
FYS3240

PC-based instrumentation and microcontrollers

Real-Time and Embedded systems

Spring 2012 – Lecture #10

Bekkeng, 7.1.2012

Embedded Computing

• An embedded system is a computer system designed to

perform one or a few dedicated functions, often with real-

time computing constraints.

• Embedded processors can be microprocessors,

microcontrollers or FPGAs.

• Embedded systems run with limited computer hardware

resources: limited memory, small or non-existent keyboard

and/or screen

Embedded microprocessors

• Modern x86 CPUs are relatively uncommon in embedded

systems and small low power applications, as well as low-cost

microprocessor markets (e.g. home appliances and toys).

• Simple 8-bit and 16-bit based architectures are common,

although the x86-compatible AMD's Athlon and Intel Atom are

examples of 64-bit designs used in some relatively low power

and low cost segments

General Purpose Operating Systems

• Windows, Linux, MacOS, Unix

– Processor time shared between programs

– OS can preempt high priority threads

– Service interrupts –keyboard, mouse, Ethernet…

– Cannot ensure that code finish within specified time limits!

What is a real-time system

• A real-time system gives you determinism

– real-time does not mean “real fast” (it can be slower)!

– real-time means that you can determine (predict) accurately when

a section of your program will execute

• Hard real-time

– systems where it is absolutely imperative that responses occur within the

required deadline (Example: Flight control systems)

• Soft real-time

– allows for some deadlines to be missed with only a slight degradation in

performance but not a complete failure (example: DAQ-systems)

• In contrast, on an ordinary desktop PC (with Windows) the OS

operates on a fairness basis

– Each application gets time on the CPU regardless of its priority

– Even our most time-critical application can be suspended for some routine

maintenance

LabVIEW Real-time (RT) systems

• The LabVIEW Real-Time Module extends LabVIEW to be able to

target off-the-shelf real-time targets

– LabVIEW code can be made to execute with hard real-time performance

• The application is developed under Windows on a regular PC, and

then downloaded to run on the real-time target

Build vs. Buy for Embedded systems

• Buy COTS (Commercial-off-the-shelf) hardware when possible

• Examples of when a custom build in necessary:

– High volumes (10,000+)

– An iteration on an existing custom design

– Custom size or shape required

– Very stringent technical requirements

(such as ultralow power consumption)

P
C

B
 d

e
s

ig
n

e
rs

NI paper

http://zone.ni.com/devzone/cda/tut/p/id/6083

Real-time hardware platform examples

• Desktop PC with real-time OS (RTOS)

– as long as the hardware meets certain system requirements

• 8-, 16-, and 32-bit microprocessors

• PXI with real-time controller

– often used for high-performance real-time systems such as hardware-in-

the-loop testing

• NI FPGA

• NI CompactRIO

• NI Single-Board RIO

• NI CompactVision

• Industrial PCs/Controllers

• NI Compact FieldPoint

– a PLC (programmable logic controller)

NI CompactRIO platform

• CompactRIO (cRIO) combines a real-time processor, a Field-

Programmable Gate Array (FPGA), and I/O modules in a small,

rugged form factor.

• Serial, USB, and Ethernet ports are built in to the controller. When

using CompactRIO, your I/O modules (e.g. for digital I/O, bus

communication, A/D conversion) are connected to the FPGA for fast

processing in hardware, and then you exchange data between the

FPGA and the real-time processor as desired.

• 4 and 8 slot versions available

Programmed using

LabVIEW FPGA Module Programmed using

LabVIEW Real-Time

Module

NI Single Board RIO

• NI Single-Board RIO systems are identical in architecture to

CompactRIO systems, only in a single circuit board form factor

• Single-Board RIO hardware features a real-time processor and

programmable FPGA just as with CompactRIO, and several I/O

modules are also available in a board-only form factor.

• Users can easily port applications prototyped on NI CompactRIO

hardware to the Single Board RIO (e.g. for high-volume applications)

Input/Output Device comparison

Performance comparison

Ruggedness and portability comparison

Note: TCP/IP is non-deterministic, UDP is

better but not suited for “hard” deterministic

distributed systems.

Ethernet for real-time applications

• Remote I/O can demand reaction in the 5-10 ms region. Motion Control demands

even higher determinism with cycle times into the microsecond region.

