FYS3410 - Vår 2010 (Kondenserte fasers fysikk)

http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml

Based on Introduction to Solid State Physics by Kittel

Course content

- Periodic structures, understanding of diffraction experiment and reciprocal lattice
- Crystal binding, elastic strain and waves
- Imperfections in crystals: point defects and diffusion
- Crystal vibrations: phonon heat capacity and thermal conductivity
- Free electron Fermi gas: density of states, Fermi level, and electrical conductivity
- Electrons in periodic potential: energy bands theory classification of metals, semiconductors and insulators
- Semiconductors: band gap, effective masses, charge carrier distributions, doping, pn-junctions
- Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology Postboks 1048 Blindern, 0316 OSLO Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no visiting address: MiNaLab, Gaustadaleen 23b

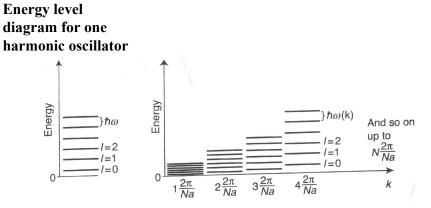
FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010:	Introduction and motivation. Periodicity and lattices	2h
W/20/1/2010:	Index system for crystal planes. Crystal structures	1h
M/25/1/2010:	Reciprocal space, Laue condition and Ewald construction	2h
W/27/1/2010:	Brillouin Zones. Interpretation of a diffraction experiment	1h
M/01/2/2010:	Crystal binding, elastic strain and waves	2h
W/03/2/2010:	Elastic waves in cubic crystals; defects in crystals	1h
M/08/2/2010:	Defects in crystals; case study - vacancies	2h
W/10/2/2010:	Diffusion	1h
M/15/2/2010:	Crystal vibrations and phonons	2h
W/17/2/2010:	Crystal vibrations and phonons	1h
M/22/2/2010:	Lattice heat capacity: Dulong-Petit and Einstein models	2h
W/24/2/2010:	Phonon density of states (DOS) and Debye model	1h
M/01/3/2010:	General result for DOS; role of anharmonic interactions	2h
W/03/3/2010:	Thermal conductivity	1h
M/08/3/2010:	Free electron Fermi gas in 1D and 3D – ground state	2h
W/10/3/2010:	Density of states, effect of temperature – FD distribution	1h
M/15/3/2010:	Heat capacity of FEFG	2h
W/17/3/2010:	Repetition	1h
22/3/2010:	Mid-term exam	

M/14/4/2010: W/12/4/2010:	Electrical and thermal conductivity in metals	2h 1h
M/12/4/2010:	Bragg reflection of electron waves at the boundary of BZ	2h
W/21/4/2010:	Energy bands, Kronig - Penny model Empty lattice approximation; number of orbitals in a band	
M/26/4/2010: W/28/4/2010:	Semiconductors, effective mass method, intrinsic carriers Impurity states in semiconductors and carrier statistics	2h 1h
M/03/5/2010:	p-n junctions and heterojunctions	2h
W/05/5/2010:	surface structure, surface states, Schottky contacts	2h
M/10/5/2010:	no lectures	
W/12/5/2010:	no lectures	
W/19/5/2010:	Repetition	2h
W26/5/2010:	Repetition	2h
27-28/5/2010:	Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University, Denmark, http://person.au.dk/en/anl@phys.au.dk)	,

- Repetition for introduction of phonons and phonon dispersion in real crystals
- Classical (Dulong-Petit) theory for heat capacity of solids treating atoms as classical harmonic oscillators
- Contribution of electrons in metals and temperature dependence of experimentally measured heat capacitance
- Einstein model for heat capacity considering quantum properties of oscillators constituting a solid
- Problem of Einstein model to reproduce the rate of heat capacitance decrease at low temperatures and more careful consideration of phonon occupancy modes as a way to improve the agreement with experiment

