FYS3410 - Vår 2010 (Kondenserte fasers fysikk)
 http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml
 Based on Introduction to Solid State Physics by Kittel

Course content

Periodic structures, understanding of diffraction experiment and reciprocal lattice

- Crystal binding, elastic strain and waves

Imperfections in crystals: diffusion, point defects, dislocations
Crystal vibrations: phonon heat capacity and thermal conductivity
Free electron Fermi gas: density of states, Fermi level, and electrical conductivity
Electrons in periodic potential: energy bands theory classification of metals,
semiconductors and insulators
Semiconductors: band gap, effective masses, charge carrier distributions,
doping, pn-junctions
Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology Postboks 1048 Blindern, 0316 OSLO
Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010: Introduction and motivation. Periodicity and lattices 2h
W/20/1/2010: Index system for crystal planes. Crystal structures 1h
M/25/1/2010: Reciprocal space, Laue condition and Ewald construction 2h
W/27/1/2010: Brillouin Zones. Interpretation of a diffraction experiment 1h
M/01/2/2010: Crystal binding, elastic strain and waves 2h
W/03/2/2010: Point defects, case study - vacancies 1hPoint defects and atomic diffusionM/08/2/2010Diffusion (continuation); dislocationsCrystal vibrations and phononsCrystal vibrations and phononsPlanck distribution and density of statesDebye model
W/24/2/2010Einstein model and general result for density of statesThermal conductivity2h
1 h2h1h
N/03/3/2010:M/08/3/2010:W/10/3/2010
Free electron Fermi gas in 1D and 3D - ground state
Density of states, effect of temperature - FD distribution1h
M/15/3/2010:
W/17/3/2010:
Heat canacity of FEFG
Repetition 2h
22/3/2010:
M/14/4/2010: Electrical and thermal conductivity in metals 2h
W/12/4/2010: Bragg reflection of electron waves at the boundary of BZ 1h
M/19/4/2010: Energy bands, Kronig - Penny model 2h
W/21/4/2010: Empty lattice approximation; number of orbitals in a band 1h
M/26/4/2010: Semiconductors, effective mass method, intrinsic carriers 2h
W/28/4/2010: Impurity states in semiconductors and carrier statistics 1h
M/03/5/2010: p-n junctions and heterojunctions 2h
W/05/5/2010: surface structure, surface states, Schottky contacts 2h
M/10/5/2010: no lectures
W/12/5/2010: no lectures
W/19/5/2010: Repetition 2h
W26/5/2010: Repetition 2h
28/5/2010: Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Århus University, Denmark, http://person.au.dk/en/an!@phys.au.dk)

Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals

Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals

General trends for the energy required to remove the first electron (first ionization energy) of an element

Ionization Energy

Table 1 Cohesive energies

$\mathrm{Kcal} / \mathrm{mol}=0.0434 \mathrm{eV} /$ molecule $\quad \mathrm{KJ} / \mathrm{mol}=0.0104 \mathrm{eV} /$ molecule

At atmospheric pressure carbon has no melting point as its triple point is at $10.8 \pm 0.2 \mathrm{MPa}$ and $4600 \pm 300 \mathrm{~K}$, so it sublimates at about 3900 K

101.325 kPa is "one standard atmosphere" and $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m} 2$
$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=\left(\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}\right) \cdot \mathrm{m}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}}=\mathrm{Pa} \cdot \mathrm{m}^{3}=1 \mathrm{~W} \cdot \mathrm{~s}$
$1 \mathrm{eV}=1.602176487 \times 10-19$ Joule

Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals

Cohesive energy = energy required to break up crystal into neutral free atoms.

