UIO £ University of Oslo

FYS3240
PC-based instrumentation and microcontrollers

Real-Time and Embedded systems

Spring 2012 — Lecture #10

Bekkeng, 7.1.2012

UiO ¢ University of Oslo

Embedded Computing

« An embedded system is a computer system designed to
perform one or a few dedicated functions, often with real-
time computing constraints.

 Embedded processors can be microprocessors,
microcontrollers or FPGAs.

« Embedded systems run with limited computer hardware
resources: limited memory, small or non-existent keyboard
and/or screen

UiO ¢ University of Oslo

Embedded microprocessors

Modern x86 CPUs are relatively uncommon in embedded
systems and small low power applications, as well as low-cost
microprocessor markets (e.g. home appliances and toys).

Simple 8-bit and 16-bit based architectures are common,
although the x86-compatible AMD's Athlon and Intel Atom are
examples of 64-bit designs used in some relatively low power
and low cost segments

UiO ¢ University of Oslo

General Purpose Operating Systems

« Windows, Linux, MacOS, Unix
— Processor time shared between programs
— OS can preempt high priority threads
— Service interrupts —keyboard, mouse, Ethernet...
— Cannot ensure that code finish within specified time limits!

UiO ¢ University of Oslo

Selecting an Operating System

General Purpose 0S Real-Time 0S
e Features e Features
- User interface — Embedded
— Enterprise connectivity — Deterministic
— Peripheral interrupts — Control over 0S
- Background applications — Schedule that ensure that high-
— 08 that controls all scheduling priority tasks execute first
e Applications e Applicati
'gﬁered data acquisitE &i{ﬂui\fﬁ@
— Offline analysis — Time-critical decision making
— Data presentation — Extended run time

— Increased reliability
— Standalone operation

w NATIONAL

INSTRUMENTS

Uio 2 University of Oslo Hard vs. Soft Real-Time Applications

Hard Real-Time

What is a real-time system

» A real-time system gives you determinism
— real-time does not mean “real fast” (it can be slower)!

Deadline
Average Time

Worst-Case Time

Average Time

Worst-Case Time

— real-time means that you can determine (predict) accurately when

a section of your program will execute

 Hard real-time

— systems where it is absolutely imperative that responses occur within the

required deadline (Example: Flight control systems)
« Soft real-time

— allows for some deadlines to be missed with only a slight degradation in

performance but not a complete failure (example: DAQ-systems)

* In contrast, on an ordinary desktop PC (with Windows) the OS

operates on a fairness basis
— Each application gets time on the CPU regardless of its priority

— Even our most time-critical application can be suspended for some routine

maintenance

UiO ¢ University of Oslo

LabVIEW Real-time (RT) systems

« The LabVIEW Real-Time Module extends LabVIEW to be able to
target off-the-shelf real-time targets
— LabVIEW code can be made to execute with hard real-time performance
« The application is developed under Windows on a regular PC, and
then downloaded to run on the real-time target

LabVIEW Real-Time Module

B4 E-mail this Page Configure Page for: & Print [A} PDF H&| Rich Text

T e - =« Design real-time applications with graphical
e = forr® | programming

———— l- =« Download to a dedicated target for reliable,
: ! deterministic performance

— = Deploy as a distributed, stand-alone, or embedded
-~ & J- L.] system

e 1 = Use built-in PID control functions or create your own
" control algorithms

[+] Enlarge Picture = Purchase individually or as part of the NI Developer
Suite

UiO ¢ University of Oslo

Build vs. Buy for Embedded systems

 Buy COTS (Commercial-off-the-shelf) hardware when possible

« Examples of when a custom build in necessary:
— High volumes (10,000+)
— An iteration on an existing custom design
— Custom size or shape required

— Very stringent technical requirements
(such as ultralow power consumption)

FPGA
Designers

NI paper

Figure 1. Custom design traditionally takes a large design team with different levels of hardware,
software and application expertise

http://zone.ni.com/devzone/cda/tut/p/id/6083

UiO ¢ University of Oslo

Real-time hardware platform examples

» Desktop PC with real-time OS (RTOS)

