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Introduction and motivation. Periodicity and lattices
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Free electron Fermi gas in 1D and 3D - ground state
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27-28/5/2010: Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University,
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Lecture 15: Free electron Fermi gas

* Free electron Fermi gas (FEFG) — a gas of electrons subject to Pauli principle
* One electron system — wave functions — orbits; FEFG in 1D in ground state
* FEFG in 3D in ground state

* Effect of temperature; Fermi-Dirac distribution




Lecture 15: Free electron Fermi gas

* Free electron Fermi gas (FEFG) — a gas of electrons subject to Pauli principle

Free electron Fermi gas — a gas of electrons subject to Pauli
principle

* Atlow temperature, free mean path of a conduction electron in metal can be as long as
1 cm! Why is it not affected by ion cores or other conduction electrons? (30 seconds

discussions)

— Motion of electrons in crystal (matter wave) is not affected by periodic structure
such as ion cores.

— Electron is scattered infrequently by other conduction electrons due to the Pauli
exclusion principle

Figure 1 Schematic model of a erystal of sodium metal. The atomic cores are Na™ ions: they are
immersed in a sea of conduction electrons. The conduction electrons are derived from the 3s
valence electrons of the free atoms. The atomic cores contain 10 electrons in the configuration
].slzls-E:Zp? In an alkali metal the atomic cores occupy a relatively small part (~15 percent) of the
total volume of the crystal, but in a noble metal (Cu, Ag, An) the atomic cores are relatively larger
and may he in contact with each other. The common crystal structure at room temperature is
bee for the alkali metals and fec for the noble metals.




Lecture 15: Free electron Fermi gas

* One electron system — wave functions — orbits; FEFG in 1D in ground state

One electron system — wave functions - orbits

* Neglect electron-electron interaction, infinite potential well, simple QM solution
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Figure 2 First three energy levels and wave-
functions of a free electron of mass m confined
to a line of length L. The energy levels are la-
beled according to the quantum number n
which gives the number of half-wavelengths in

Quantum number, n

Energy in units -

the wavefunction. The wavelengths are indi-
cated on the wavefunctions. The energy €, of
the level of quantum number n is equal to
(h¥2m)(n/2l®.

In this simple system, every quantum state

- The Pauli exclusion principle holds 2 electrons => n, = N/2 9 Fermi energy:
— n: quantum number _ _ A

— m(=1/2 and -1/2): magnetic quantum number . — ﬁ_g(ﬂp’ﬁ)g _ ﬁ_g(;\"fr)z

- degeneracy: # of orbitals with the same energy F7om\ L /]~ 2m\2L

- Fermi energy (E): energy of the topmost filled  Great, if we know the el'ectron density, we know
level in the ground state of the N electron system (b Fermi energy!




Lecture 15: Free electron Fermi gas

* FEFG in 3D in ground state

FEFG in 3D
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* Invoking periodic boundary condition

instead of the infinite potential wall
(standing wave) boundary condition, we
get traveling waves as solutions:
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Figure 4 1In the ground state of a system of N free
electrons the ocenpied orbitals of the system fill a
sphere of radius kg, where e = A%32m is the energy of
an electron having a wavevector kg.
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Table 1 Calculated free electron Fermi surface parameters for metals at room temperature

({Except for Na, K, Bb, Cs at 5 K and Li at 78 K)
_______________________________________________________________________________________________________________________________________|

Fermi
Electron Radins® Fermi Fermi Fermi temperature
concentration, parameter wavevector, \'elocit)-', energy, Ty = epfky,
Valency Metal inem™ Yo inem™ incm s in eV in deg K

1 Li 470 x 1022 3.25 1.11 x 10® 1.29 X 108 4.72 5.48 » 10*
Na 2.65 3.93 0.92 107 3.23 375
K 1.40 4.56 075 (.56 2.12 2.46
Eb 1.15 5.20 0.70 0.51 1.55 2.15
Cs 0.91 5.63 0.64 0.75 1.55 1.583
Cu §.45 2.67 1.36 1.57 7.00 S8.12
Ag 3.85 3.02 1.20 1.39 5.48 6.36
An 3.90 3.01 1.20 1.39 3.51 6.39
2 EBe 24.2 1.588 1.93 2.23 14.14 16.41
Mg 5.60 2.65 1.37 1.538 7.13 827
Ca 4.60 3.27 1.11 1.28 4.68 543
Sr 3.506 3.56 1.02 1.15 3.895 4.58
Ba 3.20 3.69 0.95 1.13 3.65 4.24
Zn 13.10 2.31 1.57 1.52 9.39 10.90
cd 9.28 2.59 1.40 L.62 7.46 5.66
3 Al 15.06 2.07 1.75 2.02 11.63 13.49
Ga 15.30 2,19 1.65 1.91 10.35 12.01
In 11.49 241 1.50 1.74 5.60 9.95
4 Fh 13.20 2.30 1.57 1.52 9.37 10.87
Sniw) 14.458 2.23 1.62 1.58 10.03 11.64

"The dimensionless radius parameter is defined as r,, = ry/ay. where ay is the first Bohr radius and ry is the radius of a sphere that contains one electron.

Lecture 15: Free electron Fermi gas

* Effect of temperature; Fermi-Dirac distribution




Fermi-Dirac distribution

+ Describes the probability that an orbit at energy E will be occupied in an ideal
electron gas under thermal equilibrium

4 is chemical potential, f( g:ﬂ)=0.5; at 0K,

Er=H
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Figure 3 Fermi-Dirac distribution function (5) at the various labelled temperatures, for  Boltzaann = Maxwell =7 o k T ’
Ty = ek = 50,000 K. The results apply to a gas in three dimensions. The total number of parti- B
cles is constant, independent of temperature. The chemical potential p at each temperature may
be read off the graph as the energy at which f = 0.5.

DOS example: free electrons (parabolic dispersion)
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g Figure 3 Density of single-particle states as a func-
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a \ tion of energy, for a free electron gas in three dimen-
\ sions. The dashed curve represents the density
"\ [ le. T)D{e) of filled orbitals at a finite temperature,
\ but such that kgT is small in comparison with €g. The
n\" shaded area represents the filled orbitals at absolute
L ———~  zero. The average energy is increased when the tem-
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perature is increased from 0 to T, for electrons are

Energy. e —s thermally excited from region 1 to region 2.