- Repetition for introduction of phonons and phonon dispersion in real crystals
- Classical (Dulong-Petit) theory for heat capacity of solids treating atoms as classical harmonic oscillators
- Contribution of electrons in metals and temperature dependence of experimentally measured heat capacitance
- Einstein model for heat capacity considering quantum properties of oscillators constituting a solid
- Problem of Einstein model to reproduce the rate of heat capacitance decrease at low temperatures and more careful consideration of phonon occupancy modes as a way to improve the agreement with experiment

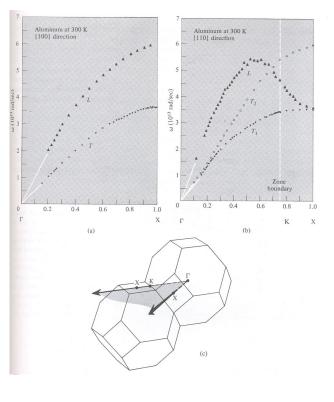


Energy level diagram for a chain of atoms with one atom per unit cell and a lengt of N unit cells

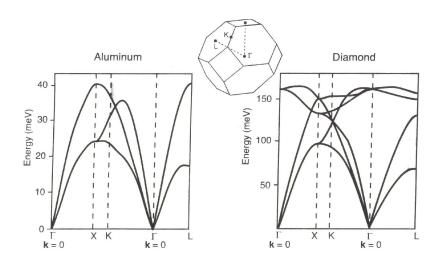
Phonon dispersion in real crystals: aluminium FCC lattice with 1 atom in the basis

In a 3-D atomic lattice we expect to observe 3 different branches of the dispersion relation, since there are two mutually perpendicular <u>transverse</u> wave patterns in addition to the <u>longitudinal</u> pattern we have considered.

Along different directions in the reciprocal lattice the shape of the dispersion relation is different. But note the resemblance to the simple 1-D result we found.



Phonon dispersion in real crystals: FCC lattice with 1 (Al) and 2 (Diamond) atoms in the basis



Characteristic points of the reciprocal space – Γ , X, K, and L points are introduced at the center and bounduries of the first Brillouin zone

- Repetition for introduction of phonons and phonon dispersion in real crystals
- Classical (Dulong-Petit) theory for heat capacity of solids treating atoms as classical harmonic oscillators
- Contribution of electrons in metals and temperature dependence of experimentally measured heat capacitance
- Einstein model for heat capacity considering quantum properties of oscillators constituting a solid
- Problem of Einstein model to reproduce the rate of heat capacitance decrease at low temperatures and more careful consideration of phonon occupancy modes as a way to improve the agreement with experiment

Classical (Dulong-Petit) theory for heat capacity

For a solid composed of N such atomic oscillators: $\overline{E} = N\overline{E}_1 = 3Nk_BT$

Giving a total energy per mole of sample: $\frac{\overline{E}}{n} = \frac{3Nk_BT}{n} = 3N_Ak_BT = 3RT$

So the heat capacity at constant volume per mole is:

$$C_V = \frac{d}{dT} \left(\frac{\overline{E}}{n}\right)_V = 3R \approx 25 \frac{J}{mol \ K}$$

This law of Dulong and Petit (1819) is approximately obeyed by most solids at high T (> 300 K).

- Repetition for introduction of phonons and phonon dispersion in real crystals
- Classical (Dulong-Petit) theory for heat capacity of solids treating atoms as classical harmonic oscillators
- Contribution of electrons in metals and temperature dependence of experimentally measured heat capacitance
- Einstein model for heat capacity considering quantum properties of oscillators constituting a solid
- Problem of Einstein model to reproduce the rate of heat capacitance decrease at low temperatures and more careful consideration of phonon occupancy modes as a way to improve the agreement with experiment

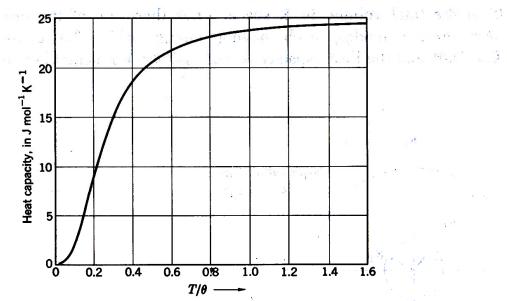


Figure 9a. Heat capacity C_V of a solid, according to the Debye approximation. The vertical scale is in $J \mod^{-1} K^{-1}$. The horizontal scale is the temperature normalized to the Debye temperature θ . The region of the T^3 law is below 0.1 θ . The asymptotic value at high values of T/θ is 24.943 J mol⁻¹ deg⁻¹.

