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Efficient Arithmetic Designs With Cypress CPLDs

Introduction
This application note is intended to provide designers with
some insight into efficient means of implementing arithmetic
functions in Cypress CPLDs. Additionally this application note
will discuss a variety of implementations and the pros and
cons associated with the use of each. The importance of se-
lecting the proper implementation for your application can sig-
nificantly improve the chance that your design will meet all
your design requirements. Although there is a great deal of
information about arithmetic designs, this application note
seeks to fill the void of detailed explanation on their imple-
mentation in Cypress CPLDs. Throughout this application
note, the phrase “Cypress CPLD” will be used to refer inter-
changeably to members of both the FLASH370i™ and the
Ultra37000™ complex programmable logic device (CPLD)
families.

The designer has many alternatives when selecting arith-
metic implementations for a given design. The decision on the
final choice is typically based on issues like resource avail-
ability, speed of operation and modularity. Creating designs in
view of the target device’s architecture will definitely yield bet-
ter results than implementing a generic design on the same
device. The discussion in this application note addresses
arithmetic algorithms, design methodologies and implemen-
tations tailored to the features and resources offered in the
FLASH370i and Ultra37000 families of CPLDs. These special-
ized arithmetic designs achieve a balanced tradeoff between
speed and area requirements for a given application. In this
application note the user is offered a wide variety of algo-
rithms and implementations from which to choose. This vari-
ety provides the designer with the flexibility to choose the
model best suited for the target application. This choice is
absolutely necessary since design requirements and con-
straints vary from application to application.

This discussion assumes that the designer has a good feel for
the features and resources available in the FLASH370i and
Ultra37000 families of CPLDs. The implementation details
and design tradeoffs in building adders, subtracters, equality

and magnitude comparators are addressed in this application
note. Examples are shown in VHDL.

Since Warp™ automatically uses these design modules dur-
ing VHDL synthesis, the intent of this application note is to
allow a designer to visualize and implement arithmetic func-
tions in CPLDs. This application note assumes that the reader
has a good grasp of the fundamentals of VHDL. Some of the
LPM (library of parameterized modules) elements for CPLDs
provided in the Warp software are built using the concepts
and final implementations discussed here. This provides the
user with an excellent opportunity to choose the best algo-
rithm and implementation tailored to the target application.
Additionally since Warp automatically infers these modules,
this application note will provide the user with a better under-
standing of how their design is synthesized. Also this applica-
tion note will provide some insight on times when a designer
might want to intervene and personally control Warp’s synthe-
sis process.

Adders
The addition of two operands is the most common operation
in most arithmetic units. The two-operand adder is commonly
used in performing additions and subtractions. It is also used
when executing complex arithmetic functions like multiplica-
tion and division. 

ADD: 1-Bit Full Adder

The basic component used in adding two operands is called
a Full Adder. The full adder element will be henceforth re-
ferred to as the ‘ADD’ component. The block diagram and
functionality of ADD is shown in Figure 1. A and B are the two
operands to be added and CI is the Carry-in to the compo-
nent. SUM and CO are the Sum and Carry-out from the com-
ponent. 

The VHDL code describing the functionality of the ADD com-
ponent is shown here. This design takes one pass through the
Logic (AND-OR) array to fit into a Cypress CPLD. The ADD
component instantiated in the VHDL code shown has exactly
the same functionality shown in Figure 1.

Figure 1. Block Diagram and Functionality of a Full Adder
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-- This VHDL code implements a full adder component called ADD
-- within a package called MATHPKG

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE mathpkg IS
COMPONENT add

PORT (CI: IN STD_LOGIC ;
A, B: INSTD_LOGIC;
SUM: OUT STD_LOGIC;
CO: OUT STD_LOGIC);

END COMPONENT;
END mathpkg;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY add IS
PORT (CI: IN STD_LOGIC ;

A, B: IN STD_LOGIC ;
SUM: OUT STD_LOGIC;
CO: OUT STD_LOGIC);

END add;

ARCHITECTURE archadd OF add IS

BEGIN

SUM <= A XOR B XOR CI;

CO <= (A and B) or (A and CI) or (B and CI);

END archadd;

RADD12: 12-Bit Ripple Carry Adder

An n-bit two-operand ripple carry adder can be built using n
ADD components. All the 2n input bits are available to the
adder at the same time. However the carries have to propa-
gate from the LSB position to the MSB. In other words, we
need to wait until the carries ripple through n ADD compo-
nents to claim that the SUM outputs are correct. Because of
this rippling effect, the adder is referred to as the Ripple Carry
Adder. This is the simplest form of adding any two operands.
It uses the least amount of area compared to all other imple-
mentations but, on the negative side, is the slowest imple-
mentation. This is typically the implementation provided with
a synthesis tool when it recognizes the ‘+’ operator in a VHDL
code. The block diagram of a 12-bit Ripple Carry Adder
(RADD12) is shown in Figure 2.

The VHDL code describing the functionality of the RADD12
component is shown here. This design takes 12 passes
through the logic array to fit into a Cypress CPLD. The outputs
of the LSB ADD component are produced in the first pass.
The outputs of the succeeding ADD components are pro-
duced with every alternate pass through the logic array. Each
pass through the logic array has a time penalty associated
with it.

--This VHDL code describes the implementation of a generic
--12 bit ripple carry adder.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE WORK.MATHPKG.ALL;

ENTITY rippleadd12 IS
PORT  (CI: IN STD_LOGIC ;

A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0 : IN STD_LOGIC ;
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B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0 : IN STD_LOGIC ;
SUM11, SUM10, SUM9, SUM8, SUM7, SUM6, SUM5, SUM4,
SUM3, SUM2, SUM1, SUM0 : OUT STD_LOGIC;
CO: OUT STD_LOGIC);

END rippleadd12;
 
ARCHITECTURE archripple12add OF rippleadd12 IS  
SIGNAL C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11 : STD_LOGIC;

attribute synthesis_off of  C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11 : signal is true ;

BEGIN

i1: add PORT MAP(CI,A0,B0,SUM0,C1);
i2: add PORT MAP(C1,A1,B1,SUM1,C2);
i3: add PORT MAP(C2,A2,B2,SUM2,C3);
i4: add PORT MAP(C3,A3,B3,SUM3,C4);
i5: add PORT MAP(C4,A4,B4,SUM4,C5);
i6: add PORT MAP(C5,A5,B5,SUM5,C6);
i7: add PORT MAP(C6,A6,B6,SUM6,C7);
i8: add PORT MAP(C7,A7,B7,SUM7,C8);
i9: add PORT MAP(C8,A8,B8,SUM8,C9);
i10: add PORT MAP(C9,A9,B9,SUM9,C10);
i11: add PORT MAP(C10,A10,B10,SUM10,C11);
i12: add PORT MAP(C11,A11,B11,SUM11,CO);

END archripple12add;

The need and use for the ‘synthesis_off’ attribute used in the
VHDL code will be discussed later.

Figure 2. Block Diagram of a 12-Bit Ripple Carry Adder
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ADD2WC: 2-Bit Adder with Carry-Out

The concept of the ADD component can be extended to cre-
ate a 2-bit adder which takes in two 2-bit operands with a
carry-in and produces a 2-bit SUM and a carry-out as outputs.
This component will be referred to as the ADD2WC (2-bit
adder with a carry-out). This also takes just one pass through
the logic array to yield results. The block diagram of ADD2WC
is shown in Figure 3. A0, A1 and B0, B1 are the two operands
to be added and CI is the Carry-in to the component. S0, S1
and CO are the Sums and Carry-outs from the component.

The VHDL code describing the functionality of the ADD2WC
component is shown here. This design takes one pass
through the logic array to fit into a Cypress CPLD.

-- VHDL code describing a 2-bit adder with carry-out.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE add2wc_pkg IS
COMPONENT add2wc PORT(

CI :  IN STD_LOGIC ;
A1,A0: IN STD_LOGIC ;
B1,B0: IN STD_LOGIC ;
SUM1,SUM0 : OUT STD_LOGIC;
CO: OUT STD_LOGIC);

END COMPONENT;
END add2wc_pkg;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY add2wc IS
PORT (CI : IN STD_LOGIC ;

A1,A0: IN STD_LOGIC ;
B1,B0: IN STD_LOGIC ;
SUM1,SUM0 : OUT STD_LOGIC;
CO: OUT STD_LOGIC);

END add2wc;

ARCHITECTURE archadd2wc  OF  add2wc IS

BEGIN

SUM0 <= A0 XOR B0 XOR CI;
SUM1 <= A1 XOR B1 XOR ((A0 AND B0) OR (A0 AND CI) OR (B0 AND CI));
CO   <= (A0 AND B0 AND B1)

OR (A0 AND B0 AND A1)
OR (CI AND B0 AND B1)
OR (CI AND B0 AND A1)
OR (CI AND A0 AND B1)
OR (CI AND A0 AND A1)
OR (A1 AND B1);

END archadd2wc;

The concept of ADD2WC can be extended to describe the
ADD2NC component. The ADD2NC component is a
cut-down version of the ADD2WC component, and does not
have a carry-out. The VHDL code and block diagram for the
ADD2NC component is easy to extrapolate and is not shown
here.

