FYS3410 - Var 2010 (Kondenserte fasers fysikk)

http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml

Based on Introduction to Solid State Physics by Kittel

Course content

. Crystal vibrations: phonon heat capacity and thermal conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology
Postboks 1048 Blindern, 0316 OSLO

Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no

visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010:
W/20/1/2010:

M/25/1/2010:
W/27/1/2010:

M/01/2/2010:
W/03/2/2010:

M/08/2/2010:
W/10/2/2010:

M/15/2/2010:
WI/17/2/2010:

M/22/2/2010:
W/24/2/2010:

M/01/3/2010:

Introduction and motivation. Periodicity and lattices
Index system for crystal planes. Crystal structures

Reciprocal space, Laue condition and Ewald construction
Brillouin Zones. Interpretation of a diffraction experiment

Crystal binding, elastic strain and waves
Elastic waves in cubic crystals; defects in crystals

Defects in crystals; case study - vacancies
Diffusion

Crystal vibrations and phonons
Crystal vibrations and phonons

Lattice heat capacity: Dulong-Petit and Einstein models
Phonon density of states (DOS) and Debye model
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General result for DOS; role of anharmonic interactions 2h




27-28/5/2010: Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University,
Denmark, http://person.au.dk/en/ani@phys.au.dk)

Lecture 13: Debye model, general results for DOS, anharmonic interactions

* Repetition: Calculating phonon density of states — DOS —in 1-, 2- and 3-dimensions

* Debye model: explaining approximations and derivation of T3 temperature
dependence for heat capacity

* Anharmonic crystal interactions




Lecture 13: Debye model, general results for DOS, anharmonic interactions

* Repetition: Calculating phonon density of states — DOS —in 1-, 2- and 3-dimensions

Calculating phonon density of states — DOS — in 1-D

Since atoms s and s+N have the same displacement, we can write:

us — us+N _ uei(ksa—a)t) — uei(k(s+N)a—a)t) 1= eikNa

This sets a condition on 2m
allowed k values: kNa =2m — k= n=1,2,3,..
Na

So the separation between 2 2z  independent ofk, so

allowed solutions (k values) is: Ak == An =7 the density of modes
) Na Na i, k-space is uniform

# of modes 1 Na L
Thus, in 1-D: A = =

interval of k —space - Ak 27 27




Calculating phonon density of states — DOS — in 3-D

Now for a 3-D lattice we can apply periodic boundary
conditions to a sample of N, x N, x N; atoms:

# of modes _Na N,bNy,e 'V
volume of k—space 2x 2m 2m 8x

N,a

7 =N(k)

Now we know from before ~ Vv ~
that we can write the dN = N(w)dw = N(k)dk :_3d3k
differential # of modes as: 8

We carry out the integration
in k-space by using a
“volume” element made up

of a constant ® surface with
thickness dk:

d’k = (surface area) dk = UdSw Jdk

Calculating phonon density of states — DOS — in 3-D

Rewriting the differential B _r

number of modes in an interval: dN = N(w)dew = 73 .[ as,,dk
V de V 1

We get the result: | N(®@) = Py IdSw do 8 IdSw %

A very similar result holds for N(E) using constant energy surfaces for the
density of electron states in a periodic lattice!

This equation gives the prescription for calculating the density of modes
N(m) if we know the dispersion relation (k).

We can now set up the Debye’s calculation of the heat capacity of a solid.




Lecture 13: Debye model, general results for DOS, anharmonic interactions

* Debye model: explaining approximations and derivation of T3 temperature
dependence for heat capacity

Debye model

We know that we need to evaluate an upper limit for the heat capacity integral:

Omax

C,(T)= j N(w)Cp(@,T)dw

w=0

If the dispersion relation is known, the upper limit will be the maximum o value.
But Debye made several simple assumptions, consistent with a uniform, isotropic,

elastic solid:

* 3 independent polarizations (L, T,, T,) with equal propagation speeds v,
* continuous, elastic solid: ® = ng

