
Format for delivery of report and programs
The format of the project is that of a printed file or hand-written report. The programs should also be
included with the report. Write only your candidate number on the first page of the report and state
clearly that this is your report for project 5 of FYS3150/FYS4150, fall 2013. There will be a box marked
’FYS3150/FYS4150’ at the reception of the Department of Physics (room FV128).

Project 5, Numerical integration and variational Monte Carlo meth-
ods, deadline Monday December 9, 12pm (noon)
The first part of this project deals with numerical integration of a six-dimensional integral. This inte-
gral represents the expectation value of the Coulomb interaction between two electrons in a harmonic
oscillator well. The integral appears in many quantum mechanical applications. We will employ both
Gauss-Legendre and Gauss-Hermite quadrature and Monte-Carlo integration. Furthermore, you will need
to parallelize your codes.

The second part extends these calculations to a variational Monte Carlo (VMC) calculation of the
energy for two interacting electrons in a three-dimensional quantum dot well. You can then use project 2
to benchmark your VMC calculations against numerically exact diagonalization results.

The task of the first part is to integrate first in a brute force manner a six-dimensional integral which is
used to determine the ground state correlation energy between two electrons confined to a three-dimensional
harmonic oscillator potential.

We assume that the wave function of each electron can be modelled like the single-particle wave func-
tion of an electron in a three-dimensional harmonic oscillator. The single-particle wave function for an
electron i in the lowest harmonic oscillator state nx = ny = nz = 0 is given in terms of a dimensionless
position variable (the wave function is not properly normalized)

ri = xiex + yiey + ziez,

as
ψ0(ri) = exp−(α2r2i /2),

where α =
√
mω/~ is a parameter related to the mass of the particle m and the oscillator frequency ω and

r2i = x2i + y2i + z2i .

We will simply fix α = 1 in the first part. We will also stay with cartesian coordinates for all exercises. It is
fully possible to switch to spherical coordinates. One would then need to replace the Hermite polynomials
with Laguerre polynomials.

The ansatz for the wave function for two electrons is then given by the product of two harmonic oscil-
lator wave functions in their lowest oscillator energy

Ψ(r1, r2) = exp−(α2(r21 + r22))/2.

This function is not properly normalized. Note that it is not possible to find a closed-form solution to
Schrödinger’s equation for two interacting electrons in a three-dimensional harmonic oscillator well.

The integral we need to solve is the quantum mechanical expectation value of the correlation energy
between two electrons which repel each other via the classical Coulomb interaction, namely

〈 1

|r1 − r2|
〉 =

∫ ∞
−∞

dr1dr2 exp−(α2(r21 + r22))
1

|r1 − r2|
. (1)

Note again that our wave function is not normalized. There is a normalization factor missing, but for this
project we don’t need to worry about that.
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a) Use Gauss-Legendre quadrature and compute the integral by integrating for each variable x1, y1, z1,
x2, y2 and z2 from −∞ to∞. How many mesh points do you need before the results converges at
the level of the third leading digit? Hint: the single-particle wave function exp−(α2r2i )/2 is more
or less zero at ri ≈? (find the appropriate limit). You can therefore replace the integration limits−∞
and∞ with −? and ?, respectively. You need to check that this approximation is satisfactory, that is,
make a plot of the function and check if the abovementioned limits are appropriate.

b) The Legendre polynomials are defined for x ∈ [−1, 1]. The previous exercise gave a very unsat-
isfactory ad hoc procedure. We wish to improve our results. It can therefore be useful to change
to another type of polynomials and employ the Hermite polynomials. The Hermite polynomials are
defined for x ∈ (−∞,∞) and carry a weigth function exp−(ar2i ), with a being a constant. Replace
the Gauss-Legendre approach in a) with Hermite polynomials. The function GaussHermite.cpp can
be found at the webpage of the course, see under the project link. Do your results improve? Compare
with the results from a).

Important notice for c++ programmers:, the function which computes the Gauss-Hermite integra-
tion points and weights returns arrays which start at 1 and end n instead of the default values 0 and
n− 1. You need to declare an array of length n+ 1.

c) Compute the same integral but now with brute force Monte Carlo integration and compare your
results with those from the previous points. Discuss the differences. With bruce force we mean that
you should use the uniform distribution.

d) Improve your brute force Monte Carlo calculation by using importance sampling. Hint: use a gaus-
sian distribution. Chapter 11.5 of the lecture notes has an example for a six-dimensional integral
with a Gaussian distribution. The function GaussianDeviate.cpp included with this project can be
used. Does the variance decrease? Does the CPU time used compared with the brute force Monte
Carlo decrease in order to achieve the same accuracy? Comment your results and make a list over
the time each method uses. Compare the results also.

e) Finally, for the last exercise you should parallelize your code using MPI or openMP and run either on
your laptop or the machines at the computer laboratory. Comment these results as well. In particular,
we want to see whether you achieve an optimal speed-up or not.