R2ADD12: 12-Bit Ripple Carry Adder using the ADD2WC 
as a Basic Block

A 12-bit adder using the ADD2WC component is shown here.
This adder takes 6 passes to produce all results, as opposed
to the 12 passes needed for the 12-bit adder using the ADD
component. The outputs of the LSB ADD2WC component are
produced in the first pass. The outputs of the succeeding

Figure 3. A 2-Bit Full Adder with a Carry-Out

ADD2WC: 2-Bit Adder (1 Pass)
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ADD2WC components are produced with every alternate
pass through the logic array. The number of macrocells used
by this scheme is less than RADD12, but the product term
count is higher. A comparison of different schemes is present-

ed later. The block diagram of R2ADD12 is shown in Figure
4. The VHDL code describing the functionality is also at-
tached.

--A 12-bit Ripple carry adder built using the ADD2WC element as a basic building block

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE WORK.ADD2WC.ALL;

ENTITY add12 IS
PORT (CI :  IN STD_LOGIC ;

A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0: IN STD_LOGIC ;
B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0: IN STD_LOGIC ;
SUM11,SUM10,SUM9,SUM8,SUM7,SUM6,SUM5,SUM4,
SUM3,SUM2,SUM1,SUM0 : OUT STD_LOGIC;
CO: OUT STD_LOGIC);

END add12;
 
ARCHITECTURE archadd12 OF add12 IS

SIGNAL C2, C4, C6, C8, C10 : STD_LOGIC;

attribute synthesis_off of  C2, C4, C6, C8, C10 : signal is true ;

BEGIN

i1: add2wc PORT MAP(CI,A1,A0,B1,B0,SUM1,SUM0,C2);
i2: add2wc PORT MAP(C2,A3,A2,B3,B2,SUM3,SUM2,C4);
i3: add2wc PORT MAP(C4,A5,A4,B5,B4,SUM5,SUM4,C6);
i4: add2wc PORT MAP(C6,A7,A6,B7,B6,SUM7,SUM6,C8);
i5: add2wc PORT MAP(C8,A9,A8,B9,B8,SUM9,SUM8,C10);
i6: add2wc PORT MAP(C10,A11,A10,B11,B10,SUM11,SUM10,CO);

END archadd12;

ADD3WC: The 3-Bit Ripple Carry Adder

There is yet another way we could implement an n-bit ripple
carry adder targeting the Cypress CPLDs. We can implement
the n-bit adder using the 3-bit group adder (ADD3WC) as
opposed to a 2-bit group adder (ADD2WC). The problem with
a 3-bit group adder is the sum-splitting of the functionality of

the MSB Sum bit (SUM2). This takes more than 16 product
terms (PTs) and takes 2 passes through the logic array to
produce the result. All other results, including the carry-out,
take less than 16 PTs and take just one pass to produce re-
sults. To control sum-splitting the functionality of SUM2, the
intermediate carry C2 is created and assigned to a node. C2
is then used to create the functionality of SUM2. Note that the

Figure 4. Block Diagram of a 12-Bit Ripple Carry Adder Using 2-Bit Adders
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functionality of CO takes less than 16 PTs and is generated
at the first pass, so the carry rippling is faster. This makes this
component a faster building block. This scheme still takes two
passes to create the functionality of SUM2, but without getting
sum-split. The resource utilization of a 12-bit adder using the
3-bit group adder is presented later. The block diagram of the
ADD3WC component is shown in Figure 5.

-- 3-Bit Adder with Carry-out

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE add3wc_pkg IS
COMPONENT add3wC 

PORT (CI : IN BIT ;
A2,A1,A0: IN BIT ;
B2,B1,B0: IN BIT ;
SUM2,SUM1,SUM0 : OUT BIT ;
CO: OUT BIT );

END COMPONENT;
END add3wc_pkg;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY add3wc IS
PORT (CI : IN STD_LOGIC ;

A2,A1,A0: IN STD_LOGIC ;
B2,B1,B0: IN STD_LOGIC ;
SUM2,SUM1,SUM0 : OUT STD_LOGIC;
CO: OUT STD_LOGIC);

END add3wc;

ARCHITECTURE archadd3wc OF add3wc IS

SIGNAL C2: STD_LOGIC;

attribute synthesis_off of C2:  signal is true ;

BEGIN

SUM0 <= A0 XOR B0 XOR CI;
SUM1 <= A1 XOR B1 XOR ((A0 AND B0) or (A0  AND CI) or (B0 AND CI));
SUM2 <= A2 XOR B2 XOR C2;

C2   <= (A0 AND B0 AND B1)
OR (A0 AND B0 AND A1)
OR (CI AND B0 AND B1)
OR (CI AND B0 AND A1)
OR (CI AND A0 AND B1)
OR (CI AND A0 AND A1)
OR (A1 AND B1);

CO <= (A2 AND B2) OR ((A1 AND B1) AND (A2 OR B2)) 
OR ((A0 AND B0) AND (A1 OR B1) AND (A2 OR B2))
OR (CI AND (A0 OR B0) AND (A1 OR B1) AND (A2 OR B2)); 

END archadd3wc;

Function and Use of the synthesis_off  Attribute

The synthesis_off attribute causes a signal to be made into a
factoring point for logic equations and keeps the signal from
being minimized out during optimization.

The attribute is useful for the following reasons:

1. It gives the user control over which equations or sub-ex-
pressions need to be factored into a node.

Figure 5. A 3-Bit Full Adder with a Carry-Out

ADD3WC: 3-Bit Adder (2 Passes)
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2. It helps in cutting down on compile time for designs that 
have a lot of ‘signal redirection’ (signals getting inverted/re-
assigned to other signals). This attribute provides the Log-
ic optimizer a better control over the optimization process 
by reducing the number of signals it needs to deal with.

3. It provides better results for designs where a signal with a 
large functionality is being used by many other signals. If 
left alone, the fitter would collapse all the internal signals 
(which is desirable in many cases) and may drive the de-
sign’s resource requirements beyond the available limits.

By using the synthesis_off attribute, the user can assign the
commonly-used signal to a node and bring down the resource
utilization.

A side effect of using the synthesis_off attribute is that the
design will now take an extra pass through the array to
achieve the same functionality. The extra pass may be re-
quired anyway, if more than 16 PTs are required.

This attribute is only recommended for use on combinatorial
signals. Registered signals are assigned to a node by natural
factoring and the synthesis_off attribute on these signals is
redundant.

This attribute can be associated with signals declared both in
VHDL and schematics. The ‘BUF’ component can also be
used in schematics and VHDL to achieve the same results as
the synthesis_off attribute. Please refer to the Warp Synthe-
sis manual for more details.

Carry-Lookahead Principle

The predominant delay in adders is due to carry propagation.
The carry-lookahead principle aims at minimizing this delay.
The sum and carry equations for each bit position in an adder
is given by:

Si = Ai xor B i xor C i
Ci+1 = (Ai and B i) or (A i and C i) or (B i and C i)

A carry is generated whenever Ai and Bi are both ‘1’ and a
carry is propagated whenever either Ai or Bi are ‘1’.

Generate term: (Gi = Ai and B i)
Propagate term: (Pi = Ai or B i)

Note: Pi can be (Ai xor Bi), but ‘OR’ is easier to implement than
an ‘XOR’ in CPLDs.

Rewriting the equation for Ci+1, we get

Ci+1 = Gi  or (Pi and Ci)

Writing the equations for a 4-bit carry-lookahead adder:

C1 = G0  or (P0 and C0)
C2 = G1  or (P1 and C1) 
C3 = G2  or (P2 and C2)
C4 = G3  or (P3 and C3)

where Gi = (Ai and B i) and Pi = (Ai or B i). The values of Gi
and Pi can be generated in a single pass through the PIM
array. The carry-in to any of the bit positions can be computed
in a second pass through the array, based upon the values of
the various Gis and P is generated in the first pass. 

