FYS3410 - Vår 2010 (Kondenserte fasers fysikk)

http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml
Based on Introduction to Solid State Physics by Kittel

Course content

- Periodic structures, understanding of diffraction experiment and reciprocal lattice
- Crystal binding, elastic strain and waves
- Imperfections in crystals: point defects and diffusion
- Crystal vibrations: phonon heat capacity and thermal conductivity
- Free electron Fermi gas: density of states, Fermi level, and electrical conductivity
- Electrons in periodic potential: energy bands theory classification of metals, semiconductors and insulators
- Semiconductors: band gap, effective masses, charge carrier distributions, doping, pn-junctions
- Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology Postboks 1048 Blindern, 0316 OSLO

Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010: W/20/1/2010:	Introduction and motivation. Periodicity and lattices Index system for crystal planes. Crystal structures	2h 1h
M/25/1/2010: W/27/1/2010:	Reciprocal space, Laue condition and Ewald construction Brillouin Zones. Interpretation of a diffraction experiment	2h 1h
M/01/2/2010: W/03/2/2010:	Crystal binding, elastic strain and waves Elastic waves in cubic crystals; defects in crystals	2h 1h
M/08/2/2010: W/10/2/2010:	Defects in crystals; case study - vacancies Diffusion	2h 1h
M/15/2/2010: W/17/2/2010:	Crystal vibrations and phonons Crystal vibrations and phonons	2h 1h
M/22/2/2010: W/24/2/2010:	Lattice heat capacity: Dulong-Petit and Einstein models Phonon density of states (DOS) and Debye model	2h 1h
M/01/3/2010: W/03/3/2010:	General result for DOS; role of anharmonic interactions Thermal conductivity	2h 1h
M/08/3/2010: W/10/3/2010:	Free electron Fermi gas in 1D and 3D – ground state Density of states, effect of temperature – FD distribution	2h 1h
M/15/3/2010: W/17/3/2010:	Heat capacity and thermal conductivity of FEFG Repetition	2h 1h
22/3/2010:	Mid-term exam	

M/12/4/2010: W/14/4/2010:	Drude model and the idea of energy bands Nearly free electron model; Kronig - Penny model	2h 2h
M/19/4/2010: W/21/4/2010:	no lectures Empty lattice approximation; number of orbitals in a band	2h
M/26/4/2010: W/28/4/2010:	Semiconductors, effective mass method, intrinsic carriers Impurity states in semiconductors and carrier statistics	2h 2h
M/03/5/2010: W/05/5/2010:	p-n junctions and heterojunctions surface structure, surface states, Schottky contacts	2h 1h
M/10/5/2010: W/12/5/2010:	Metals and Fermi surfaces no lectures	2h
W/19/5/2010:	no lectures	
W26/5/2010:	Repetition	2h
27-28/5/2010:	Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University, Denmark, http://person.au.dk/en/anl@phys.au.dk)	,

- Repetion: Energy band structure and filling of the bands
- Interesting properties of semiconductors
- Effective mass method
- Intrinsic carrier concentration in semiconductors

- Repetion: Energy band structure and filling of the bands
- Interesting properties of semiconductors
- Effective mass method
- Intrinsic carrier concentration in semiconductors

Energy band structure and filling of the bands: origin of the bands

$$\cos(ka) = \cos(Ka) + \frac{2mV_0}{\hbar^2} \cdot \frac{\sin(Ka)}{Ka}$$

The allowed and forbidden bands are plotted in the E vs. k relation.

Energy band structure and filling of the bands: semiconductors

- Repetion: Energy band structure and filling of the bands
- Interesting properties of semiconductors
- Effective mass method
- Intrinsic carrier concentration in semiconductors

Interesting of semiconductors: light absorbtion

In any transition, K must be conserved as well as E.

- (a) A direct gap semiconductor; on the left is the *E-K* diagram, and on the right the conventional energy band diagram.
- (b) An indirect gap material (so called because conduction band minimum and the valence band maximum do not occur at the same value of K).

Interesting of semiconductors: photoluminescence

BAND-TO-BAND RECOMBINATION

$$h_V = E_g - nE_P$$

Interesting of semiconductors: photoluminescence

Interesting of semiconductors: band gap modulation for high efficiency solar cells

Interesting of semiconductors: band gap modulation for high efficiency solar cells

FIG.1. (a) Typical photoluminescence (PL) spectra from ZnCdO films as a function of Cd content; (b) PL spectrum of a ML-structure as recorded at 8K with a schematics of the band gap in the inset; (c) Cd profile through ML-structure as measured by RBS; (c) our results in the context of literature.

