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Introduction and motivation. Periodicity and lattices
Index system for crystal planes. Crystal structures

Reciprocal space, Laue condition and Ewald construction
Brillouin Zones. Interpretation of a diffraction experiment

Crystal binding, elastic strain and waves
Elastic waves in cubic crystals; defects in crystals

Defects in crystals; case study - vacancies
Diffusion

Crystal vibrations and phonons
Crystal vibrations and phonons

Lattice heat capacity: Dulong-Petit and Einstein models
Phonon density of states (DOS) and Debye model
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General result for DOS; role of anharmonic interactions 2h
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27-28/5/2010: Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University,
Denmark, http://person.au.dk/en/ani@phys.au.dk)

Lecture 14: Thermal conductivity

* Repetition: anharmonic crystal interactions — thermal expansion
* Phenomenological description of thermal conductivity
* Temperature dependence of thermal conductivity as a cause of phonon scattering

* Phonon collisions: N and U processes




Lecture 14: Thermal conductivity

* Repetition: anharmonic crystal interactions — thermal expansion

1
Anharmonic Properties of Solids

Two important physical properties that ONLY occur because of anharmonicity
in the potential energy function:

1. Thermal expansion
2. Thermal resistivity (or finite thermal conductivity)

Thermal expansion

In a 1-D lattice where each atom experiences the same potential energy
function U(x), we can calculate the average displacement of an atom from its
T=0 equilibrium position:
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Thermal Expansion in 1-D

Evaluating this for the harmonic potential energy function U(x) = cx? gives:
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Ie_cxz/dex <x> =0! independent of T !
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Thus any nonzero <x> must come from terms in U(x) that go beyond x2. For
HW you will evaluate the approximate value of <x> for the model function

Ux)=cx’ —gx’ — fi* (c,g, >0 and gx°, fx* <<kT)

Why this form? On the next slide you can see that this function is a reasonable
model for the kind of U(r) we have discussed for molecules and solids.

Potential Energy of Anharmonic Oscillator
(c=1 g=c¢/10 f=¢/100)

‘+U:cx2-gx3-fx4 +U:cx2‘
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Do you know what
form to expect for
<x> based on
experiment?

Potential Energy U (arb. units)

Displacement x (arbitrary units)




Lattice Constant of Ar Crystal vs. Temperature
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Above about 40 K, we see: a(T)—a(0) o< <x> ocT

Usually we write: L =L, (1 + a[T -1, ]) a = thermal expansion coefficient
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* Phenomenological description of thermal conductivity




Phenomenological description of thermal conductivity

When thermal energy propagates through a solid, it is carried by lattice waves
or phonons. If the atomic potential energy function is harmonic, lattice waves
obey the superposition principle; that is, they can pass through each other
without affecting each other. In such a case, propagating lattice waves would
never decay, and thermal energy would be carried with no resistance (infinite
conductivity!). So...thermal resistance has its origins in an anharmonic

potential energy.

Thermal

T
energy flux J= —/(d—
(J/m2s) dx

Classical definition of B l C oA
thermal conductivity K=34vV

CV

v

heat capacity per unit volume

wave velocity

mean free path of scattering
(would be o if no anharmonicity)
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* Temperature dependence of thermal conductivity as a cause of phonon scattering




Temperature dependence of thermal conductivity as a
cause of phonon scattering

There are three basic mechanisms to consider:

deviation from
perfect crystalline
order

1. Impurities or grain boundaries in polycrystalline sample
2. Sample boundaries (surfaces)
3. Other phonons (deviation from harmonic behavior)

To understand the experimental dependence K (T') , consider limiting values
of C, and A (since V does not vary much with T).
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Temperature dependence of thermal conductivity as a cause of
phonon scattering

The low and high T limits are summarized in this table:

Cy A K
Ny, — 0, SO
low T oc T3 A — oo, but then o« T3
A — D (size)
high T 3R oc 1T oc 1T

How well does this match experimental results?




Temperature dependence of thermal conductivity as a cause of
phonon scattering
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Figure 5.27 (a) The principal form for the variation of thermal conductivity. (b) Experimental data
for LiF crystals containing different amounts of the isotope Li: A, 0.02% OLi; A, 0.01%; %, 4.6%;
@, 94%; O, 25.4%; +, 50.1%. (After Berman and Brock 1965.)
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Phonon collisions: N and U processes

How exactly do phonon collisions limit the flow of heat?

2-D lattice = 1st BZ in k-space:
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No resistance to heat flow
(N process; phonon momentum conserved)

— Predominates at low T << 0, since ®
and q will be small

Phonon collisions: N and U processes

What if the phonon wavevectors are a bit larger?

2-D lattice = 1st BZ in k-space:
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Umklapp = “flipping over” of
wavevector!

hg, + hg, = hg, + hG

Two phonons combine to give a net phonon
with an opposite momentum! This causes
resistance to heat flow.

(U process; phonon momentum “lost” in
units of hG.)

— More likely at high T >> 0, since ® and
q will be larger




