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M/18/1/2010:
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M/08/2/2010:
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M/15/2/2010:
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Introduction and motivation. Periodicity and lattices
Index system for crystal planes. Crystal structures

Reciprocal space, Laue condition and Ewald construction
Brillouin Zones. Interpretation of a diffraction experiment

Crystal binding, elastic strain and waves
Elastic waves in cubic crystals; defects in crystals

Defects in crystals; case study - vacancies
Diffusion

Crystal vibrations and phonons
Crystal vibrations and phonons

Lattice heat capacity: Dulong-Petit and Einstein models
Phonon density of states (DOS) and Debye model
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27-28/5/2010: Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University,
Denmark, http://person.au.dk/en/ani@phys.au.dk)

Lecture 12: Phonon density of states and Debye model

* Repetition: Einstein model for lattice heat capacity decrease - breakthroughs and
limitations

* Calculating phonon density of states — DOS —in 1-, 2- and 3-dimensions

* Debye model: explaining approximations and derivation of T3 temperature
dependence for heat capacity




Lecture 12: Phonon density of states and Debye model

* Repetition: Einstein model for lattice heat capacity decrease - breakthroughs and
limitations

Einstein model for lattice heat capacity decrease - breakthroughs
and limitations
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Einstein model for lattice heat capacity decrease - breakthroughs

and limitations
High T behavior:
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Fig. 6.2. Comparison of experimental values of the heat capacity of diamond and
values calculated on the Einstein model, using @z = 1320°K. [After A. Einstein,
Ann. Physik 22, 180 (1907).]

Lecture 12: Phonon density of states and Debye model

* Calculating phonon density of states — DOS — in 1-, 2- and 3-dimensions




Calculating phonon density of states — DOS —in 1-, 2- and 3-D
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Calculating phonon density of states — DOS — in 1-D

A vibrational mode is a vibration of a given wave vector k (and thus 1),
frequency @ ,and energy £ =7%® . How manv modes are found in the
interval between (w,E.k) and (®+dw,E+dE k+dk) ?

#modes dN = N(w)dw = N(E)dE = N(k)d’k

We will first find N(k) by examining allowed values of k. Then we will be
able to calculate N(w) and evaluate C,, in the Debye model.

First step: simplify problem by using periodic boundary conditions for the

linear chain of atoms:

i L =Na i
e © @ @ @ @ O

s+N-1 We assume atoms s
and s+N have the
same displacement—

® S the lattice has periodic
behavior, where N is
! st1 very large.
X =sa x =(s+N)a

s+2




Calculating phonon density of states — DOS — in 1-D

Since atoms s and s+N have the same displacement, we can write:

ikNa

us — uS+N uei(ksa—a)t) — uei(k(s+N)a—a)t) l=e
This sets a condition on 2m
allowed k values: kNa =2m — k= n=1,2,3,..
Na

So the separation between 2r 2z independent of k, so

allowed solutions (k values) is: Ak = An=—7 the density of modes
’ Na Na i, k-space is uniform

. # of modes 1 Na L
Thus, in 1-D: A = =

interval of k —space - Ak 27 2%

Calculating phonon density of states — DOS — in 3-D

Now for a 3-D lattice we can apply periodic boundary
conditions to a sample of N, x N, x N, atoms:

# of modes _Na N,b N,ec V
volume of k—space 2x 2rn 2n 8x

N,a

= N(k)

Now we know from before ~ Vv ~
that we can write the dN = N(w)dw = N(k)dk :_3d3k
differential # of modes as: 87

We carry out the integration
in k-space by using a 3+
“volume” element made up d’k = (surface area) dk = UdSw Jdk

of a constant ® surface with
thickness dk:




Calculating phonon density of states — DOS — in 3-D

Rewriting the differential
number of modes in an interval:

dN = N(w)do = L3 j ds, dk
8

V dk V 1
We get the result: | N (@) = IdS =— IdSw —
8

3 @ b
8 do o

A very similar result holds for N(E) using constant energy surfaces for the
density of electron states in a periodic lattice!

This equation gives the prescription for calculating the density of modes
N(m) if we know the dispersion relation (k).

We can now set up the Debye’s calculation of the heat capacity of a solid.

Lecture 12: Phonon density of states and Debye model

* Debye model: explaining approximations and derivation of T3 temperature
dependence for heat capacity




Debye model

We know that we need to evaluate an upper limit for the heat capacity integral:

wmax

C,(T)= j N(@)Cp(,T)dw

w=0

If the dispersion relation is known, the upper limit will be the maximum o value.
But Debye made several simple assumptions, consistent with a uniform, isotropic,

elastic solid:

* 3 independent polarizations (L, T,, T,) with equal propagation speeds v,
* continuous, elastic solid: ® = ng

* O, given by the value that gives the correct number of modes per polarization (N)

Debye model

First we can evaluate |, _do | N(w) = V3 J‘dSa)i _ Z J.dSw
the density of modes: ¢ dk 8 v, 87,
S'ince'the s.olid 1s isotropic, all

e constant o surfce o8 phere of Jds,, =4’

radius k, and the integral reduces to:

2
V A — Vo

3 2
8 vV, 27 Vv,

for one polarization

Giving:  N(w)=

Next we need to find the upper limit for the integral over the allowed range of
frequencies.




Debye model

Since there are N atoms in the solid, there are N unique O
modes of vibration for each polarization. This requires: _[N (w)dw=N
=0
1/3
o V wmax Va)3 2
Giving: ——~ J-a)zda)=%=N " O =V, Sz N =w,
2r°v, Lo 677, vV

The Debye cutoff frequency

Now the pieces are in place to evaluate the heat capacity using the Debye
model! This is the subject of problem 5.2 in Myers’ book. Remember that
there are three polarizations, so you should add a factor of 3 in the expression
for C,.. If you follow the instructions in the problem, you should obtain:

T 30,/ 4 - d And you should evaluate this
C,(T)=9Nk,| — j Lzz expression in the limits of low T
b ) o (€ =17 (T<<0,)andhighT (T >>0,).

Debye model
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Fig. 3.13 Specific heats versus reduced temperature for four substances. Numbers refer
to Debye temperatures. Note the high Debye temperature for diamond.

Universal behavior
. Table 3.1
for all solids! o

Debye Temperatures

Element 0p, °K Compound fp, °K
Li 335 NaCl 280
Debye temperature " i iy e
is related to K 91.1 CaF, 470
L . . Cu 343 LiF 680
stiffness” of solid, Ag 226 Si0, (quartz) 255
Au 162
as expected Al sy
Ga 325
Pb 102
Ge 378
Si 647

C 1860




Debye model
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Figure 11 Low temperature heat capacity of solid argon, plotted against T?.
In this temperature region the experimcntal results are in excellent agree-

ment with the Debye T* law with 6, = 92.0 K. (Courtesy of L. Finegold and
N. E. Phillips.) )