— as long as the hardware meets certain system requirements
8-, 16-, and 32-bit microprocessors

« PXI| with real-time controller

— often used for high-performance real-time systems such as har
the-loop testing

NI FPGA
« NI CompactRIO
NI Single-Board RIO

* NI CompactVision @
 Industrial PCs/Controllers
’ NI CompaCt FIeldPOInt ComplaclRIO P)l(l Desktop of Industrial PC ~ Vision Systems Single-Board RIO

— a PLC (programmable logic controller)

i

gﬂ%

UiO ¢ University of Oslo

NI CompactRIO platform

« CompactRIO (cRIO) combines a real-time processor, a Field-
Programmable Gate Array (FPGA), and I/0O modules in a small,
rugged form factor.

« Serial, USB, and Ethernet ports are built in to the controller. When
using CompactRIO, your 1/O modules (e.g. for digital I/O, bus
communication, A/D conversion) are connected to the FPGA for fast
processing in hardware, and then you exchange data between the
FPGA and the real-time processor as desired.

« 4 and 8 slot versions available

Programmed using

Programmed using LabVIEW FPGA Module
LabVIEW Real-Time

1/0 Modules

Module S e SRR e E R i

....................................

....................................

....................................

Real-Time High-Speed Reconfigurable Digitizers Attenuation Connector Sensors
Processor Bus FPGA and Isolation and Filters Block and Actuators

UiO ¢ University of Oslo

NI Single Board RIO

NI Single-Board RIO systems are identical in architecture to
CompactRIO systems, only in a single circuit board form factor

Single-Board RIO hardware features a real-time processor and
programmable FPGA just as with CompactRIO, and several 1/0O
modules are also available in a board-only form factor.

Users can easily port applications prototyped on NI CompactRIO
hardware to the Single Board RIO (e.g. for high-volume applications)

UiO ¢ University of Oslo

Input/Output Device comparison

Standard or

'O Availability PXI CompactRI0 | nqustrial PCs
O Good
Y & =
 setter i ' '_! !ﬂ _
R
. Best
Variety . ‘ .
Standard Driver APIs q q q
Customizability ' '.' '
Expandability & q &

UiO ¢ University of Oslo

Performance comparison

Standard or

Performance EXl CompactRIO Industrial PCs
O Good

€ Better 1y & !,. _
. Best

Deterministic '
Execution

Timing, Triggering, . .

and Synchronization '

Processor Speed [| q e

Multicore Processing . O .

UiO ¢ University of Oslo

Ruggedness and portability comparison

Standard or

Physical Attributes Bl CompactRIO Industrial PCs
O Good
e g 5 -
€ Better ((hy & !ﬂ
"FJ
.' Best
Ruggedness qd & Varies

Portability i & 4

UiO ¢ University of Oslo

Common Pitfalls of Data Communication

Race conditions- two requests made to the same shared resource

Deadlock- two or more depended processes are waiting for each
other to release the same resource

Data loss- gaps or discontinuities when transferring data

Performance degradation- poor processing speed due to
dependencies on shared resources

Buffer overflows- writing to a buffer faster than it is read from the
buffer

Stale data- reading the same data point more than once

‘7’ NATIONAL
p¥ INSTRUMENTS

UiO ¢ University of Oslo

Scope of Communication

Inter-process: the exchange
of data takes place within a
single application context

Inter-target: communication
between multiple physical 1
targets, often over a network Y4 2
layer &)

7 NATIONAL
INSTRUME!

UiO ¢ University of Oslo

Defining Inter-process Communication

« Communication on same PC or Target

« Communicate hetween parallel
processes or loops

+ Offload data logging or processing to
another CPU/Core/Thread within same
Vl/executable

