FYS3410 - Vår 2010 (Kondenserte fasers fysikk)

http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml

Based on Introduction to Solid State Physics by Kittel

Course content

- Periodic structures, understanding of diffraction experiment and reciprocal lattice
- Crystal binding, elastic strain and waves
- Imperfections in crystals: point defects and diffusion
- Crystal vibrations: phonon heat capacity and thermal conductivity
- Free electron Fermi gas: density of states, Fermi level, and electrical conductivity
- Electrons in periodic potential: energy bands theory classification of metals, semiconductors and insulators
- Semiconductors: band gap, effective masses, charge carrier distributions, doping, pn-junctions
- Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology Postboks 1048 Blindern, 0316 OSLO Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010:	Introduction and motivation. Periodicity and lattices	2h
W/20/1/2010:	Index system for crystal planes. Crystal structures	1h
M/25/1/2010:	Reciprocal space, Laue condition and Ewald construction	2h
W/27/1/2010:	Brillouin Zones. Interpretation of a diffraction experiment	1h
M/01/2/2010:	Crystal binding, elastic strain and waves	2h
W/03/2/2010:	Elastic waves in cubic crystals; defects in crystals	1h
M/08/2/2010:	Defects in crystals; case study - vacancies	2h
W/10/2/2010:	Diffusion	1h
M/15/2/2010:	Crystal vibrations and phonons	2h
W/17/2/2010:	Crystal vibrations and phonons	1h
M/22/2/2010:	Lattice heat capacity: Dulong-Petit and Einstein models	2h
W/24/2/2010:	Phonon density of states (DOS) and Debye model	1h
M/01/3/2010:	General result for DOS; role of anharmonic interactions	2h
W/03/3/2010:	Thermal conductivity	1h
M/08/3/2010:	Free electron Fermi gas in 1D and 3D – ground state	2h
W/10/3/2010:	Density of states, effect of temperature – FD distribution	1h
M/15/3/2010:	Heat capacity and thermal conductivity of FEFG	2h
W/17/3/2010:	Repetition	1h
22/3/2010:	Mid-term exam	

M/12/4/2010: W/14/4/2010:	Drude model and the idea of energy bands Nearly free electron model; Kronig - Penny model	2h 2h
M/19/4/2010: W/21/4/2010:	no lectures Empty lattice approximation; number of orbitals in a band	2h
M/26/4/2010: W/28/4/2010:	Semiconductors, effective mass method, intrinsic carriers Impurity states in semiconductors and carrier statistics	2h 2h
M/03/5/2010: W/05/5/2010:	p-n junctions and heterojunctions surface structure, surface states, Schottky contacts	2h 2h
M/10/5/2010: W/12/5/2010:	Metals and Fermi surfaces no lectures	
W/19/5/2010:	no lectures	2 h
W26/5/2010:	Repetition	2h
27-28/5/2010:	Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University Denmark, http://person.au.dk/en/anl@phys.au.dk)	' 3

Lecture 21: Empty lattice approximation; number of orbitals in a band

• Repetion: periodic potential, nearly free electron model and Kronig-Penney model

- Empty lattice approximation
- number of orbitals in a band

Lecture 21: Empty lattice approximation; number of orbitals in a band

- Repetion: periodic potential, nearly free electron model and Kronig-Penney model
- Empty lattice approximation
- number of orbitals in a band

Kronig-Penney model

Kronig-Penney model

In between the two energies there are no allowed energies; i.e., an energy gap exists. We can sketch these 1-D results schematically:

The periodic potential U(x) splits the free-electron E(k) into "energy bands" separated by gaps at each BZ boundary.

Lecture 21: Empty lattice approximation; number of orbitals in a band

- Repetion: periodic potential, nearly free electron model and Kronig-Penney model
- Empty lattice approximation
- number of orbitals in a band

Property of $E(\vec{k}) = E(\vec{k} + \vec{G})$

Suppose that we have empty lattice where the periodic V(x)=0. Then the e⁻s in the lattice are basically free, so that

in 3-dim.

$$E(k_x, k_y, k_z) = \frac{\hbar^2}{2m} (\vec{k} + \vec{G})^2$$

= $\frac{\hbar^2}{2m} [(k_x + G_x)^2 + (k_y + G_y)^2 + (k_z + G_z)^2]$
= $\frac{\hbar^2}{2m} [(k_x + \frac{2\pi}{a}n_x)^2 + (k_y + \frac{2\pi}{a}n_y)^2 + (k_z + \frac{2\pi}{a}n_z)^2]$

As an exercise, figure out the free e-band of a simple cubic empty lattice. ie. the low-lying band

Reciprocal lattice of S.C \Rightarrow S.C

Lecture 21: Empty lattice approximation; number of orbitals in a band

• Repetion: periodic potential, nearly free electron model and Kronig-Penney model

- Empty lattice approximation
- number of orbitals in a band

The number of states in a band

Independent k-states in the first Brillouin zone, i.e. $|k_x| \le \pi/a$ etc.

Finite crystal: only discrete *k*-states allowed $k_x = \pm \frac{2\pi n_x}{I}$, $n_x = 0,1,2,...$ etc.

Monatomic simple cubic crystal, lattice constant a, and volume V.

One allowed *k* state per volume $(2\pi)^3/V$ in k-space.

Volume of first BZ is $(2\pi/a)^3$

Total number of allowed k-states in a band is therefore

$$\left(\frac{2\pi}{a}\right)^3 / \frac{(2\pi)^3}{V} = \frac{V}{a^3} = N$$

Precisely N allowed k-states i.e. 2N electron states (Pauli) per band

This result is true for any lattice: each primitive unit cell contributes exactly one *k*-state to each band.

Metals and insulators

In full band containing 2N electrons all states within the first B. Z. are occupied. The sum of all the k-vectors in the band = 0.

A partially filled band can carry current, a filled band cannot