• Standard Ethernet communication utilizes TCP/IP, which is inherently non-

deterministic and has a reaction time in the hundreds of milliseconds. In an

effort to boost determinism some networks utilize custom technologies in the

transport and network layers of the Ethernet stack. These networks merely use

TCP/IP as a supplemental channel to provide non real-time data transfers. By

bypassing the TCP/IP protocols, such proprietary networks limit the end user’s

ability to use standard, off-the-shelf Ethernet products such as routers, switches,

firewalls, etc. This limitation destroys one of the fundamental advantages of

standard Ethernet - the availability of low-cost, ubiquitous COTS Ethernet

hardware.

• By using UDP instead of TCP the reaction time comes down to about 10 ms at

best. UDP is not suited for “hard” deterministic distributed systems.

Distributed shared memory is a hardware-based communication mechanism for sharing

data between computers. Proprietary products are marketed and sold under various names

including "Reflective Memory", "Replicated Memory", "Hardware Memory" and "Network

Memory" among others.

NI paper on Real-time distributed system

http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105
http://zone.ni.com/devzone/cda/tut/p/id/3105

LabVIEW – Timed loops

• Simplifies the way you shedule real-time execution order (by

giving it a priority, a periode/frequency and offset) for parallel

loops

double-click

Deterministic communication between

real-time threads with shared variables

Shared Variables: Can

enable buffering (to avoid

losing data)

Can enable use of

RT FIFO

Shared variable

Single-Process Shared Variables and

LabVIEW Real-Time FIFO

• In order to maintain determinism, a real-time application

requires the use of a nonblocking, deterministic mechanism to

transfer data from deterministic sections of the code, such as

higher-priority timed loops and time-critical priority VIs, to

nondeterministic sections of the code. When you install the

LabVIEW Real-Time Module, you can configure a shared

variable to use real-time FIFOs by enabling the real-time FIFO

feature from the Shared Variable Properties dialog box.

National Instruments recommends using real-time FIFOs to

transfer data between a time-critical and a lower-priority loop.

You can avoid using the low-level real-time FIFO VIs by

enabling the real-time FIFO on a single-process shared

variable.

NI & LabVIEW Embedded products

With the NI LabVIEW C

Code Generator, you can

port your algorithm

designed using the

LabVIEW programming

environment to any

processor of your choice.

LabVIEW Embedded

LabVIEW Embedded

LabVIEW Embedded system

application development

• Developing the LabVIEW FPGA application for Input/Output

(I/O), timing, synchronization, high speed control and signal

processing.

• Developing the LabVIEW Real-Time application for

deterministic floating point analysis and control as well as

communication with a networked host computer.

• Developing the LabVIEW for Windows application for graphical

user interfaces, supervisory control and data logging.

NI CompactRIO Reconfigurable

Embedded System
Note that most communication protocols are non-deterministic, so, in order to

ensure deterministic performance in your time-critical code, you should not

perform communication from within the time-critical VI. Transfer the data to a

normal priority VI also running on the RT side to perform your communication.

Architecture for Advanced

(CompactRIO) Applications

Using Network-Published

Shared variables

Data storage is non-deterministic

PC – Windows OS

R-series Intelligent DAQ System

Embedded System

Interrupts for Data Acquisition

• In general, there are three approaches to acquiring data from

an external device or synchronizing communication between

devices. These three approaches are described as follows:

• Polling – This method involves periodically reading the status of

the device to determine whether the device needs attention.

• Interrupts – the device is configured to interrupt the processor

whenever the device requires attention.

• Direct Memory Access (DMA) – A dedicated processor, the

DMA controller, transparently transfers data from the device to

computer memory, or vice versa.

Interrupt-Driven Programming

• In interrupt-driven systems software is designed such that when

a registered event, such as a timer, is received, a response is

fired to respond to this event.

• There are two components of any interrupt-driven system: the

interrupt and the interrupt handler.

• An interrupt is a signal that is generated by hardware, which

indicates an event has occurred that should halt the currently

executing program.

• Interrupt handlers (also referred to as interrupt service routines

- ISRs) are portions of code that are registered with the

processor to execute once a particular interrupt has occurred.

Once the processor is aware of an interrupt, it halts the

currently executing process, performs a context switch to save

the state of the system, and executes the interrupt handler.

Once the interrupt handler code has executed, the processor

returns control to the previously running program.

Interrupt-Driven Programming II

• For Interrupt-Driven Programming hardware events are detected

and responded to, compared to event driven programming (on a

PC) where user interface events trigger some code to be executed