* Loops can vary in processing priority

 Used to communicate synchronously ’ .
and asynchronously

.7 NATIONAL
INSTRUMENTS

UiO ¢ University of Oslo

Inter-process Communication Options

Shared Variables i | *CETTTE 4 —
Update GUI loop with latest value ' "
Queues
Stream continuous data between loops Obtain Queue Enqueue Element Release Queue
BT ™
] inisti 7 E.. X
onh a non-deterministic target e L= 5
Dynamic Events
Register Dynamic Events to execute Create User Event Generate User Event Destroy User Event
sections of code 4@
ZEs Lle] 2 x
Functional Global Variables (FGV) o Write ~
Use a non-reentrant subVI to protect Numenc _]
critical data [osif | rer
RT FIFOs RT FIFO Create RT FIFO Read RT FIFO Delete
Stream continuous data between time s
critical loops on asingle RT target SIS 2 S BT
NATIONAL

INSTRUMENTS

UiO ¢ University of Oslo

RT FIFOs vs. Queues

 Queues can handle string, variant, and other variable size
data types, while RT FIFOs can not

« RTFIFOs are pre-determined in size, queues can grow as
elements are added to them

* Queues use blocking calls when reading/writing to a shared
resource, RT FIFOs do not

« RTFIFOs do not handle errors, but can produce and
propagate them

Key Takeaway:

RT FIFOs are more deterministic for the above reasons

VNATIONAI.
D¥ INSTRUMENTS

UiO ¢ University of Oslo

Inter-Target Communication Options

TCPI/IP and UDP

Define low-level communication protocols
to optimize throughput and latency

Note: TCP/IP is non-deterministic, UDP is
better but not suited for “hard” deterministic
distributed systems.

Shared Variables

Access latest value for a network
publishedvariable

Network Streams
Point to Point streaming in LabVIEW with high
throughputand minimal coding Network Streams =

| i ' QSzarchl <, Customize |
Web Ul Builder
Create a thin client to communicate with S b
a LabVIEW Web Service A
DMAs P QgEEE & v
Direct memory access between to different components = F
of a system I:

O 9 m:

7 NATIONAL
INSTRUMENTS

UiO ¢ University of Oslo

Ethernet for real-time applications

Standard Ethernet Non-standard Ethernet

Application Layer Application Layer
Non Motion Motion Non Motion Motion
4 " 4
TCP / UDP b TCP / UDP Custom real-

time data

IP » P ﬂ exchange

CSMA/CD Data Link Layer Custom Data Link Layer

Ethernet Physical Layer Ethernet Physical Layer

« Remote I/O can demand reaction in the 5-10 ms region. Motion Control demands
even higher determinism with cycle times into the microsecond region.

« Standard Ethernet communication utilizes TCP/IP, which is inherently non-
deterministic and has a reaction time in the hundreds of milliseconds. In an
effort to boost determinism some networks utilize custom technologies in the
transport and network layers of the Ethernet stack. These networks merely use
TCP/IP as a supplemental channel to provide non real-time data transfers. By
bypassing the TCP/IP protocols, such proprietary networks limit the end user’s
ability to use standard, off-the-shelf Ethernet products such as routers, switches,
firewalls, etc. This limitation destroys one of the fundamental advantages of
standard Ethernet - the availability of low-cost, ubiquitous COTS Ethernet
hardware.

« By using UDP instead of TCP the reaction time comes down to about 10 ms at
best. UDP is not suited for “hard” deterministic distributed systems.

UiO ¢ University of Oslo

Real-Time
Data Acquisition

ATITRTTS PP e

TCP/IP

/istributed
Shared Memory

Deterministic
Data Logging

il

PACTITTTY PRPT™ sy

Distributed shared memory is a hardware-based communication mechanism for sharing
data between computers. Proprietary products are marketed and sold under various names
including "Reflective Memory", "Replicated Memory", "Hardware Memory" and "Network

Memory" among others.

