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Based on Introduction to Solid State Physics by Kittel

Course content

• Periodic structures, understanding of diffraction experiment and reciprocal lattice

• Crystal binding, elastic strain and waves

• Imperfections in crystals: point defects and diffusion

• Crystal vibrations: phonon heat capacity and thermal conductivity

• Free electron Fermi gas: density of states, Fermi level, and electrical conductivity

• Electrons in periodic potential: energy bands theory classification of metals,   

semiconductors and insulators

• Semiconductors: band gap, effective masses, charge carrier distributions, 

doping, pn-junctions

• Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology
Postboks 1048 Blindern, 0316 OSLO
Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no
visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010: Introduction and motivation. Periodicity and lattices 2h

W/20/1/2010: Index system for crystal planes. Crystal structures 1h

M/25/1/2010: Reciprocal space, Laue condition and Ewald construction 2h
W/27/1/2010: Brillouin Zones. Interpretation of a diffraction experiment 1h

M/01/2/2010: Crystal binding, elastic strain and waves 2h
W/03/2/2010: Elastic waves in cubic crystals; defects in crystals 1h

M/08/2/2010: Defects in crystals; case study - vacancies 2h
W/10/2/2010: Diffusion 1h

M/15/2/2010: Crystal vibrations and phonons 2h
W/17/2/2010: Crystal vibrations and phonons 1h

M/22/2/2010: Lattice heat capacity: Dulong-Petit and Einstein models 2h

W/24/2/2010: Phonon density of states (DOS) and Debye model 1h

M/01/3/2010: General result for DOS; role of anharmonic interactions 2h
W/03/3/2010: Thermal conductivity 1h

M/08/3/2010: Free electron Fermi gas in 1D and 3D – ground state 2h
W/10/3/2010: Density of states, effect of temperature – FD distribution 1h

M/15/3/2010: Heat capacity of FEFG 2h

W/17/3/2010: Repetition 1h

22/3/2010: Mid-term exam



M/14/4/2010: Electrical and thermal conductivity in metals 2h
W/12/4/2010: Bragg reflection of electron waves at the boundary of BZ 1h

M/19/4/2010: Energy bands, Kronig - Penny model 2h
W/21/4/2010: Empty lattice approximation; number of orbitals in a band 1h

M/26/4/2010: Semiconductors, effective mass method, intrinsic carriers 2h
W/28/4/2010: Impurity states in semiconductors and carrier statistics 1h

M/03/5/2010: p-n junctions and heterojunctions 2h

W/05/5/2010: surface structure, surface states, Schottky contacts 2h

M/10/5/2010: no lectures

W/12/5/2010: no lectures

W/19/5/2010: Repetition 2h

W26/5/2010: Repetition 2h

27-28/5/2010: Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University, 

Denmark, http://person.au.dk/en/anl@phys.au.dk)

Lecture 11: Lattice heat capacity: Dulong-Petit and Einstein models

• Repetition for introduction of phonons and phonon dispersion in real crystals

• Classical (Dulong-Petit) theory for heat capacity of solids treating atoms as 

classical harmonic oscillators

• Contribution of electrons in metals and temperature dependence of experimentally 

measured heat capacitance 

• Einstein model for heat capacity considering quantum properties of oscillators 

constituting a solid

• Problem of Einstein model to reproduce the rate of heat capacitance decrease at low 

temperatures and more careful consideration of phonon occupancy modes as a way to  

improve the agreement with experiment  
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Energy level diagram for a chain of

atoms with one atom per unit cell and a 

lengt of N unit cells

Energy level

diagram for one

harmonic oscillator



Phonon dispersion in real crystals: aluminium FCC lattice with 1 

atom in the basis

In a 3-D atomic lattice we 

expect to observe 3 different 

branches of the dispersion 

relation, since there are two 

mutually perpendicular 

transverse wave patterns in 

addition to the longitudinal

pattern we have considered.

Along different directions in 

the reciprocal lattice the 

shape of the dispersion 

relation is different.  But 

note the resemblance to the 

simple 1-D result we found.

Phonon dispersion in real crystals: FCC lattice with 1 (Al) and 2 

(Diamond) atoms in the basis  

Characteristic points of the reciprocal space – Γ, X, K, and L points are

introduced at the center and bounduries of the first Brillouin zone
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Classical (Dulong-Petit) theory for heat capacity

For a solid composed of N such atomic oscillators:

Giving a total energy per mole of sample:
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This law of Dulong and Petit (1819) is approximately obeyed by most 

solids at high T ( > 300 K).  
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Temperature dependence of experimentally measured heat capacity 
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Einstein model for heat capacity accounting for quantum 

properties of oscillators constituting a solid

Planck (1900): vibrating oscillators (atoms) in a solid have quantized 

energies ...,2,1,0== nnEn ωh

[later   showed                                 is actually correct]( ) ωh
2
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...,2,1,0== nnEn ωh

Einstein (1907): model a solid as a collection of 3N independent 1-D 

oscillators, all with constant ω, and use Planck’s equation for energy levels

occupation of energy level n: 
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Boltzmann factor is a weighting factor that determines the relative 

probability of a state i in a multi-state system in thermodynamic

equilibrium at tempetarure T.

Where kB is Boltzmann’s constant and Ei is the energy of state i. 

The ratio of the probabilities of two states is given by the ratio of

their Boltzmann factors.

kTEie
/−

Boltzmann factor determines Planck distribution

Einstein model for heat capacity accounting for quantum 

properties of oscillators constituting a solid
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Which can 

be rewritten:

Now we can use 

the infinite sum:
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So we obtain:



Einstein model for heat capacity accounting for quantum 

properties of oscillators constituting solids

Differentiating:

Now it is traditional to define 

an “Einstein temperature”:

Using our previous definition:

So we obtain the prediction:
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Einstein model for heat capacity accounting for quantum 

properties of oscillators constituting solids

Low T limit:

These predictions are 

qualitatively correct: CV→ 3R 

for large T and CV→ 0 as T → 0:

High T limit: 1<<
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Energy level diagram for a chain of

atoms with one atom per unit cell and a 

lengt of N unit cells

Energy level

diagram for one

harmonic oscillator

High T limit: 1<<
T

Eθ

Low T limit: 1>>
T

Eθ

Correlation with energy level diagram for a harmonic oscillator
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Problem of Einstein model to reproduce the rate of heat capacity

decrease at low temperatures
High T behavior:  

Reasonable 

agreement with 

experiment

Low T behavior: 

CV→ 0 too quickly 

as T → 0 !

Energy level diagram for a chain of

atoms with one atom per unit cell and a 

lengt of N unit cells

More careful consideration of phonon occupancy modes 

as a way to  improve the agreement with experiment



More careful consideration of phonon occupancy modes 

as a way to  improve the agreement with experiment

Debye’s model of a solid:

• 3N normal modes (patterns) of oscillations

• Spectrum of frequencies from ω = 0 to ωmax

• Treat solid as continuous elastic medium (ignore details of atomic structure) 

This changes the expression for CV
because each mode of oscillation 

contributes a frequency-dependent 

heat capacity and we now have to 

integrate over all ω:
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# of oscillators per 

unit ω
Einstein function 

for one oscillator