Lattice energy (ionic crystals)
= energy required to break up crystal into free ions.
© The atoms of the inert gasses attract each other via the so-called Van Der Waal interaction (dipoledipole interaction)
© The unperturbed Hamiltonian of the system is the one of two independent oscillators and is given by:

$$
H_{0}=\frac{p_{1}^{2}}{2 m}+\frac{1}{2} c x_{1}^{2}+\frac{p_{2}^{2}}{2 m}+\frac{1}{2} c x_{2}^{2}
$$

© The interaction energy of the oscillators is given by:

$$
H_{1}=\frac{1}{4 \pi \varepsilon}\left[\frac{e^{2}}{R}+\frac{e^{2}}{R+x_{2}-x_{1}}-\frac{e^{2}}{R+x_{2}}-\frac{e^{2}}{R-x_{1}}\right] \approx-2 \frac{e^{2} x_{1} x_{2}}{4 \pi \varepsilon R^{3}}
$$

X_{2}
© Besides the Van der Waals interaction, when two atoms are brought together, their charge distribution begins to overlap, giving rise to the exchange interaction due to the Pauli exclusion principle.
© Since this interaction is difficult to be evaluated from first principles, it is usually parametrized with a term that goes as $1 / \mathrm{R} 12$, which then when added to the Van der Waals term gives rise to the famous Lennard-Jones potential that is of the following form:

$$
U(R)=4 \varepsilon\left[\left(\frac{\sigma}{R}\right)^{12}-\left(\frac{\sigma}{R}\right)^{6}\right]
$$

1. One first re-writes the Lennard-Jones potential as a sum of all pairs of atoms in the crystal as:

$$
U_{T O T}(R)=\frac{1}{2} N(4 \varepsilon)\left[\sum_{j}\left(\frac{\sigma}{p_{i j} R}\right)^{12}-\sum_{j}\left(\frac{\sigma}{p_{i j} R}\right)^{6}\right]
$$

where $p_{\mathrm{ij}} R$ is the distance between the reference atom i and any other atom j. For FCC structure with 12 nearest neighbors, we have:
$\sum_{j}\left(\frac{1}{p_{i j}}\right)^{12}=12.13188, \sum_{j}\left(\frac{1}{p_{i j}}\right)^{6}=14.45392$
2. The condition that the net force on the atom is zero then gives $\mathrm{R}_{0} / \mathrm{s}=1.09$, and the cohesive energy is:

$$
U_{T O T}(R)=-2.15(4 N \varepsilon)
$$

Crystals of Inert Gases

Table 4 Properties of inert gas crystals
(Extrapolated to 0 K and zero pressure)

	Nearestneighbor distance, in \AA	Experimental cohesive energy		Melting point, K	Ionization potential of free atom, eV	Parameters in Lennard-Jones potential, Eq. 10	
		kJ/mol	eV/atom			$\text { in } 10^{\epsilon-16} \mathrm{erg}$	$\begin{gathered} \sigma, \\ \text { in } \AA \end{gathered}$
He	(liqu	t zero p	sure)		24.58	14	2.56
Ne	3.13	1.88	0.02	24.56	21.56	50	2.74
Ar	3.76	7.74	0.080	83.81	15.76	167	3.40
Kr	4.01	11.2	0.116	115.8	14.00	225	3.65
Xe	4.35	16.0	0.17	161.4	12.13	320	3.98

Atoms:
-high ionization energy - outermost shell filled -charge distribution spherical

Crystal:
-transparent insulators
-weakly bonded
-low melting point
\cdot-closed packed (fcc, except $\mathrm{He}^{3} \& \mathrm{He}^{4}$).

Covalent Crystals

- Electron pair localized midway of bond.
- Tetrahedral: diamond, zinc-blende structures.
- Low filling: 0.34 vs 0.74 for closed-packed.

Pauli exclusion \rightarrow exchange interaction

FIG. 4. Electron localization function map for the (110) plane, containing the phosphorus atom and vacancy for the case of the negatively charged PV complex (PHYSICAL REVIEW B 70, 115204 (2004))

Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals

$$
\begin{aligned}
& \text { stress } \quad \sigma=\frac{\text { load } W}{\text { area } A} \\
& \text { strain } \quad \varepsilon=\frac{\text { increase in length } x}{\text { original length } L}
\end{aligned}
$$