NI paper on Real-time distributed system

http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105

UiO ¢ University of Oslo

LabVIEW — Timed loops

« Simplifies the way you shedule real-time execution order (by
giving it a priority, a periode/frequency and offset) for parallel
loops

B! Configure Timed Loop

a Loop Timing Source Loop Timing Attributes
() Use Built-In Timing Source Period Priarity
double-click — Source Type 000 lp [3]
1 kHz Clock A
Advanced Timing
H rent kinds of pre-configured timing sources.] Deadine Frzri)
BEror » 1 = _ =
¥ | ms 1 ¥
o W
Offset [Phase Loop name
Source name e 60100452
| 1kHz |
O Use Timing Source Terminal Processor Assignment
Mode Processor
Frame Timing Source
This structure does not have multiple frames. To add multiple Action on Late Iterations
frames, right dick on the border of the loop and select one of the . ; -
T e e Discard missed periods
Maintain original phase

I OK] [Cancel] [Help

UiO ¢ University of Oslo

Deterministic communication between
real-time threads with shared variables

Real-Time Processor High-Priority Acquisition Task

- o Priait i

- Time Critical | % ' 3.2 b
) | | .

Loop 7 Shared variable

Can enable use of

RT FIFO
ow-Priority Logging Task
Priarit ms
SO ey [Ql[Error
[e 7
- /@R Data |
Shared Variables: Can
enable buffering (to avoid [Eciidata.bin 1 [Open Fie] Wirite to Binary Fie] Close Fils

e

. - p—
|OS|ng data) [replace or create | E s ﬁ(

o404

UiO ¢ University of Oslo

Single-Process Shared Variables and
LabVIEW Real-Time FIFO

In order to maintain determinism, a real-time application
requires the use of a nonblocking, deterministic mechanism to
transfer data from deterministic sections of the code, such as

higher-priority timed loops and time-critical priority VIs, to
nondeterministic sections of the code. When you install the
LabVIEW Real-Time Module, you can configure a shared
variable to use real-time FIFOs by enabling the real-time FIFO
feature from the Shared Variable Properties dialog box.
National Instruments recommends using real-time FIFOs to
transfer data between a time-critical and a lower-priority loop.
You can avoid using the low-level real-time FIFO Vis by
enabling the real-time FIFO on a single-process shared
variable.

UiO ¢ University of Oslo

NI & LabVIEW Embedded products

Embedded System Design Platform

CompactRIO CompactPCI/PXI Industrial PC
Pacicged T | “a"i;'ﬁ'gll ﬁ.
. E]!: m' J ',-!"."-")
. v : P
Single-Board RIO CompactPCIPXI VO for SBCs
Board-Level ‘ 2
| i
_ With the NI LabVIEW C
Code Generator, you can
LabVIEW for LabVIEW for Real- LabVIEW for LabVIEW C port your algorithm
PCs/SBCs Time Processors FPGAs Generator

designed using the
LabVIEW programming
environment to any
processor of your choice.

Software n ’ ‘Q J El '
;_ y 3 p [. 4

UiO ¢ University of Oslo

LabVIEW Embedded

NI LabVIEW C Generator

From Algorithm to Embedded Target
A E-mail this Page Configure Page for: & Print [} PDF HE) Rich Text

* Generate ANSI C code from LabVIEW Vs
* Compatible with 8-, 16-, and 32-bit microprocessors

* Use with any embedded O% or barebone

» Download Eval

UiO ¢ University of Oslo

LabVIEW Embedded

NI LabVIEW Embedded Module for ARM Microcontrollers
Graphical Programming for ARM7, ARM9, and Cortex-M3

B4 E-mail this Page Configure Page for: & Print [} PDF HE| Rich Text

Works with more than 260 ARM7Y, ARM9, and
Cortex-M3 microcontrollers

Integrated drivers for analog and digital I/O, PWM,
TCP/IP, serial, 12C, and SPI

Simulate your application on the desktop including
peripheral I/O for stimulus/response

Simple API for integrating C code with graphical code
for a hybrid programming approach

[+] Enlarge Picture

UiO ¢ University of Oslo

LabVIEW Embedded system
application development

« Developing the LabVIEW FPGA application for Input/Output
(I/0), timing, synchronization, high speed control and signal
processing.

