FYS3410 - Vår 2010 (Kondenserte fasers fysikk)

http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml
Based on Introduction to Solid State Physics by Kittel

Course content

- Periodic structures, understanding of diffraction experiment and reciprocal lattice
- Crystal binding, elastic strain and waves
- Imperfections in crystals: point defects and diffusion
- Crystal vibrations: phonon heat capacity and thermal conductivity
- Free electron Fermi gas: density of states, Fermi level, and electrical conductivity
- Electrons in periodic potential: energy bands theory classification of metals, semiconductors and insulators
- Semiconductors: band gap, effective masses, charge carrier distributions, doping, pn-junctions
- Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology Postboks 1048 Blindern, 0316 OSLO

Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010: W/20/1/2010:	Introduction and motivation. Periodicity and lattices Index system for crystal planes. Crystal structures	2h 1h
M/25/1/2010: W/27/1/2010:	Reciprocal space, Laue condition and Ewald construction Brillouin Zones. Interpretation of a diffraction experiment	2h 1h
M/01/2/2010: W/03/2/2010:	Crystal binding, elastic strain and waves Elastic waves in cubic crystals; defects in crystals	2h 1h
M/08/2/2010: W/10/2/2010:	Defects in crystals; case study - vacancies Diffusion	2h 1h
M/15/2/2010: W/17/2/2010:	Crystal vibrations and phonons Crystal vibrations and phonons	2h 1h
M/22/2/2010: W/24/2/2010:	Lattice heat capacity: Dulong-Petit and Einstein models Phonon density of states (DOS) and Debye model	2h 1h
M/01/3/2010: W/03/3/2010:	General result for DOS; role of anharmonic interactions Thermal conductivity	2h 1h
M/08/3/2010: W/10/3/2010:	Free electron Fermi gas in 1D and 3D – ground state Density of states, effect of temperature – FD distribution	2h 1h
M/15/3/2010: W/17/3/2010:	Heat capacity and thermal conductivity of FEFG Repetition	2h 1h
22/3/2010:	Mid-term exam	

M/12/4/2010: W/14/4/2010:	Drude model and the idea of energy bands Nearly free electron model; Kronig - Penny model	2h 2h
M/19/4/2010: W/21/4/2010:	no lectures Empty lattice approximation; number of orbitals in a band	2h
M/26/4/2010: W/28/4/2010:	Semiconductors, effective mass method, intrinsic carriers Impurity states in semiconductors and carrier statistics	2h 2h
M/03/5/2010: W/05/5/2010:	p-n junctions and heterojunctions surface structure, surface states, Schottky contacts	2h 1h
M/10/5/2010: W/12/5/2010:	Metals and Fermi surfaces no lectures	2h
W/19/5/2010:	no lectures	
W26/5/2010:	Repetition	2h
27-28/5/2010:	Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Aarhus University,	ı

Lecture 25: surface structure, surface states, Schottky contacts

- Repetion: p-n junctions in equilibrium and applied bias
- Surface structure
- Surface states
- Schottky diodes

Lecture 25: surface structure, surface states, Schottky contacts

- Repetion: p-n junctions in equilibrium and applied bias
- Surface structure
- Surface states
- Schottky diodes

p-n junctions: two identical materials having different movable charge particle on each side

p-n junctions: electrostatics

p-n junctions: forward/reverse bias

p-n junctions: forward bias

$$\frac{p_{p}}{p_{n}} = e^{\frac{q(V_{0}-V_{A})}{kT}}$$

p-n junctions: reverse bias

$$\frac{p_{\rm p}}{p_{\rm n}} = {\rm e}^{\frac{q(V_0 + V_{\rm A})}{kT}}$$

p-n junctions: rectification

p-n junctions: summary

Uniformly doped p-type and ntype semiconductors before the junction is formed.

Internal electric-field occurs in a depletion region of a p-n junction in thermal equilibrium

Lecture 25: surface structure, surface states, Schottky contacts

- Repetion: p-n junctions in equilibrium and applied bias
- Surface structure
- Surface states
- Schottky diodes

Surface structure: some initial ideas

- surface is where the crystal periodicity is interrupted and chemical bonds are broken
- surface affects a few outermost atomic layers of the crystal surface region
- properties of the surface differ significantly from the bulk
- energy needed to break the bonds, so energy is needed to create a surface – surface energy
- Broken covalent bonds are called dangling bonds

Surface structure: surface energy

- Surface energy is always positive, since energy is needed to break bonds
 - Surface always tries to minimize its energy, i.e. reduce the number of dangling bonds
 - Surface chemically and electrically more active due to dangling bonds
- Two mechanisms for minimizing surface energy when in ultrahigh vacuum
 - Surface relaxation
 - Surface reconstruction

Surface structure: surface relaxation

- Interlayer distance is changed between the 1^{st} and 2^{nd} layers of atoms at the surface
 - To minimize surface energy
 - The interlayer distance is often reduced
 - In a few cases the distance increases
 - Advanced theory needed to understand
 - Many metals experience surface relaxation

Surface structure: surface reconstruction

- Surface atoms form a different structure than the bulk atoms
 - The new structure is constrained by the bulk structure
 - The unit cell in the new structure is different from the bulk unit cell
 - Si(001) as an example
 - Diamond structure
 - Two dangling bonds per surface atom
 - 2-D unit cell with lattice constant (2)1/2a/2

Surface structure: surface crystallography

Surface structure: surface crystallography

Surface states: origin

- There exist electronic states on a semiconductor surface surface states
 - The electronic states are bound to the surface
 - Their energy levels are within the band gap of the bulk semiconductor
- Dangling bonds are the origin of surface states
 - A dangling bond can donate its lone electron or accept another electron
 - It is both a donor and an acceptor
- Doping the surface region difficult due to compensation
 - Surface Fermi level doesn't move when doped Fermi-level pinning
 - surface Fermi level is pinned
 - Since the Fermi level is horizontal, the energy bands are bent

Surface states and Schottky barriers

- When a semiconductor is brought into contact with a metal, a Schottky junction is usually formed
- · A n-type semiconductor with no surface states
 - Electrons flow from semiconductor to metal, leaving behind positive charge
 - An electric field is created pointing from semiconductor to metal
 - At interface $\phi_m \chi$ is fixed

$$\phi_{Bn} = \phi_m - \chi$$

Surface states and Schottky barriers

- A real semiconductor surface has surface states (interface traps), which pin the surface (interface) Fermi level to a fixed point
 - Schottky barrier height less dependent on metal work function

$$\phi_{\rm Bn} \neq \phi_{\rm m} - \chi$$

Schottky junction on p-type semiconductor

$$\phi_{\rm Bp} = \chi + E_{\rm g} - \phi_{\rm m}$$