The generalized carry-lookahead equation to compute the
different carry-in signals is shown here:

Ci+1 = Gi or (Pi and Gi-1) or (Pi and Pi-1 and Gi-1) or ... or (Pi
and Pi-1 and ... and P0 and C0)

We can further speed up the addition by providing a carry-loo-
kahead over groups in addition to the internal lookahead with-
in the group. We define a group-generated carry E and a
group-propagated carry R, for a group of size 4 as follows: E
= ‘1’ if a carry-out (of the group) is generated internally and R
= ‘1’ if a carry-in (to the group) is propagated internally to
produce a carry-out (of the group). The boolean equations for
these carries are:

E = G3 or (P3 and G2) or (P3 and P2 and G1) or 
(P3 and P2 and P1 and G0)

R = (P3 and P2 and P1 and P0)

The group-generated and group-propagated carries for sev-
eral groups can now be used to generate group carry-ins in a
manner similar to single-bit carry-ins.

The selection of the group size plays an important role in ob-
taining the best possible implementation for a carry-looka-
head adder in a CPLD. Some of the different possible imple-
mentations for a 12-bit carry-lookahead adder are shown in
Figure 6.

The number of passes each of these implementations take
and the number of product terms (PTs) and macrocells (MCs)
used vary for each scheme (see Table 1 in the “Comparison
of Resource Utilization for Different Schemes in Building a
12-Bit Adder” section). Each scheme has its own advantage
over the other. The user needs to judiciously choose between
the different schemes based on the application, bit-size, and
the CPLD chosen and its architectural constraints. The num-
ber of passes taken through the logic is a direct representa-
tion of the total time taken for producing final results. Each
extra pass results in a time penalty. The rule to follow is, “The
smaller the number of passes through the logic array, the fast-
er your application runs.” The implementation of a 12-bit car-
ry-lookahead adder with different group-sizes is presented
next.

FC2ADD12: 12-Bit Full Carry-Lookahead Adder Using a 
Group-Size of 2 Bits

The Cypress CPLD can access up to 16 PTs for each mac-
rocell. The functionality of any signal that has more than 16
PTs is sum-split to fit it into multiple MCs. The number of PTs
utilized for signals that sum-split is large and is an undesirable
option. With the 2-bit group-size implementation we can ac-
commodate the entire functionality of a 32-bit full carry-looka-
head adder without any of the signals getting sum-split. The
scheme takes a maximum of three passes through the logic
array for all adder sizes up to 32 bits to generate outputs. The

Figure 6. Some Possible Implementations for 12-Bit 
Carry-Lookahead Adder
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various values of Es and Rs, SUM1, SUM0, and C2 are gen-
erated in the first pass. All the other intermediate carries are
generated in the second pass and the various SUM results
are generated in the third pass. A key point to note is that the
value of CO is produced in the second pass, even though the
various SUM outputs are generated in the third pass only.

This makes the component cascadable and modular. Refer to
Table 1 for details on the resource utilization of different 12-bit
adder implementations. The FC2ADD12 is built using the
ADD2WC and ADD2NC as basic building blocks. The block
diagram of a FC2ADD12 is shown in Figure 7. The VHDL
code for the design is also presented. 

--A 12-bit Full carry-lookahead adder built using the ADD2WC and ADD2NC 
--elements

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE WORK.ADD2WC.ALL;
USE WORK.ADD2NC.ALL;

ENTITY fc2add12 IS
PORT(CI :  IN STD_LOGIC ;

A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0: IN STD_LOGIC ;
B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0: IN STD_LOGIC ;
SUM11,SUM10,SUM9,SUM8,SUM7,SUM6,SUM5,SUM4,
SUM3,SUM2,SUM1,SUM0 : OUT STD_LOGIC;
CO: OUT STD_LOGIC);

END fc2add12;
 
ARCHITECTURE archfc2add12 OF fc2add12 IS

SIGNAL C2, C4, C6, C8, C10 : STD_LOGIC;
SIGNAL E1,E2,E3,E4,E5  : STD_LOGIC;
SIGNAL R1,R2,R3,R4,R5  : STD_LOGIC; 
attribute synthesis_off of  E1,E2,E3,E4,E5 : signal is true ;
attribute synthesis_off of  R1,R2,R3,R4,R5 : signal is true ;
attribute synthesis_off of  C2, C4, C6, C8, C10 : signal is true ;

BEGIN

i1: add2wc PORT MAP(CI,A1,A0,B1,B0,SUM1,SUM0,C2);

Figure 7. 12-Bit Full Carry-Lookahead Adder Using ADD2WC and ADD2NC

FC2ADD12: 12-Bit Fast Carry Adder (3 Passes)
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i2: add2nc PORT MAP(C2,A3,A2,B3,B2,SUM3,SUM2);
i3: add2nc PORT MAP(C4,A5,A4,B5,B4,SUM5,SUM4);
i4: add2nc PORT MAP(C6,A7,A6,B7,B6,SUM7,SUM6);
i5: add2nc PORT MAP(C8,A9,A8,B9,B8,SUM9,SUM8);
i6: add2nc PORT MAP(C10,A11,A10,B11,B10,SUM11,SUM10);

E1 <= (A3 AND B3) OR ((A3 OR B3) AND (A2 AND B2));
R1 <= (A3 OR B3) AND (A2  OR B2);        

C4 <= E1 OR (C2 AND R1);

E2 <= (A5 AND B5) OR ((A5 OR B5) AND (A4 AND B4));
R2 <= (A5 OR B5) AND (A4 OR B4);

       
C6 <= E2 OR ((E1 OR (C2 AND R1))  AND R2); 

       
E3 <= (A7 AND B7) OR ((A7 OR B7) AND (A6 AND B6));
R3 <= (A7 OR B7) AND (A6 OR B6);       

C8 <= E3 OR ((E2 OR ((E1 OR (C2 AND R1)) AND R2)) AND R3);

E4 <= (A9 AND B9) OR ((A9 OR B9) AND (A8  AND B8));
R4 <= (A9 OR B9) AND (A8 OR B8);

C10 <= E4 OR ((E3 OR ((E2 OR ((E1  OR (C2 AND R1)) AND R2)) AND R3)) AND 
    R4);

 
E5 <= (A11 AND B11) OR ((A11 OR B11) AND (A10 AND B10)); 
R5 <= (A11 OR B11) AND (A10 OR B10);

CO <= E5 OR ((E4 OR ((E3 OR ((E2 OR ((E1 OR (C2 AND R1)) AND R2)) AND 
   R3)) AND R4)) AND R5);

END archfc2add12;

FC3ADD12: 12-Bit Full Carry-Lookahead Adder using a 
Group-Size of 3 Bits

This is very similar to the FC2ADD12, differing in the
group-size of the adder used as the basic building block. The
basic building blocks in this scheme are the ADD3WC and the
ADD3NC components. The VHDL code attached and the
block diagram in Figure 8 illustrate the design. This scheme
takes four passes through the logic array to yield all the re-
sults. The Es and the Rs are generated in the first pass. The
intermediate carries C3, C6, and C9 are generated in the sec-
ond pass. The carries internal to the group are generated in
the third pass and the final SUM outputs in the fourth pass.

As a different approach, the CO is generated by the MSB
ADD3WC as opposed to the Carry-lookahead unit. This re-
sults in CO being generated in the third pass as opposed to
the second pass. The VHDL code clearly indicates the man-
ner in which the model is built. 

For some bit-sizes, given that the 3-bit group-size is odd-num-
bered, the designer will have to choose a non-modular struc-
ture in building the adder. For example, a 32-bit adder cannot
be built using just ADD3NCs and can be built using 10
ADD3NCs and one ADD2NC. The designer needs to choose
the final implementation based on the constraints of the ap-
plication.