* o, given by the value that gives the correct number of modes per polarization (N)




Lattice heat capacity: Debye model

LY4r . (LY 4n0’ V&'
Ne=\o= | Tk = 3 L 2.3
2r) 3 27 ) 3v 67V
D(w) = dN, _ Vo Density of states of acoustic
dw 27°v’ phonos for 1 polarization

a)(k) =vk phonon dispersion relation

Debye temperature 0

N = . = |
5 L
N,: Allowed number of k T V 0 = hv( 67°N |3
PO‘?“ in a sphere with a N: number of unit cell kB Vv
radius k

Thermal energy U and lattice heat capacity C): Debye model

3 polarizations for acoustic modes

S

U= SIda)D(a))n(a))ha) 3Jda) ho

" 27 exp(ho/k,T)-1
() -
oT

3Vh* Td o’ exp(hw/k,T)
27k, T? [exp(hw/ k,T)—1]’
3xp X
C, :9Nk3[zj | dx%
) (e -1




Debye model

¥

Better agreement 3

than Einstein L o
model at low T 0 05 i

T/6py

Fig. 3.13 Specific heats versus reduced temperature for four substances. Numbers refer
to Debye temperatures. Note the high Debye temperature for diamond.

Universal behavior

for all solids! Table 3.1

Debye Temperatures

Element 0p, °K Compound fp, °K
Li 335 NaCl 280
pebye temperature i o e e
is related to K Ve CaF 4o
. . u 1
“stiffness” of solid, Ag 226 SiO, (quartz) 255
Au 162
as expected Al 428
Ga 325
Pb 102
Ge 378
Si 647
C 1860
Debye model
22.23
17.78 1/
/—
. . . T
Quite impressive by
. = 13.33
agreement with E
. E
predicted Cy, o« T3 =
dependence for Ar! £ 889 P
. Q
(noble gas solid) 8 95{‘9(]
i
4.44
0
0 1.33 2.66 3.99 5.32 6.65 7.98

T3, kelvin3

Figure 11 Low temperature heat capacity of solid argon, plotted against T3,
In this temperature region the experimcntal results are in excellent agree-
ment with the Debye T* law with 6, = 92.0 K. (Courtesy of L. Fincgolf{ and
N. E. Phillips.) ’ '




Lecture 13: Debye model, general results for DOS, anharmonic interactions

* Anharmonic crystal interactions

1
Anharmonic Properties of Solids

Two important physical properties that ONLY occur because of anharmonicity
in the potential energy function:

1. Thermal expansion
2. Thermal resistivity (or finite thermal conductivity)

Thermal expansion

In a 1-D lattice where each atom experiences the same potential energy
function U(x), we can calculate the average displacement of an atom from its
T=0 equilibrium position:

~+00

J‘xer(x)/dex

(x)==%
J‘e—U(x)/dex

—00




|
Thermal Expansion in 1-D

Evaluating this for the harmonic potential energy function U(x) = cx? gives:

+00

J‘ ¥ efcxz IKT o Now examine the numerator
< > carefully...what can you conclude?
X)=-—"
+00

Ie_cxz/dex <x> =0! independent of T !

—0

Thus any nonzero <x> must come from terms in U(x) that go beyond x2. For
HW you will evaluate the approximate value of <x> for the model function

Ux)=cx’ —gx’ — fi* (c,g, >0 and gx°, fx* <<kT)

Why this form? On the next slide you can see that this function is a reasonable
model for the kind of U(r) we have discussed for molecules and solids.

Potential Energy of Anharmonic Oscillator
(c=1 g=c¢/10 f=¢/100)

‘+U:cx2-gx3-fx4 +U:cx2‘

16 7

Do you know what
form to expect for
<x> based on
experiment?

Potential Energy U (arb. units)

Displacement x (arbitrary units)




Lattice Constant of Ar Crystal vs. Temperature
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Above about 40 K, we see:  a(T)—a(0) o« <x> ocT

Usually we write: L =L, (1 + a[T -1, ]) a = thermal expansion coefficient