Temperature dependence of experimentally measured heat capacity

- Repetition for introduction of phonons and phonon dispersion in real crystals
- Classical (Dulong-Petit) theory for heat capacity of solids treating atoms as classical harmonic oscillators
- Contribution of electrons in metals and temperature dependence of experimentally measured heat capacitance
- Einstein model for heat capacity considering quantum properties of oscillators constituting a solid
- Problem of Einstein model to reproduce the rate of heat capacitance decrease at low temperatures and more careful consideration of phonon occupancy modes as a way to improve the agreement with experiment

Einstein model for heat capacity accounting for quantum properties of oscillators constituting a solid

<u>Planck (1900)</u>: vibrating oscillators (atoms) in a solid have quantized energies $E_n = n\hbar\omega$ n = 0, 1, 2, ...

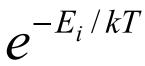
[later showed $E_n = (n + \frac{1}{2})\hbar\omega$ actually correct]

Einstein (1907): model a solid as a collection of 3N independent 1-D oscillators, all with constant ω , and use Planck's equation for energy levels

occupation of energy level n:
(probability of oscillator
being in level n)
Average total
energy of solid:

$$E = U = 3N \sum_{n=0}^{\infty} f(E_n) E_n = 3N \frac{\sum_{n=0}^{\infty} E_n e^{-E_n/kT}}{\sum_{n=0}^{\infty} e^{-E_n/kT}}$$
 classical physics
(Boltzmann factor)

Boltzmann factor determines Planck distribution



Boltzmann factor is a weighting factor that determines the relative probability of a state *i* in a multi-state system in thermodynamic equilibrium at tempetarure *T*.

Where k_B is Boltzmann's constant and E_i is the energy of state *i*. The ratio of the probabilities of two states is given by the ratio of their Boltzmann factors.

Einstein model for heat capacity accounting for quantum properties of oscillators constituting a solid

Using Planck's equation:
$$U = 3N \frac{\sum_{n=0}^{\infty} n\hbar\omega e^{-n\hbar\omega/kT}}{\sum_{n=0}^{\infty} e^{-n\hbar\omega/kT}}$$
 Now let $x = \frac{\hbar\omega}{kT}$
 $U = 3N\hbar\omega \frac{\sum_{n=0}^{\infty} n e^{-nx}}{\sum_{n=0}^{\infty} e^{-nx}}$ Which can be rewritten: $U = 3N\hbar\omega \frac{-\frac{d}{dx}\sum_{n=0}^{\infty} e^{-nx}}{\sum_{n=0}^{\infty} e^{-nx}} = 3N\hbar\omega \frac{-\frac{d}{dx}\sum_{n=0}^{\infty} (e^{-x})^n}{\sum_{n=0}^{\infty} (e^{-x})^n}$
Now we can use $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for $|x| < 1$ To give: $\sum_{n=0}^{\infty} (e^{-x})^n = \frac{1}{1-e^{-x}} = \frac{e^x}{e^x - 1}$
So we obtain: $U = 3N\hbar\omega \frac{-\frac{d}{dx}\left(\frac{e^x}{e^x - 1}\right)}{\left(\frac{e^x}{e^x - 1}\right)} = \frac{3N\hbar\omega}{e^x - 1} = \frac{3N\hbar\omega}{e^{\hbar\omega/kT} - 1}$

Einstein model for heat capacity accounting for quantum properties of oscillators constituting solids

Using our previous definition:
$$C_V = \frac{d}{dT} \left(\frac{U}{n} \right)_V = \frac{d}{dT} \left(\frac{3N_A \hbar \omega}{e^{\hbar \omega/kT} - 1} \right)$$