$\varepsilon_{i j}=S_{i j} \bullet \sigma_{i j}$

Hooke's law

$$
\sigma_{i j}=C_{i j} \bullet \varepsilon_{i j}
$$

See Eqs 37 and 38 in Kittel, p. 77

Is there a good reason to introduce complications with so many different indexes as in p.73-80? Yes it is, becase, for example elastic waves in crystals often propagate in different directions, specifically can be longitudinal or transverse (share) waves

Elastic strain (deformation)

Plastic deformation

Elastic/plastic deformation

(a) Low-carbon steel
(b) Aluminum alloy

Elastic/plastic deformation

- Below the yield stress

$$
\begin{aligned}
\sigma= & E \varepsilon \\
E= & \text { Youngs Modulus or } \\
& \quad \text { Modulus of Elasticity }
\end{aligned}
$$

- Strength is affected by alloying, heat treating, and manufacturing process but stiffness (Modulus of Elasticity) is not.

How is strain applied to the electronic chips?

Evolution of x-ray diffraction

CRYSTAL LATTICE

DIFFRACTION
LINE

Evolution of x-ray
diffraction

CRYSTAL LATTICE
 DIFFRACTION LINE

UNIFORM STRAIN

Evolution of x-ray
diffraction

$n \lambda=2 d \sin \theta$

CRYSTAL LATTICE

NON-UNIFORM STRAIN

Evolution of x-ray
diffraction

$n \lambda=2 d \sin \theta$

Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals

Elastic Waves in Cubic Crystals

$$
\begin{aligned}
& \text { Newton's 2 }{ }^{\text {nd }} \text { law: } \quad \rho \frac{\partial^{2} u_{i}}{\partial t^{2}}=\frac{\partial \sigma_{i k}}{\partial x_{k}} \\
& \sigma_{i k}=C_{i k j l} u_{j l} \quad \rightarrow \quad \rho \frac{\partial^{2} u_{i}}{\partial t^{2}}=C_{i k j l} \frac{\partial u_{j l}}{\partial x_{k}}=\frac{1}{2} C_{i k j l}\left(\frac{\partial^{2} u_{l}}{\partial x_{k} \partial x_{j}}+\frac{\partial^{2} u_{j}}{\partial x_{k} \partial x_{l}}\right)=C_{i k j l} \frac{\partial^{2} u_{l}}{\partial x_{k} \partial x_{j}} \\
& \rho \frac{\partial^{2} u_{1}}{\partial t^{2}}=C_{1111} \frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}+C_{1122} \frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{2}}+C_{1133} \frac{\partial^{2} u_{3}}{\partial x_{1} \partial x_{3}}+C_{1212} \frac{\partial^{2} u_{2}}{\partial x_{2} \partial x_{1}}+C_{1221} \frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}+C_{1313} \frac{\partial^{2} u_{3}}{\partial x_{3} \partial x_{1}}+C_{1331} \frac{\partial^{2} u_{1}}{\partial x_{3}^{2}} \\
& =C_{1111} \frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}+C_{1122}\left(\frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{2}}+\frac{\partial^{2} u_{3}}{\partial x_{1} \partial x_{3}}\right)+C_{1212}\left(\frac{\partial^{2} u_{2}}{\partial x_{2} \partial x_{1}}+\frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}+\frac{\partial^{2} u_{3}}{\partial x_{3} \partial x_{1}}+\frac{\partial^{2} u_{1}}{\partial x_{3}^{2}}\right) \\
& \therefore \quad \rho \frac{\partial^{2} u_{1}}{\partial t^{2}}=C_{11} \frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}+\left(C_{12}+C_{44}\right)\left(\frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{2}}+\frac{\partial^{2} u_{3}}{\partial x_{1} \partial x_{3}}\right)+C_{44}\left(\frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}+\frac{\partial^{2} u_{1}}{\partial x_{3}^{2}}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \rho \frac{\partial^{2} u_{2}}{\partial t^{2}}=C_{11} \frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}+\left(C_{12}+C_{44}\right)\left(\frac{\partial^{2} u_{3}}{\partial x_{2} \partial x_{3}}+\frac{\partial^{2} u_{1}}{\partial x_{2} \partial x_{1}}\right)+C_{44}\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}+\frac{\partial^{2} u_{2}}{\partial x_{3}^{2}}\right) \\
& \rho \frac{\partial^{2} u_{3}}{\partial t^{2}}=C_{11} \frac{\partial^{2} u_{3}}{\partial x_{3}^{2}}+\left(C_{12}+C_{44}\right)\left(\frac{\partial^{2} u_{2}}{\partial x_{3} \partial x_{2}}+\frac{\partial^{2} u_{1}}{\partial x_{3} \partial x_{1}}\right)+C_{44}\left(\frac{\partial^{2} u_{3}}{\partial x_{2}^{2}}+\frac{\partial^{2} u_{3}}{\partial x_{1}^{2}}\right)
\end{aligned}
$$