Our next step is to perform a VMC calculation of the ground state energy of two interacting electrons
confined to a three-dimensional harmonic oscillator well. We label r1 the position of electron 1 and sim-
ilarly r2 the position of electron 2. We will set the mass of the electrons m = 1, the oscillator frequency
ω = 1, and ~ = c = 1. We will thus use so-called atomic units. The contribution to the potential energy
from the harmonic oscillator potential for the two electrons is

1

2

(
r21 + r22

)
. (2)

Adding the electron-electron repulsion with r12 = |r1 − r2|, the total potential energy V (r1, r2) is

V (r1, r2) =
1

2

(
r21 + r22

)
+

1

r12
, (3)

yielding the total Hamiltonian

Ĥ = −∇
2
1

2
− ∇

2
2

2
+

1

2

(
r21 + r22

)
+

1

r12
, (4)

and Schrödinger’s equation reads
Ĥψ = Eψ. (5)

All equations are in so-called atomic units. The distances ri and r12 are dimensionless.
The basic wave functions we will employ in this part are

ψT1(r1, r2, r12) = exp
(
−α2(r21 + r22)/2

)
, (6)
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and

ψT2(r1, r2, r12) = exp
(
−α2(r21 + r22)/2

)
exp

(
r12

2(1 + βr12)

)
, (7)

with β as a new variational parameter. Your task is to perform a Variational Monte Carlo calculation using
the Metropolis algorithm to compute the integral

〈H〉 =

∫
dRψ∗T (R)H(R)ψT (R)∫
dRψ∗T (R)ψT (R)

, (8)

with the above trial wave functions.

f) Compute

〈H〉 =

∫
dRΨ∗T (R)H(R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

, (9)

for the two electrons in a three-dimensional Harmonic oscillator well using a variational Monte
Carlo method employing the Metropolis algorithm to sample over different states. You will have to
calculate

〈H〉 =

∫
P (R)EL(R)dR, (10)

where EL is the local energy. Here all calculations are performed with the trial wave function
ψT1(r1, r2, r12) only. Study the stability of your calculation as function of the number of Monte
Carlo samples and compare these results with the numerically exact calculations from project 2. In
order to compare the numbers you need to figure out the relation between α and the frequencies you
used in project 2. Another useful test is to compare the results without the Coulomb repulsion be-
tween two electrons. Then you have simple closed form expressions for the total energy. The energy
is then simply the sum of two non-interacting electrons trapped in a three-dimensional harmonic
oscillator well.

Your Monte Carlo moves are determined by

R′ = R + δ × r, (11)

where r is a random number from the uniform distribution and δ a chosen step length. In solving
this exercise you need to devise an algorithm which finds an optimal value of δ for each variational
parameter α, resulting in roughly 50% accepted moves. For which values of α should you perform
the variations? Plot the variational energy as a function of α and localize the variational minimum.

Make a plot of the variance as a function of the number of Monte Carlo cycles. You should parallelize
your code.

g) Use thereafter the optimal value for α as a starting point for computing the ground state energy of
the helium atom using the trial wave functions ψT2(r1, r2, r12). In this case you need to vary both
α and β. The strategy here is to use α from the previous exercise, [1f)] and then vary β in order to
find the lowest energy as function of β. Thereafter you change α in order to see whether you find an
even lower energy and so forth.

Which one of the wave functions ψT1(r1, r2, r12) and ψT2(r1, r2, r12) would you prefer? Give
arguments for your choices.

h) This part is optional but gives you an additional 30% on the final score! Find closed form expressions
for the local energy for the above two trial wave functions. Implement the closed-form expressions
for the local energy and compare the speed-up in CPU time with respect to the numerical derivation
involved in the calculation of kinetic energy. How a large a speed-up do you obtain?

Variational Monte Carlo methods will be discussed during week 47.

3



References
[1] B. L. Hammond, W. A. Lester and P. J. Reynolds, Monte Carlo methods in Ab Inition Quantum

Chemistry, World Scientific, Singapore, 1994, chapters 2-5 and appendix B.

4


