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M/18/1/2010:
W/20/1/2010:

M/25/1/2010:
W/27/1/2010:

M/01/2/2010:
W/03/2/2010:

M/08/2/2010:
W/10/2/2010:

M/15/2/2010:
WI/17/2/2010:

M/22/2/2010:
W/24/2/2010:

M/01/3/2010:
W/03/3/2010:

M/08/3/2010:
W/10/3/2010:

M/15/3/2010:
W/17/3/2010:

22/3/2010:

Introduction and motivation. Periodicity and lattices
Index system for crystal planes. Crystal structures

Reciprocal space, Laue condition and Ewald construction
Brillouin Zones. Interpretation of a diffraction experiment

Crystal binding, elastic strain and waves
Elastic waves in cubic crystals; defects in crystals

Defects in crystals; case study - vacancies
Diffusion

Crystal vibrations and phonons
Crystal vibrations and phonons

Lattice heat capacity: Dulong-Petit and Einstein models
Phonon density of states (DOS) and Debye model

General result for DOS; role of anharmonic interactions
Thermal conductivity

Free electron Fermi gas in 1D and 3D - ground state
Density of states, effect of temperature — FD distribution

Heat capacity and thermal conductivity of FEFG
Repetition

Mid-term exam
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M/12/4/2010:
W/14/4/2010:

M/19/4/2010:
W/21/4/2010:

M/26/4/2010:
W/28/4/2010:

M/03/5/2010:
W/05/5/2010:

M/10/5/2010:
W/12/5/2010:

W/19/5/2010:
W26/5/2010:
27-28/5/2010:

Drude model and the idea of energy bands 2h
Nearly free electron model; Kronig - Penny model 2h
no lectures

Empty lattice approximation; number of orbitals in a band 2h

Semiconductors, effective mass method, intrinsic carriers 2h
Impurity states in semiconductors and carrier statistics 2h

p-n junctions and heterojunctions 2h
surface structure, surface states, Schottky contacts 2h
Metals and Fermi surfaces

no lectures

no lectures 2h
Repetition 2h

Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University,
Denmark, http://person.au.dk/en/ani@phys.au.dk)

Lecture 21: Empty lattice approximation; number of orbitals in a band

* Repetion: periodic potential, nearly free electron model and Kronig-Penney model

* Empty lattice approximation

* number of orbitals in a band




Lecture 21: Empty lattice approximation; number of orbitals in a band

* Repetion: periodic potential, nearly free electron model and Kronig-Penney model
* Empty lattice approximation

e number of orbitals in a band
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What happens at the zone boundary

k = ilG 417 Bragg condition!!!

2 a

The wavefunctions at k=+/- n/a are not the traveling waves
exp(inx/a) or exp(-inx/a) of free electrons.
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Energy of the two standing waves are different by E.

Periodic potential and Bloch functions
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Periodic potential and Bloch functions

Kronig-Penney model
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Kronig-Penney model
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The allowed and forbidden
bands are plotted in the E vs. k
relation.
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Kronig-Penney model

In between the two energies there are no allowed energies; i.e., an energy gap
exists. We can sketch these 1-D results schematically:
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The periodic potential U(x) splits the free-electron E(k) into “energy bands”
separated by gaps at each BZ boundary.

Lecture 21: Empty lattice approximation; number of orbitals in a band

* Repetion: periodic potential, nearly free electron model and Kronig-Penney model
* Empty lattice approximation

e number of orbitals in a band




Property of E(k)= E(k + G)

Suppose that we have empty lattice where the periodic V(x)=0.
Then the e's in the lattice are basically free, so that
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As an exercise, figure out the free e-band of a simple cubic
empty lattice. ie. the low-lying band

Reciprocal lattice of S.C =S.C
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Everything can be
described within the 1st B.Z.




Lecture 21: Empty lattice approximation; number of orbitals in a band

* Repetion: periodic potential, nearly free electron model and Kronig-Penney model
* Empty lattice approximation

e number of orbitals in a band

The number of states in a band

Independent k-states in the first Brillouin zone, i.e. |kx| < rla etc.

2
Finite crystal: only discrete k-states allowed & == ﬂLn" ,n,=0,12,...etc.

Monatomic simple cubic crystal, lattice constant a, and volume V.
One allowed k state per volume (2r)3/V in k-space.
Volume of first BZ is (2n/a)?
Total number of allowed k-states in a band is therefore
3 3
(27[) / 2z) Vv
fnidd ML= =N
a V a

Precisely N allowed k-states i.e. 2N electron states (Pauli) per band

This result is true for any lattice:
each primitive unit cell contributes exactly one k-state to each band.




Metals and insulators

In full band containing 2N electrons all states within the first B. Z. are
occupied. The sum of all the k-vectors in the band = 0.

A partially filled band can carry current, a filled band cannot

Insulators have an even integer number Ej} |
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Insulator -energy band theory
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