Figure 8. 12-Bit Full Carry-Lookahead Adder using ADD3WC and ADD3NC

FC3ADD12: 12-Bit Fast Carry Adder (4 Passes)
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--12-Bit Fast carry-Lookahead adder with 3-bit groups

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE WORK.ADD3WC.ALL;
USE WORK.ADD3NC.ALL;

ENTITY fc3add12  IS
PORT (

A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0 : IN STD_LOGIC;
B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0 : IN STD_LOGIC;  
CI : IN STD_LOGIC ;
CO : OUT STD_LOGIC;
SUM11,SUM10,SUM9,SUM8,SUM7,SUM6,SUM5,SUM4,SUM3,
SUM2,SUM1,SUM0 : OUT STD_LOGIC);

END fc3add12;

ARCHITECTURE fc3add12arch OF fc3add12  IS

SIGNAL  E1,E2,E3 : STD_LOGIC;
SIGNAL  R1,R2,R3  : STD_LOGIC;
SIGNAL  C3,C6,C9 : STD_LOGIC;

attribute synthesis_off of C3,C6,C9 :  signal is true ;
attribute synthesis_off of E1,E2,E3 : signal is true ;
attribute synthesis_off of  R1,R2,R3 :  signal is true ;

BEGIN

i1: add3nc PORT MAP(CI,A2,A1,A0,B2,B1,B0,SUM2,SUM1,SUM0);
i2: add3nc PORT MAP(C3,A5,A4,A3,B5,B4,B3,SUM5,SUM4,SUM3);

i3: add3nc PORT MAP(C6,A8,A7,A6,B8,B7,B6,SUM8,SUM7,SUM6); 
i4: add3wc PORT MAP(C9,A11,A10,A9,B11,B10,B9,SUM11,SUM10,SUM9,CO);

E1 <=  (A2 AND B2) 
OR ((A1 AND B1) AND (A2 OR B2)) 
OR ((A0 AND B0) AND (A1 OR B1) AND (A2 OR B2));

R1 <=  (A2 OR B2) AND (A1 OR B1) AND (A0 AND B0);

C3 <= E1 OR (R1 AND CI);

E2 <=  (A5 AND B5) 
OR ((A4 AND B4) AND (A5 OR B5)) 
OR ((A3 AND B3) AND (A4 OR B4) AND (A5 OR B5));

 
R2 <=  (A5 OR B5) AND (A4  OR B4) AND (A3 AND B3);
 
C6 <= E2 OR (E1 AND R2) OR (R2  AND R1 AND CI);

E3 <=  (A8 AND B8)  
OR ((A7 AND B7) AND (A8 OR B8))  
OR ((A6 AND B6) AND (A7 OR B7) AND (A8 OR B8)); 

  
R3 <=  (A8 OR B8) AND (A7 OR B7) AND (A6 AND B6); 
 
C9 <= E3 OR (E2 AND R3) OR (E1 AND R3 AND R2) OR (R3 AND R2 AND R1 AND CI);

END fc3add12arch;
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FC4ADD12: 12-Bit Full Carry-Lookahead Adder using a 
Group-Size of 4 Bits

This is very similar to the FC2ADD12 and, again, differs in the
group-size of the adder used as the basic building block. The
basic building block in this scheme is the ADD4NC compo-
nent. The ADD4NC component is built using a combination
of ADD2WC and ADD2NC in the same order. This compo-
nent is replicated to create the adder of the desired size. In
the very last stage, two ADD2WCs are used instead of an

ADD2WC and an ADD2NC. The VHDL code attached and
the block diagram in Figure 9 illustrate the design’s function-
ality. This scheme takes four passes through the logic array
to yield results. The various Es and Rs are generated in the
first pass, the values of C4 and C8 in the second pass, the
outputs from all the ADD2WCs in the third pass, and the out-
puts from ADD2NC in the fourth pass. Note that the value of
CO is generated in the second pass. This scheme uses fewer
MCs and more PTs than the previously mentioned schemes.
The resource utilization of this model is shown in Table 1.

--A 12-bit Full carry-lookahead adder built using the ADD2WC and ADD2NC 
--elements. The ADD2WC and ADD2NC elements are part of the ADD4NC in the 
--same order

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE WORK.ADD2WC.ALL;
USE WORK.ADD2NC.ALL;

ENTITY fc4add12 IS
PORT (

A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0 : IN STD_LOGIC ;
B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0 : IN STD_LOGIC ;
CI : IN STD_LOGIC ;
CO : OUT STD_LOGIC;
SUM11,SUM10,SUM9,SUM8,SUM7,SUM6,SUM5,SUM4,SUM3,
SUM2,SUM1,SUM0 : OUT STD_LOGIC);

END fc4add12;

ARCHITECTURE fc4add12arch OF fc4add12  IS

 SIGNAL E1,E2 : STD_LOGIC;
 SIGNAL R1,R2  : STD_LOGIC;
 SIGNAL C2,C4,C6,C8,C10 :  STD_LOGIC;

Figure 9. 12-Bit Full Carry-Lookahead Adder using ADD4NC

FC4ADD12: 12-Bit Fast Carry Adder (4 Passes)

ADD2WC ADD2WC

ADD2NC

CIB1,B0

ADD2WC

SUM1,SUM0

ADD2NC ADD2WC

Carry-Lookahead UnitCO

SUM3,SUM2SUM5,SUM4SUM7,SUM6

SUM11,SUM10 SUM9,SUM8

A1,A0B3,B2A3,A2B5,B4A5,A4B7,B6A7,A6

B9,B8A9,A8B11,B10A11,A10

ADD4NC

CI

To CLA

To CLA

To CLA

C8

C4



Efficient Arithmetic Designs With Cypress CPLDs

12

attribute synthesis_off of  C2,C4,C6,C8,C10 : signal is true ;
attribute synthesis_off of  E1,E2 : signal is true ;
attribute synthesis_off of R1,R2 : signal is true ;

BEGIN

i1: add2wc PORT MAP(CI,A1,A0,B1,B0,SUM1,SUM0,C2);
i2: add2nc PORT MAP(C2,A3,A2,B3,B2,SUM3,SUM2);

i3: add2wc PORT MAP(C4,A5,A4,B5,B4,SUM5,SUM4,C6); 
i4: add2nc PORT MAP(C6,A7,A6,B7,B6,SUM7,SUM6);

i5: add2wc  PORT MAP(C8,A9,A8,B9,B8,SUM9,SUM8,C10); 
i6: add2wc  PORT MAP(C10,A11,A10,B11,B10,SUM11,SUM10,CO);

E1 <=  (A3 AND B3) 
OR ((A2 AND B2) AND (A3 OR B3)) 

 OR ((A1 AND B1) AND (A2 OR B2) AND (A3 OR B3))
OR ((A0 AND B0) AND (A1 OR B1) AND (A2 OR B2) AND (A3 OR B3)); 

R1 <= (A3 OR B3) AND (A2 OR B2) AND (A1 OR B1) AND (A0 AND B0);

C4 <= E1 OR (R1 AND CI);

E2 <=  (A7 AND B7) 
OR ((A6 AND B6) AND (A7 OR B7))
OR ((A5 AND B5) AND (A6 OR B6) AND (A7 OR B7))
OR ((A4 AND B4) AND (A5 OR B5) AND (A6 OR B6) AND (A7 OR B7));

 
R2 <= (A7 OR B7) AND (A6 OR B6) AND (A5 OR B5) AND (A4 AND B4); 
 
C8 <= E2 OR (E1 AND R2) OR (R2 AND R1 AND CI);

END fc4add12arch;

Subtracters
Subtracters are just a modified form of adders. The discus-
sion presented for the adders can be easily extended to the
subtracters. For any given sized adder or subtracter, the re-
source utilization is exactly the same in all respects.

SUB: 1-Bit Full Subtracter

The basic component used in subtracting two operands is
called a Full subtracter. The full subtracter element will be

referred to as the ‘SUB’ component. The block diagram and
functionality of SUB is shown in Figure 10. A (minuend) and
B (subtrahend) are the two operands to be subtracted and Bin
is the Borrow-in to the component. DIF and Bout are the Dif-
ference and Borrow-out from the component. 

The VHDL code describing the functionality of the SUB com-
ponent is shown here. This design takes one pass through the
logic array to fit into a Cypress CPLD. The SUB component
instantiated in the VHDL code has the exact same function-
ality shown in Figure 10.

-- This VHDL code implements the element SUB

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE mathpkg IS
COMPONENT sub

PORT (BIN: IN STD_LOGIC ;

Figure 10. Block Diagram and Functionality of a Full Subtracter

SUB: 1-Bit Full Subtracter (1 Pass)

Bin

DIFBout

A B

SUB (Basic building block)

Bout = (NOT A AND B) OR (NOT A AND CI) or (B AND CI)

Functionality: DIF = NOT (NOT (A XOR B) XOR Bin)



Efficient Arithmetic Designs With Cypress CPLDs

13

A, B: IN STD_LOGIC ;
DIF: OUT STD_LOGIC;
BOUT: OUT STD_LOGIC);

END COMPONENT;
END mathpkg;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY sub IS
PORT (Bin: IN STD_LOGIC ;

A, B: IN STD_LOGIC ;
DIF: OUT STD_LOGIC;
 Bout: OUT STD_LOGIC);

END sub;
 
ARCHITECTURE archsub OF sub IS

BEGIN

DIF <= NOT ( NOT (A0 XOR B0) XOR Bin);
Bout <= (A and (not B)) or (A and Bin) or ((not B) and Bin);

END archsub;