Differentiating: $C_V = \frac{-3N_A \hbar \omega \left[e^{\hbar \omega/kT} \left(\frac{-\hbar \omega}{kT^2} \right) \right]}{\left(e^{\hbar \omega/kT} - 1 \right)^2} = \frac{3R \left(\frac{\hbar \omega}{kT} \right)^2 e^{\hbar \omega/kT}}{\left(e^{\hbar \omega/kT} - 1 \right)^2}$

Now it is traditional to define an "Einstein temperature":

So we obtain the prediction:
$$C_V(T) = \frac{3R\left(\frac{\theta_E}{T}\right)^2 e^{\theta_E/T}}{\left(e^{\theta_E/T} - 1\right)^2}$$

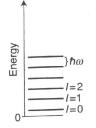
 $\theta_E \equiv \frac{\hbar\omega}{k}$

Einstein model for heat capacity accounting for quantum properties of oscillators constituting solids

High T limit:
$$\frac{\theta_E}{T} \ll 1$$
 $C_V(T) \approx \frac{3R\left(\frac{\theta_E}{T}\right)^2 \left(1 + \frac{\theta_E}{T}\right)}{\left(1 + \frac{\theta_E}{T} - 1\right)^2} \approx 3R$
Low T limit: $\frac{\theta_E}{T} \gg 1$ $C_V(T) \approx \frac{3R\left(\frac{\theta_E}{T}\right)^2 e^{\theta_E/T}}{\left(e^{\theta_E/T}\right)^2} \approx 3R\left(\frac{\theta_E}{T}\right)^2 e^{-\theta_E/T}$
These predictions are
qualitatively correct: $C_V \rightarrow 3R$
for large T and $C_V \rightarrow 0$ as $T \rightarrow 0$:

Correlation with energy level diagram for a harmonic oscillator

Energy level diagram for one harmonic oscillator



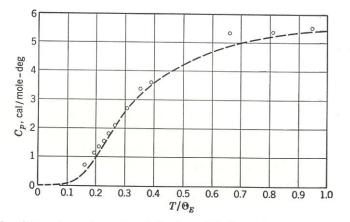
High T limit: $\frac{\theta_E}{T} \ll 1$

Low T limit:
$$\frac{\theta_E}{T} >> 1$$

Lecture 11: Lattice heat capacity: Dulong-Petit and Einstein models

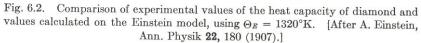
- Repetition for introduction of phonons and phonon dispersion in real crystals
- Classical (Dulong-Petit) theory for heat capacity of solids treating atoms as classical harmonic oscillators
- Contribution of electrons in metals and temperature dependence of experimentally measured heat capacitance
- Einstein model for heat capacity considering quantum properties of oscillators constituting a solid
- Problem of Einstein model to reproduce the rate of heat capacity decrease at low temperatures and more careful consideration of phonon occupancy modes as a way to improve the agreement with experiment

Problem of Einstein model to reproduce the rate of heat capacity decrease at low temperatures

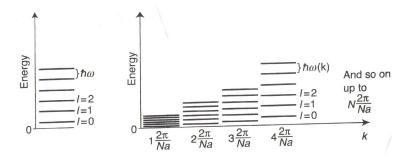


High T behavior: Reasonable agreement with experiment

Low T behavior: $C_V \rightarrow 0$ too quickly as T $\rightarrow 0$!



More careful consideration of phonon occupancy modes as a way to improve the agreement with experiment



Energy level diagram for a chain of atoms with one atom per unit cell and a lengt of N unit cells

More careful consideration of phonon occupancy modes as a way to improve the agreement with experiment

Debye's model of a solid:

- 3N normal modes (patterns) of oscillations
- Spectrum of frequencies from $\omega = 0$ to ω_{max}
- Treat solid as continuous elastic medium (ignore details of atomic structure)

This changes the expression for C_V because each mode of oscillation contributes a frequency-dependent heat capacity and we now have to integrate over all ω :

 $C_V(T) = \int_{\omega=0}^{\omega_{\max}} D(\omega) C_E(\omega, T) d\omega$ *ω*=0 *#* of oscillators per Einstein function

of oscillators unit ω Einstein function for one oscillator