initial
conditions withz € [0, d]

u(x=0,t>0)=ug, u(z=d,allt) =0, u(0<z<d,t<0)=0 . (5)

Hereafter we sef = 1. This corresponds to that (i) for< 0 there are no neurotransmitters in the synaptic
cleft, (ii) for ¢ > 0 the concentration of neurotransmitters at the presynaptindary of the synaptic cleft
(x = 0) is keptfixedatu = ug = 1 in our case, and (iii) that the postsynaptic receptors imately absorb
nearby neurotransmitters so thet= 0 on the postsynaptic side of the cleft £ d = 1).
We are thus looking at a one-dimensional problem
Ou(z,t)  Ou(z,t)

02 - ot ,t>0,l’€[0,d]

or
Ugy = Ut,

with initial conditions, i.e., the conditions at= 0,
u(z,0)=0 0<z<d
with d = 1 the length of thex-region of interest. The boundary conditions are
uw(0,)=1 ¢t>0,

and
u(d,t)=0 t>0.

The full solution of the diffusion equation with boundanjtial conditions in Eq. (5) can be found in a
closed form. In project 4 you solved this equation usingetieite difference methods and compared the
numerical solution with the closed-form solution.

You will need these results here as well. We will now solveahaations using Monte Carlo methods.

a) The above problem can be solved using Monte Carlo methudissaadom walks. We follow here
Farnell and Gibson in Journal of Computational Physicayma208, pages 253-265 (2005). Choose
a constant step lengthy = v2DA¢ and equal probability for jumping left and right. Set up an
algorithm for solving the above diffusion problem using adam walk model and write a code to
do it. Compare your results with those from the partial défdial equation solution and comment
the results.

b) Change the above stepsize by using a Gaussian distritwitio mean valu® and standard deviation
1/+/2. The step length of the random walker is ngw= /2DAt¢, where¢ is random number
chosen from the above Gaussian distribution. Implemestdtapsize to the program from f) and
compare the results and comment. You can include the rdsoitsproject 4 in your discussions
here.

c) Extend the code you have developed here to two dimensibmseans that we deal with 2+ 1
dimensional problem. Our differential equation becomes
Pu(z,y,t) | Pulx,y,t) _ du(x,y,t)

where we now have made a model with a square latticec:fandy. How would you extend the
boundary conditions from one dimension to two dimensionsl an you find a closed form so-
lution here as well? It is left to you to decide upon what kirfdooundary conditions you deem
appropriate.



The next part deals with the development of an explicit anurgoticit finite difference scheme for solving
the diffusion equation in two dimensions. We will stay wittetsame problem as in c), that is we employ
the same boundary and initial conditions as those you deiimed

d) In this exercise you are asked to set up an explicit sch@medlving the above equation. You
should also discuss convergence criteria and the numetaaility of the explicit scheme. Outline
the algorithm for solving the two-dimensional diffusioruedion and implement the explicit scheme
as function ofAz (assumingAx = Ay) andAt. Solve the equations numerically and give a critical
discussion of your results. Compare your results with tbeedl-form answer.

e) This part is optional and gives you an additional scoreG%63 Implement the implicit scheme
discussed in chapter 10 of the lecture notes using Jacobkiblod as the iterative method. Outline
the algorithm for solving the two-dimensional diffusioruadgion and implement the implicit scheme
as function ofAz (assumingAx = Ay) andAt. Solve the equations numerically and give a critical
discussion of your results. Compare your results with theeaxd-form answer and the explicit scheme
from the previous exercise. Discuss the stability of thetwoh as function of different values &z
andAt.
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