SUB2WB: A 2-Bit Subtracter with a Borrow-Out

The structure of a 2-bit group subtracter (SUB2WB) is very
similar to that of the ADD2WC and is shown here. This com-
ponent can be used as a building block to build larger sized
subtracters, exactly like ADD2WC was used to build larger
sized adders. The block diagram of the SUB2WB is shown in
Figure 11. The corresponding VHDL code used to describe
the functionality of the SUB2WB is also attached. As in the
case of ADD2WC, the functionality for SUB2WB is realized in
one pass through the logic array.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE sub2wb_pkg IS
COMPONENT sub2wb PORT(

Bin :  IN STD_LOGIC ;
A1,A0: IN STD_LOGIC ;
B1,B0: IN STD_LOGIC ;
DIF1,DIF0 : OUT STD_LOGIC;
Bout: OUT STD_LOGIC);

END COMPONENT;
END sub2wb_pkg;

ENTITY sub2wb IS
PORT (Bin : IN STD_LOGIC ;

A1,A0: IN STD_LOGIC ;
B1,B0: IN STD_LOGIC ;
DIF1,DIF0 : OUT STD_LOGIC;
Bout:  OUT STD_LOGIC);

END sub2wb;

ARCHITECTURE archsub2wb OF sub2wb  IS

BEGIN

DIF0 <= NOT ( NOT (A0 XOR B0) XOR Bin);
DIF1 <= NOT ( NOT (A1 XOR B1)  XOR (( NOT A0 AND B0) OR ( NOT A0 AND Bin) OR

 (B0  AND Bin)));

Figure 11. Block Diagram of a 2-Bit Subtracter with a 
Borrow-Out

SUB2: 2-Bit Adder (1 Pass)

Bin

DIF1,DIF0Bout

SUB2WB

A1,A0 B1,B0
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Bout   <= ( NOT A0 AND B0 AND B1)
OR ( NOT A0  AND B0 AND NOT A1)
OR (BI AND B0 AND B1)
OR (BI AND B0 AND NOT A1)
OR (BI AND NOT A0 AND B1)
OR (BI AND NOT A0 AND NOT A1)
OR ( NOT A1 AND B1);

END archsub2wb;

FB2SUB12: 12-Bit Full Borrow-Lookahead 
Subtracter using 2-Bit Subtracters

It was mentioned before that we can build equivalent subtract-
er models for all the adder models discussed earlier. The
functionality and the implementation of an FB2SUB12 (sub-
tracter equivalent of an FC2ADD12) is shown here as an ex-
ample. The implementation of all the possible subtracter ele-
ments is not discussed in this application note, since the
concept involved in building them is identical to that of the
adders. 

The block diagram of the FB2SUB12 is very similar to that of
the adder element FC2ADD12 and is shown in Figure 12. The
FB2SUB12 is built using the basic elements SUB2WB and
SUB2NC (2-bit subtracter with no borrow-out). This takes
three passes through the logic array. The values of the vari-
ous Es and Rs are generated in the first pass, the intermedi-
ate carries (borrows) in the second pass, and the various
DIFs in the third pass. Note that the value of BO is generated
in the second pass. The VHDL code for FB2SUB12 is also
shown.

--A 12-bit Full borrow-lookahead subtracter built using the SUB2WC and  
--SUB2NC elements

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE WORK.SUB2WB.ALL;
USE WORK.SUB2NC.ALL;

ENTITY fb2sub12 IS
PORT (Bin :  IN STD_LOGIC ;

A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0: IN STD_LOGIC ;
B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0: IN STD_LOGIC ;
DIF11,DIF10,DIF9,DIF8,DIF7,DIF6,DIF5,DIF4,
DIF3,DIF2,DIF1,DIF0 : OUT STD_LOGIC;

Figure 12. 12-Bit Fast Borrow Subtracter Built using SUB2WB and SUB2NC

FBSUB12: 12-Bit Fast Borrow Subtracter (3 Passes)
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Bout: OUT STD_LOGIC);
END fb2sub12;
 
ARCHITECTURE archfb2sb12 OF fb2sub12 IS

SIGNAL C2, C4, C6, C8, C10 : STD_LOGIC;
SIGNAL E1,E2,E3,E4,E5  : STD_LOGIC;
SIGNAL R1,R2,R3,R4,R5  : STD_LOGIC; 

--The internal carries are referred to as C’s to distinguish between 
--borrow-out’s and the operands

attribute synthesis_off of  E1,E2,E3,E4,E5 : signal is true ;
attribute synthesis_off of  R1,R2,R3,R4,R5 : signal is true ;
attribute synthesis_off of  C2, C4, C6, C8, C10 : signal is true ;

BEGIN

i1: sub2wb PORT MAP(Bin,A1,A0,B1,B0,DIF1,DIF0,C2);
i2: sub2nc PORT MAP(C2,A3,A2,B3,B2,DIF3,DIF2);
i3: sub2nc PORT MAP(C4,A5,A4,B5,B4,DIF5,DIF4);
i4: sub2nc PORT MAP(C6,A7,A6,B7,B6,DIF7,DIF6);
i5: sub2nc PORT MAP(C8,A9,A8,B9,B8,DIF9,DIF8);
i6: sub2nc PORT MAP(C10,A11,A10,B11,B10,DIF11,DIF10);

E1 <= ( NOT A3 AND B3) OR (( NOT A3 OR B3) AND ( NOT A2 AND B2));
R1 <= ( NOT A3 OR B3) AND ( NOT A2 OR B2);        

C4 <= E1 OR (C2 AND R1);

E2 <= ( NOT A5 AND B5) OR (( NOT A5 OR B5) AND ( NOT A4 AND B4));
R2 <= ( NOT A5 OR B5) AND ( NOT A4 OR B4);

C6 <= E2 OR ((E1 OR (C2 AND R1))  AND R2); 
       

E3 <= ( NOT A7 AND B7) OR (( NOT A7 OR B7) AND ( NOT A6 AND B6));
R3 <= ( NOT A7 OR B7) AND ( NOT A6 OR B6);       

C8 <= E3 OR ((E2 OR ((E1 OR (C2 AND R1)) AND R2)) AND R3);

E4 <= ( NOT A9 AND B9) OR (( NOT A9 OR B9) AND ( NOT A8 AND B8));
R4 <= ( NOT A9 OR B9) AND ( NOT A8 OR B8);

C10 <= E4 OR ((E3 OR ((E2 OR ((E1  OR (C2 AND R1)) AND R2)) AND R3)) 
    AND R4);

 
E5 <= ( NOT A11 AND B11) OR (( NOT A11 OR B11) AND ( NOT A10 AND B10));   
R5 <= ( NOT A11 OR B11) AND ( NOT A10 OR B10);

Bouy <= E5 OR ((E4 OR ((E3 OR ((E2 OR ((E1 OR (C2 AND R1)) AND R2))  
   AND R3)) AND R4)) AND R5);

END archfb2sub12;

Table 1. Comparison of Different 12-Bit Adder Schemes

Resource R1ADD12 R2ADD12 R3ADD12 FC2ADD12 FC3ADD12 FC4ADD12

PTs used 84 138 165 148 153 169

MCs used 24 18 16 28 26 22

# of passes 12 6 5 3 4 4
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Comparison of Resource Utilization for Di ffer-
ent Schemes in Building a 12-Bit Adder
A comparison chart showing the resource utilization for the
different models that can be used in building a 12-bit adder is
shown in Table 1. This table summarizes some of the key
issues that have been presented in the discussion so far.
Some comparisons and comments from the charts and are
listed here: 

Ripple Carry Adders

1. For a given group-size, the number of passes taken to yield 
results is dependent on the size of the adder being built.

2. As the group-size increases, the number of passes taken 
through the logic array is (n/k) -1 + # of passes for final 
stage, where n is the size of the adder and k is the group 
size. For example, a R2ADD12 takes (12/2) -1 + 1 = 6 
passes to yield the desired result.

3. In the R3ADD12 (ripple carry adder built using 3-bit 
groups) scheme, the value of the MSB sum bit within a 3-bit 
group is produced only in the second pass through the 
array. This, however, does not affect the 12-bit adder yield-
ing results in 5 passes (12/3) -1 + 2 = 5) as expected. This 
is possible because the carry-out from the 3-bit group is 
produced in the first pass. The implementation of the 
ADD3WC was discussed in detail earlier. This solution is 
a very desirable solution for most applications that use 
small sized adders.

4. The R1ADD12 uses fewer PTs and more MCs among the 
different versions of ripple-carry adders. The opposite is 
the case for the R3ADD12. The R2ADD12 provides an 
intermediate solution between the two extremes.

5. The macrocell count in R1ADD12 can be reduced from 24 
to 18, if the attribute ‘synthesis_off’ is used on the 
even-numbered carries only. The number of passes is also 
improved from 12 to 6. This pushes the product term count 
from 84 to 138. In either case, none of the equations must 
be sum split. This is, in fact, R2ADD12. The designer can 
choose the implementation that best chooses the applica-
tion.