« Developing the LabVIEW Real-Time application for
deterministic floating point analysis and control as well as
communication with a networked host computer.

« Developing the LabVIEW for Windows application for graphical

user interfaces, supervisory control and data logging.

1/0 Modules

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

....................................

....................................

Real-Time High-Speed Reconfigurable Digitizers Attenuation Connector Sensors
Processor us FPGA and Isolation and Filters Block and Actuators

UiO ¢ University of Oslo

NI CompactRIO Reconfigurable
Embedded System

Note that most communication protocols are non-deterministic, so, in order to
ensure deterministic performance in your time-critical code, you should not
perform communication from within the time-critical VI. Transfer the data to a
normal priority VI also running on the RT side to perform your communication.

E IHIHHI__
ey @ Real-Time FPGA

T

if e

B teral - —

= PCIBUS [l Output |===s

-. o E
i

E .

Host PC Real Time Controller Reconfigurable Chassis 1/0 Modules

Inter- Mtk
hiread §
(\‘t!etv.u:-rl-: :] Internal PCI BUS —
User Mormal Lamm. Timie ! L W -
Interface <= Priority {:::} Critical =7 Tiiggeringf§ Conditioning
GUIL Loo Loop .
TCPSIP, P 7
uoP U —

UiO ¢ University of Oslo

Architecture for Advanced
(CompactRIO) Applications

PC - Windows OS

Host Program Real-Time Processor Reconfigurable FPGA

User
interface

Homal Priority Time Critical LabVIEVY

Loop Loop FPGA VI

— slols

| |

Enterprise

Using Network-Published
Shared variables

Data storage is non-deterministic

UiO ¢ University of Oslo

R-series Intelligent DAQ System
Embedded System

E; IHHHH__
EEma @ Real-Time FPGA

TG R-Series
& I Expansion Chassis

R R
. et work i'.;H L e ; N e 2
= = i} -

W

Host PC PXl / PC Real Time Controller PXI/PCIR Series Device I/0 Modules

Intergrate with Motien, Vision and Data Acquisition

Inter-
% [us . thiread vyl "
fu“:r \ Jetwark Mormal |.-.n-,.,-,_’ Time\ Internal PCI I
Interface <ol o 0= Priority {:::}\ L B ———
GulL TCP/IP, Loop Loop
upe

UiO ¢ University of Oslo

What to avoid in high-priority code?

® Operations that allocated memory:
— Array functions such as Build array, Append
array
— String manipulation

® Non-deterministic functions:
— File 1/0 Operations
— Networking functions
— Some /O Driver calls

}?’NATIDNAL

INSTRUMENTS

UiO ¢ University of Oslo

Interrupts for Data Acquisition

* In general, there are three approaches to acquiring data from
an external device or synchronizing communication between
devices. These three approaches are described as follows:

« Polling — This method involves periodically reading the status of
the device to determine whether the device needs attention.

« Interrupts — the device is configured to interrupt the processor
whenever the device requires attention.

« Direct Memory Access (DMA) — A dedicated processor, the
DMA controller, transparently transfers data from the device to
computer memory, or vice versa.

UiO ¢ University of Oslo

Interrupt-Driven Programming

* Ininterrupt-driven systems software is designed such that when
a registered event, such as a timer, is received, a response is
fired to respond to this event.

« There are two components of any interrupt-driven system: the
Interrupt and the interrupt handler.

« An interrupt is a signal that is generated by hardware, which
Indicates an event has occurred that should halt the currently
executing program.

« Interrupt handlers (also referred to as interrupt service routines
- ISRs) are portions of code that are registered with the
processor to execute once a particular interrupt has occurred.
Once the processor is aware of an interrupt, it halts the
currently executing process, performs a context switch to save
the state of the system, and executes the interrupt handler.
Once the interrupt handler code has executed, the processor
returns control to the previously running program.

UiO ¢ University of Oslo

Interrupt-Driven Programming |

« For Interrupt-Driven Programming hardware events are detected
and responded to, compared to event driven programming (on a
PC) where user interface events trigger some code to be executed