- Repetion: Energy band structure and filling of the bands
- Interesting properties of semiconductors
- Effective mass method
- Intrinsic carrier concentration in semiconductors

Effective mass method: nearly free electron in external electric field

$$<{
m v}_n({
m k})> = {<{
m p}>\over m} = {1\over \hbar}
abla_k E_n({
m k}) \hspace{1cm} F_{\rm ext} = \hbar {{
m d}k\over {
m d}t}$$

$$F_{\rm ext}=\hbar\frac{{\rm d}k}{{\rm d}t}$$

Lets try to put these equations together....

$$a(t) = \frac{dv}{dt} = \frac{1}{\hbar} \frac{\partial}{\partial t} \frac{\partial E_N(k)}{\partial k} = \frac{1}{\hbar} \frac{\partial^2 E_N(k)}{\partial k^2} \frac{dk}{dt}$$
$$= \left[\frac{1}{\hbar^2} \frac{\partial^2 E_N(k)}{\partial k^2} \right] F_{\text{ext}}$$

Looks like Newton's Law if we define the mass as follows...

$$m^*(k) = \hbar^2 \left(\frac{\partial^2 E_N(k)}{\partial k^2} \right)^{-1}$$
 effective mass

mass changes with k...so it changes with time according to k

Effective mass method: expanding E(k) in a band in Taylor series

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$

Effective mass method: solving Schrodinger equation without perodic potential for hydrogen-like behaiving impurities

Recall hydrogen model

1. (Bohr postulates)
Angular momentum is quantized.

2. Centripetal force = columbic force

$$\frac{m_0 v^2}{r_{\rm n}} = \frac{q^2}{4\pi\varepsilon_0 r_{\rm n}^2}$$

3. Solve for orbit radius

$$r_{\mathbf{n}} = \frac{4\pi\varepsilon_0(\mathbf{n}\hbar)^2}{m_0 q^2}$$

4. Write down the total energy

K.E. =
$$\frac{1}{2}m_0v^2 = \frac{1}{2}(q^2/4\pi\varepsilon_0r_n)$$

P.E. = $-q^2/4\pi\varepsilon_0r_n$ (P.E. set = 0 at $r = \infty$)
 $E_n = \text{K.E.} + \text{P.E.} = -\frac{1}{2}(q^2/4\pi\varepsilon_0r_n)$

$$E_{\mathbf{n}} = -\frac{m_0 q^4}{2(4\pi\varepsilon_0 \mathbf{n}\hbar)^2} = -\frac{13.6}{\mathbf{n}^2} \,\text{eV}$$

Effective mass method: solving Schrodinger equation without perodic potential for hydrogen-like behaving impurities

Hydrogen model:

$$E_C - E_{im} = \frac{q^4 Z^2 m^*}{2n^2 (4\pi\varepsilon h)^2} = 13.6 \left(\frac{Z}{n\varepsilon_r}\right)^2 \left(\frac{m^*}{m}\right) eV$$

$$r_{\cdot} = \frac{4\pi\varepsilon h^2 n^2}{r_{\cdot}} = 0.53 \frac{n^2 \varepsilon_r}{r_{\cdot}} \left(\frac{m}{r_{\cdot}}\right) A$$

Ionization energy
$$\Delta E_d$$

$$D^0 = D^+ + e^- : \Delta E_d$$

$$E_{d1}$$

$$E_{d3}$$

$$E_{d2}$$

$$E_{d3}$$

Lecture 22: Semiconductors, effective mass method, intrinsic carriers

- Repetion: Energy band structure and filling of the bands
- Interesting properties of semiconductors
- Effective mass method
- Intrinsic carrier concentration in semiconductors

Intrinsic carrier concentration in semiconductors

probability occupied by an electron: $f(E) = \frac{1}{1 + e^{(E - E_f)/kT}}$

$$f(E) = \frac{1}{1 + e^{(E - E_f)/kT}}$$

probability occupied by an hole (or not an electron):

$$1 - f(E) = \frac{1}{1 + e^{-(E - E_f)/kT}}$$

 E_f : Fermi level

Here S(E) is DOS or g(E)

 N_{D}^{+} ... Number of ionized donors per cm³

 $N_{\mathbf{D}}$... Total donor concentration

 N_A^- ... Number of ionized acceptors per cm³

 N_{A} ... Total acceptor concentration

> ... Electron concentration; total number of electrons per cm³ in the con n_0 or nduction band.

> Hole concentration; total number of holes per cm3 in the valence band.

Intrinsic carrier concentration; electron and hole concentration in intrinsic material.

S(E) E_g f(E)p(E) = S(E)[1 - f(E)](a) n type