6. The R4ADD12 (ripple carry adder built using 4-bit groups) 
is not a viable solution, since the carry-out from one of the 
4-bit groups would take two passes to be generated. This 
results in a implementation that takes six passes to yield 
results as opposed to the expected three passes. This so-
lution is inefficient and is not considered.

Carry-Lookahead Adders

1. For a given group-size, the number of passes taken to yield 
results is largely independent of the size of the adder being 

built. This is the biggest advantage with carry-lookahead 
adders.

2. All the group generates (Es) and group propagates (Rs) 
are generated in the first pass and the carry-ins to all 
groups in the second pass through the logic array. The 
Sum outputs are generated in the third or the fourth pass, 
depending on the group-size being used.

3. The FC2ADD12 takes three passes to complete, and four 
passes for the FC3ADD12 and FC4ADD12. The number 
of passes remains the same up to 32-bit versions of the 
adder.

4. Similar to the ripple carry adders, the FC2ADD12 uses 
fewer PTs and more MCs among the different versions of 
carry-lookahead adders. The opposite is the case for the 
FC4ADD12. The FC3ADD12 provides an intermediate so-
lution between the two extremes.

5. The FC5ADD12 (carry-lookahead adder built using 5-bit 
groups) is not a viable solution, since the extra number of 
PTs and number of passes (5) taken through the logic ar-
ray do not justify its usage. The design is also not modular 
and difficult to deal with. A designer can, however, extend 
the discussion presented to build his own FC5ADD12 
model if the application demands it. This, however, would 
be an extreme case and is not presented.

Summary

Comparing ripple carry and carry-lookahead adders, it is ev-
ident that ripple carry adders are area efficient but have poor
speed performance. The carry-lookahead adders on the oth-
er hand are faster but utilize more resources. Given the differ-
ent choices, the user can choose which scheme is best suited
for his application.

Large-Sized Adders/Subtracters
Table 2 discusses the resource utilization for 24-bit and 32-bit
adders using 2-bit, 3-bit, and 4-bit group-sizes with carry/bor-
row-lookahead principle. In the previous sections, different
implementation strategies and the VHDL code for a 12-bit
full-carry-lookahead adder were shown as an example. The
VHDL code for most variations of the 24- and 32-bit imple-
mentations are not presented here due to space constraints.
The code isprovided, however, as a part of the tutorial section
in the Warp VHDL compiler. Figure 12 illustrates three
schemes used in implementing a 24-bit adder. The VHDL
code for a 24-bit carry-lookahead adder with a 4-bit group size
is shown here as an example. The code for other models is
very similar and can be easily extrapolated. 

Table 2. Comparison of Different 24-Bit and 32-Bit Adder Schemes. 

Resource FC2ADD24 FC3ADD24 FC4ADD24 FC2ADD32 FC3ADD32 FC4ADD32

PTs used 272 314 359 393 427 488

MCs used 58 54 46 78 73 62

# of passes 3 4 4 3 4 4



Efficient Arithmetic Designs With Cypress CPLDs

17

--24-bit Fast Carry lookahead adder with 4-bit groups

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

USE work.add2wc_pkg.all;
USE work.add2nc_pkg.all;

ENTITY fc4add24 IS 
PORT (

A23,A22,A21,A20,A19,A18,A17,A16,A15,A14,A13,A12,
A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0 : IN STD_LOGIC ;
B23,B22,B21,B20,B19,B18,B17,B16,B15,B14,B13,B12,
B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0 : IN STD_LOGIC ;
CI : IN STD_LOGIC ;
CO : OUT STD_LOGIC;
SUM23,SUM22,SUM21,SUM20,SUM19,SUM18,SUM17,SUM16,SUM15,SUM14,SUM13,SUM12,SUM11,SUM10,SUM9,SUM8
,SUM7,SUM6,SUM5,SUM4,SUM3,SUM2,SUM1,SUM0: OUT STD_LOGIC);

END fc4add24;

ARCHITECTURE fc4add24arch OF fc4add24 IS

SIGNAL  E1,E2,E3,E4,E5 : STD_LOGIC;
SIGNAL  R1,R2,R3,R4,R5  : STD_LOGIC;
SIGNAL  C2,C4,C6,C8,C10,C12,C14,C16,C18,C20,C22 : STD_LOGIC;

attribute synthesis_off of C2,C4,C6,C8,C10,C12,C14,C16,C18,C20,C22 : signal is true ;
attribute synthesis_off of E1,E2,E3,E4,E5 : signal is true ;
attribute synthesis_off of  R1,R2,R3,R4,R5 : signal is true ;

BEGIN

i1: add2wc PORT MAP (CI,A1,A0,B1,B0,SUM1,SUM0,C2);
i2: add2nc PORT MAP (C2,A3,A2,B3,B2,SUM3,SUM2);

i3: add2wc  PORT MAP (C4,A5,A4,B5,B4,SUM5,SUM4,C6); 
i4: add2nc PORT MAP (C6,A7,A6,B7,B6,SUM7,SUM6);

i5: add2wc PORT MAP (C8,A9,A8,B9,B8,SUM9,SUM8,C10); 
i6: add2nc PORT MAP (C10,A11,A10,B11,B10,SUM11,SUM10);

i7: add2wc PORT MAP (C12,A13,A12,B13,B12,SUM13,SUM12,C14);
i8: add2nc PORT MAP (C14,A15,A14,B15,B14,SUM15,SUM14);

i9: add2wc PORT MAP (C16,A17,A16,B17,B16,SUM17,SUM16,C18); 
i10: add2nc PORT MAP (C18,A19,A18,B19,B18,SUM19,SUM18); 

i11: add2wc PORT MAP (C20,A21,A20,B21,B20,SUM21,SUM20,C22); 
i12: add2wc PORT MAP (C22,A23,A22,B23,B22,SUM23,SUM22,Co); 

E1 <=  (A3 AND B3) 
OR ((A2 AND B2) AND (A3 OR B3)) 
OR ((A1 AND B1)  AND (A2 OR B2) AND (A3 OR B3))
OR ((A0 AND B0) AND (A1 OR B1) AND (A2 OR B2) AND (A3 OR B3)); 

Figure 13. Three Different Carry-Lookahead Schemes to Implement a 24-Bit Adder

- Adder split into 12 groups of 2

- Adder split into 8 groups of 3

- Adder split into 6 groups of 4
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R1 <= (A3 OR B3) AND (A2 OR B2) AND (A1 OR B1) AND (A0 AND B0);

C4 <= E1 OR (R1 AND CI);

E2 <=  (A7 AND B7) 
OR ((A6 AND B6) AND (A7 OR B7))
OR ((A5 AND B5) AND (A6 OR B6) AND (A7 OR B7))
OR ((A4 AND B4) AND (A5 OR B5) AND (A6 OR B6) AND (A7 OR B7));

 
R2 <= (A7 OR B7) AND (A6 OR B6) AND (A5 OR B5) AND (A4 AND B4); 
 
C8 <= E2 OR (E1 AND R2) OR (R2 AND R1  AND CI);

E3 <=  (A11 AND B11)
OR ((A10 AND B10) AND (A11 OR B11))
OR ((A9 AND B9) AND (A10 OR B10) AND (A11 OR B11))
OR ((A8 AND B8) AND (A9 OR B9) AND (A10 OR B10) AND (A11 OR B11));

 
R3 <= (A11 OR B11) AND (A10 OR B10) AND (A9 OR B9) AND (A8 AND B8);
 
C12 <= E3  OR (E2 AND R3) OR (E1 AND R3 AND R2)  OR (R3 AND R2 AND R1 AND  
CI);

E4 <=  (A15 AND B15)
OR ((A14 AND B14) AND (A15 OR B15)) 
OR ((A13 AND B13) AND (A14 OR B14) AND (A15 OR B15)) 
OR ((A12 AND B12) AND (A13 OR B13) AND (A14 OR B14) AND (A15 OR B15)); 

  
R4 <= (A15 OR B15) AND (A14 OR B14) AND (A13 OR B13) AND (A12 AND B12); 
  
C16 <= E4 OR (E3 AND R4) OR (E2 AND R4 AND R3) OR (E1  AND R4 AND R3 AND R2) 
OR (R3 AND R2 AND R1  AND CI);

E5 <=  (A19 AND B19)
OR ((A18 AND B18) AND (A19 OR B19))  
OR ((A17 AND B17) AND (A18 OR B18) AND (A19 OR B19))  
OR ((A16 AND B16) AND (A17 OR B17) AND (A18 OR B18) AND (A19 OR B19));  

R5 <= (A19 OR B19) AND (A18 OR B18) AND (A17 OR B17) AND (A16 AND B16);  
   
C20 <= E5 OR (E4 AND R5) OR (E3 AND R5 AND R4)  OR (E2   AND R5  AND  R4 AND 

R3) OR (E1 AND R5 AND R4 AND R3 AND R2) OR (R5 AND R4  AND R3 AND R2 AND 
R1 AND CI);  

END fc4add24arch;

Equality Comparators
Equality comparators are used to compare the value of two
operands.  Equality comparators are built using the Exclu-
sive-OR gate as the building block.  A bit-wise comparison of
the two data streams is done using XOR gates and each of
the individual results are OR-ed together to obtain the final
result.

EQCOMP4: 4-Bit Equality Comparator

The EQCOMP4 is a 4-bit equality compare element.  The
model can be described as:

EQ = NOT ((A3 XOR B3)
OR (A2 XOR B2)

  OR (A1 XOR B1)
OR (A0 XOR B0))

This implementation takes 8 PTs. Figure 14 shows the block
diagram for EQCOMP4. NEQCOMP4 is the 4-bit non-equality
comparator. The EQCOMP4 is implemented as an inverted
version of the NEQCOMP4. The NEQCOMP4 element takes
8 PTs and the EQCOMP4 takes 16 PTs. The Cypress CPLD
has a polarity control in the macrocell and can create the

EQCOMP4 element using the NEQCOMP4 element, result-
ing in a implementation with a reduced product term count.

The equality comparator for all bit sizes greater than 8 takes
more than 16 PTs to produce the result and takes two passes,
since the Cypress CPLD architecture takes in a maximum of
16 PTs into one macrocell.

EQCOMP24: 24-Bit Equality Comparator

The EQCOMP24 uses three EQCOMP8s in parallel and com-
bines the results of the three components to produce the re-
sult. This takes two passes through the logic array, 4 MCs,

Figure 14. Block Diagram of a 4-Bit Equality Compare

NEQCOMP4

A3..0

B3..0

EQ

EQCOMP4
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and 49 PTs. The block diagram of this model is shown in
Figure 15.

Magnitude Comparators
Magnitude comparators are also widely used in the industry
in comparing values of two operands. The magnitude com-

parators provide information if a signal is greater than (>), or
less than (<) another signal of the same length.

MAGCOMP8: 8-Bit Magnitude Comparator

This is the generic implementation of a magnitude compara-
tor and does a bit-wise comparison, similar to that of the
equality comparison. However, in the case of a magnitude
comparator the results of a bit-wise comparison are to be
retained and passed onto the succeeding set of bits. This
passage of information continues and tends to increase the
resource utilization of the design exponentially.

The VHDL implementation of an 8-bit magnitude comparator
is shown here. The design takes 255 PTs and fits in two pass-
es through the logic array. The block diagram of MAGCOMP8
is shown in Figure 16.

-- Flattened version of the Magnitude comparator

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

USE work.std_arith.all;

ENTITY magcomp IS
PORT (
A,B : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
MAG : OUT STD_LOGIC);

END magcomp;

ARCHITECTURE magarch OF magcomp IS

BEGIN

MAG <= ’1’ WHEN (A < B) ELSE ’0’;

END magarch;

A fully flattened implementation of a magnitude comparator
of n bits would take (2n - 1) PTs to implement. It is, however,
not recommended to use the fully-flattened version of the
magnitude comparator for any bit-size greater than 4 bits.
This is to ensure that there is no sum-splitting involved in the
equations. There are other means to achieve better results
and the best scheme is presented next.

FB2MGCMP8: 8-Bit Borrow-Lookahead 
Magnitude Comparator

The block diagram of an 8-bit magnitude compare is shown
in Figure 17. 

This scheme uses a different approach to compare the mag-
nitudes of two binary bit vectors. As an example, the scheme
is illustrated for a 8-bit magnitude comparator. The 4 MSB bits
of the bit vectors A[7:0] and B[7:0] are called AM and BM,
respectively. Similarly, the 4 LSB bits are referred to as AL and
BL respectively. The bit vector A is greater than B if (AM > BM)
or if (AM = BM) and (Al > BL). 

It is evident from the set of equations in Figure 18 that the
magnitude comparison of two binary bit vectors can be done
by evaluating the values of GM, GL and PM. GM and GL are
the generate functions for the MSHalf (most significant half)
and the LSHalf (least significant half) for the two bit vectors
and PM is the propagate function for the MSHalf. This scheme
is a stripped down version of the borrow-lookahead scheme
used to build fast subtracters. In this implementation we need
to determine the values of the generate and propagate func-
tions for the bit vectors and need not produce any of the dif-
ference results. The borrow-out signal determines the output
of the magnitude comparison. If the borrow-out is a ‘1’ then
(A < B), else (A q B).

This scheme allows for a fast and efficient means to do mag-
nitude comparisons. Magnitude Comparators up to 32 bits

Figure 15. Block Diagram of a 24-Bit Equality Compare
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Figure 16. Block Diagram of an 8-Bit Magnitude Compare
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Figure 17. Block Diagram of an 8-Bit Magnitude Compare
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can be built to produce the result in just 2 passes. The number
of PTs used is also substantially less than the ‘flattened’ im-
plementation of the magnitude comparators.

The discussion presented earlier on group-sizes can also be
extended here. The group-size over which the propagate and
generate functions are generated can be varied to be 2, 3 or
4. In all cases the design takes 2 passes to produce the de-
sired result. The various values of Es and Rs are generated
in the first pass and the value of the borrow-out in the second
pass. However, there is a trade-off between the number of
PTs and MCs used among the different group-sizes chosen.
A comparison between these different implementations is dis-
cussed later.

The number of PTs used to implement the PM (propagate)
function can be halved if ‘OR’ gates are used instead of ‘XOR’
gates. This was mentioned earlier in the discussion on car-
ry-lookahead. This extension makes the implementation of
the borrow-lookahead magnitude comparator fast and effi-
cient.

Comparison of Two Implementations of a 12-Bit Magni-
tude Compare

Two different implementations of a 12-bit magnitude compar-
ator are shown here. The first implementation is an extension
of MAGCOMP4. The second implementation uses the bor-
row-lookahead scheme and is built using borrow-lookahead
over a group-size of 2 bits. This comparison illustrates the
advantage of using FB2MGCMP12 over the simple
MAGCOMP12. 

The block diagram of MAGCOMP12 is shown in Figure 19.
The flattened version of MAGCOMP12 takes (212 - 1) PTs.
This is a large amount of logic and will not fit into any of the

Cypress CPLDs. The MAGCOMP12 with the synthesis_off
attribute on the intermediate signals uses 44 unique PTs, but
is very slow and takes 11 passes through the array.

The block diagram of FB2MGCMP12 is shown in Figure 20.
The VHDL code for this design is also shown here. This de-
sign takes just two passes through the array and uses 36
unique PTs. The various values of Es and Rs are generated
in the first pass and the value of the borrow-out in the second
pass. Each of the Es uses 3 PTs and Rs 2 PTs and the output
MAG takes 6 PTs. This is clearly a much better implementa-
tion than the MAGCOMP12.

--The borrow-lookahead principle using 2-bit groups was used to build this

--element

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY fb2mgcmp12 IS
PORT (

A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0: IN STD_LOGIC ;
B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0: IN STD_LOGIC ;

MAG: OUT STD_LOGIC);
END fb2mgcmp12;
 
ARCHITECTURE archfb2mgcmp12 OF fb2mgcmp12 IS

SIGNAL E0,E1,E2,E3,E4,E5  : STD_LOGIC;
SIGNAL R0,R1,R2,R3,R4,R5  : STD_LOGIC; 

Figure 18. Bit Vector Magnitude Comparison Equations
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Figure 19. Block Diagram of a 12-Bit Magnitude Compare

Figure 20. Block Diagram of a 12-Bit
Magnitude Compare with Borrow-Lookahead
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SIGNAL BO :  STD_LOGIC;

attribute synthesis_off of  E0,E1,E2,E3,E4,E5 : signal is true ;
attribute synthesis_off of  R0,R1,R2,R3,R4,R5 : signal is true ;

BEGIN

E0 <= ( NOT A1 AND B1) OR (( NOT A1 OR B1) AND ( NOT A0 AND B0));
R0 <= ( NOT A1 OR B1) AND ( NOT A0 OR B0);

E1 <= ( NOT A3 AND B3) OR (( NOT A3 OR B3) AND ( NOT A2 AND B2));
R1 <= ( NOT A3 OR B3) AND ( NOT A2 OR B2);

        
E2 <= ( NOT A5 AND B5) OR (( NOT A5 OR B5) and ( NOT A4 AND B4));
R2 <= ( NOT A5 OR B5) AND ( NOT A4 OR B4);

    
E3 <= ( NOT A7 AND B7) OR (( NOT A7 OR B7) AND ( NOT A6 AND B6));
R3 <= ( NOT A7 OR B7) AND ( NOT A6 OR B6);       

E4 <= ( NOT A9 AND B9) OR (( NOT A9 OR B9) AND ( NOT A8 AND B8));
R4 <= ( NOT A9 OR B9) AND ( NOT A8 OR B8);

E5 <= ( NOT A11 AND B11) OR (( NOT A11 OR B11) AND ( NOT A10 AND B10));   
R5 <= ( NOT A11 OR B11) AND ( NOT A10 OR B10);

BO <= E5 OR 
(R5 AND E4) OR 
(R5 AND R4 AND E3) OR
( R5 AND R4 AND R3 AND E2) OR
( R5 AND R4 AND R3 AND R2 AND E1) OR
( R5 AND R4 AND R3 AND R2 AND R1 AND E0);

MAG <= ’1’ WHEN (BO = ’1’) ELSE ’0’;

--MAG is a ’1’ if B > A

END archfb2mgcmp12;

A comparison between 2-, 3-, and 4-bit group sized imple-
mentation of a 12-bit magnitude comparator based on the
borrow-lookahead scheme is shown in Table 3. As mentioned
before, the number of passes through the logic array is the
same for all group-bit-sizes.   The number of PTs and MCs
used vary as shown in the table. The user has a wide choice
and needs to choose the right group-size depending on the
application.

Three-Output Comparators
The discussion on magnitude comparators has so far been
restricted to the values of less than (<) and greater than or
equal to (q) only. The discussion in this section talks about
producing all three outputs, namely ‘<’, ‘>’ and ‘=’.

FB2EQMCMP12: 12-Bit Borrow-Lookahead Three-Output 
Magnitude Comparator Using 2-Bit Groups

This model combines all the concepts discussed in the mag-
nitude comparator section into one design. This uses bor-
row-lookahead, 2-bit groups, and also produces three out-
puts. The block diagram of this model is shown in Figure 21.

There are two ways in which the Borrow-lookahead principle
can be used to achieve the functionality of a three-output
comparator.

1. Use two passes for ‘A < B’ and ‘A = B’ each, then use a 
third pass for A > B using the results from A < B and A = 
B. This uses 62 PTs. The EQCOMP12 required for this 
model is built using three EQCOMP4s similar to the block 
diagram shown in Figure 15. The EQCOMP12 can also be 
built using four EQCOMPs, or two EQCOMP6s, or an 

Table 3. Comparison of a 12-Bit Magnitude Compare 
between Different Group-Sizes. 

Group-Bit-Size 2 3 4

# of PTs 34 44 60

# of MCs 13 9 7

# of passes 2 2 2

Figure 21. Block Diagram of a 12-Bit Borrow-Lookahead 
Three-Output Magnitude Compare
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EQCOMP8 and an EQCOMP4 or any other combination. 
As long as the EQCOMP model chosen does not 
sum-split, the value of EQCOMP12 can be realized in two 
passes using 25 PTs. 

2. Use two passes to generate all three outputs. In this im-
plementation a set of Es and Rs is required to create a 
value of LT (A - B). A second set of Es and Rs is required 

to obtain the value of GT (B - A). The value of EQ is also 
produced in 2 passes along with GT and LT. This scheme 
uses 97 PTs.

The first scheme is area efficient, but takes three passes
though the logic array to generate the final results. The VHDL
implementation for the first scheme is presented here. It is
very easy to extrapolate the code for the second scheme.

--This VHDL code describes the implementation of a 3-output magnitude 
--comparator. The borrow-lookahead principle using 2-bit groups was used 
--to build this element

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY fb2eqmgcmp12 IS
PORT (

A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0: IN STD_LOGIC ;
B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0: IN STD_LOGIC ;
EQ,LT,GT: OUT STD_LOGIC);

END fb2eqmgcmp12;
 
ARCHITECTURE archfb2eqmgcmp12 OF fb2mgeqcmp12 IS

SIGNAL E0,E1,E2,E3,E4,E5  : STD_LOGIC;
SIGNAL R0,R1,R2,R3,R4,R5  : STD_LOGIC; 
SIGNAL X11,X10,X9,X8,X7,X6,X5,X4,X3,X2,X1,X0 : STD_LOGIC;
SIGNAL INT1, INT2, INT3: STD_LOGIC;
SIGNAL BO : STD_LOGIC;

attribute synthesis_off of  E0,E1,E2,E3,E4,E5 : signal is true ;
attribute synthesis_off of  R0,R1,R2,R3,R4,R5 : signal is true ;
attribute synthesis_off of  INT1, INT2, INT3 : signal is true ;

BEGIN

E0 <= ( NOT A1 AND B1) OR (( NOT A1 OR B1) AND ( NOT A0 AND B0));
R0 <= ( NOT A1 OR B1) AND ( NOT A0 OR B0);

E1 <= ( NOT A3 AND B3) OR (( NOT A3 OR B3) AND ( NOT A2 AND B2));
R1 <= ( NOT A3 OR B3) AND ( NOT A2 OR B2);        
E2 <= ( NOT A5 AND B5) OR (( NOT A5 OR B5) and ( NOT A4 AND B4));
R2 <= ( NOT A5 OR B5) AND ( NOT A4 OR B4);

    
E3 <= ( NOT A7 AND B7) OR (( NOT A7 OR B7) AND ( NOT A6 AND B6));
R3 <= ( NOT A7 OR B7) AND ( NOT A6 OR B6);       

E4 <= ( NOT A9 AND B9) OR (( NOT A9 OR B9) AND ( NOT A8 AND B8));
R4 <= ( NOT A9 OR B9) AND ( NOT A8 OR B8);

E5 <= ( NOT A11 AND B11) OR (( NOT A11 OR B11) AND ( NOT A10 AND B10));   
R5 <= ( NOT A11 OR B11) AND ( NOT A10 OR B10);

BO <= E5 OR 
(E4 AND R5) OR 
(E3 AND R5 AND R4) OR
( E2 AND R5 AND R4 AND R3) OR
( E1 AND R5 AND R4 AND R3 AND R2) OR
( E0 AND R5 AND R4 AND R3 AND R2 AND R1);

LT <= ’1’ WHEN (BO = ’1’) ELSE ’0’;

-- LT is a ’1’ if A < B
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GT <= ’1’ WHEN (LT = ’0’ AND EQ = ’0’ ) ELSE ’0’;

-- GT is a ’1’ if A > B

X11 <= A11 XOR B11;
X10 <= A10 XOR B10;
X9 <= A9 XOR B9;
X8 <= A8 XOR B8;
X7 <= A7 XOR B7;
X6 <= A6 XOR B6;
X5 <= A5 XOR B5;
X4 <= A4 XOR B4;
X3 <= A3 XOR B3;
X2 <= A2 XOR B2;
X1 <= A1 XOR B1;
X0 <= A0 XOR B0;

 INT1 <= (X11 OR X10 OR X9 OR X8);
INT2 <= (X7 OR X6 OR X5 OR X4);
INT3 <= (X3 OR X2 OR X1 OR X0);

EQ <= NOT (INT1 OR INT2 OR INT3);

END archfb2eqmgcmp12;

Summary
A number of arithmetic elements frequently used in various
applications were presented in this application note. The un-
derlying concepts and the final implementations for all these
models were also presented. Designs created with an under-
standing of the target architecture always perform better than
generic designs. The LPM elements available in Warp are all
geared towards obtaining the best performance, both in
speed and area, for CPLDs. The concepts and implementa-
tions presented in this application note are used to build the
various LPM elements. Understanding this application note
will enable the user to understand the LPM elements better
and exploit their availability in the best possible manner.

CPLDs are very popular with the programmable logic industry
and are widely used in DSP applications, PCs, Motherboards,
Data Communication equipment, Multimedia, Instrumenta-

tion, etc. They have many advantages over other programma-
ble logic devices. A few key advantages are listed here:

• Ease of use—Simple extension of AND-OR structure of 
small PLDs like 22V10

• Predictable timing model

• No fanout penalty

• High system speed

• Off the shelf availability

• Cost effective

These advantages make CPLDs an ideal platform to imple-
ment high-performance arithmetic circuits in a cost-effective
manner. With the background provided in this application
note, a designer should be able to create any algorithm or
implementation for an arithmetic application. 

FLASH370i, Ultra37000 and Warp are trademarks of Cypress Semiconductor Corporation.