Dispersion Equation

$$
\begin{gathered}
\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}=C_{i k j l} \frac{\partial^{2} u_{l}}{\partial x_{k} \partial x_{j}} \\
u_{i}=u_{0 i} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \rightarrow \quad \omega^{2} \rho u_{0 i}=C_{i k j l} k_{k} k_{j} u_{0 l} \\
\left(\omega^{2} \rho \delta_{i l}-C_{i k j l} k_{k} k_{j}\right) u_{0 l}=0 \\
\left|\omega^{2} \rho \delta_{i l}-C_{i k j l} k_{k} k_{j}\right|=0 \\
\left|\omega^{2} \rho I-\mathbf{C}(\mathbf{k})\right|=0
\end{gathered} \quad \text { dispersion equation } \quad \mathbf{C}_{i j}(\mathbf{k})=C_{i m n j} k_{m} k_{n}
$$

Waves in the [100] direction

$$
\begin{gathered}
\left|\omega^{2} \rho I-\mathbf{C}(\mathbf{k})\right|=0 \quad \mathbf{C}_{i j}(\mathbf{k})=C_{i m n j} k_{m} k_{n} \\
\mathbf{k}=k(1,0,0) \quad \rightarrow \quad \mathbf{C}_{i j}(\mathbf{k})=C_{i 11 j} k^{2} \\
\mathbf{C}(\mathbf{k})=k^{2}\left(\begin{array}{ccc}
C_{1111} & 0 & 0 \\
0 & C_{2112} & 0 \\
0 & 0 & C_{3113}
\end{array}\right)=k^{2}\left(\begin{array}{ccc}
C_{11} & 0 & 0 \\
0 & C_{44} & 0 \\
0 & 0 & C_{44}
\end{array}\right) \\
\omega_{L}=\sqrt{\frac{C_{11}}{\rho}} k \\
\mathbf{u}_{0}=(1,0,0) \\
\omega_{T}=\sqrt{\frac{C_{44}}{\rho}} k \quad \begin{array}{l}
\text { Longitudinal } \\
\mathbf{u}_{0}=(0,1,0) \\
\mathbf{u}_{0}=(0,0,1) \quad \begin{array}{l}
\text { Transverse }, \\
\text { degenerate }
\end{array}
\end{array}
\end{gathered}
$$

Waves in the [110] direction

$$
\left.\begin{array}{c}
\left|\omega^{2} \rho I-\mathbf{C}(\mathbf{k})\right|=0 \quad \mathbf{C}_{i j}(\mathbf{k})=C_{i m n j} k_{m} k_{n} \\
\mathbf{k}=\frac{k}{\sqrt{2}}(1,1,0) \quad \rightarrow \quad \mathbf{C}_{i j}(\mathbf{k})=\left(C_{i 11 j}+C_{i 12 j}+C_{i 21 j}+C_{i 22 j}\right) \frac{k^{2}}{2} \\
\mathbf{C}(\mathbf{k})=\frac{k^{2}}{2}\left(\begin{array}{cc}
C_{1111}+C_{1221} & C_{1122}+C_{1212} \\
C_{2121}+C_{2211} & C_{2112}+C_{2222} \\
0 & 0
\end{array} C_{3113}+C_{3223}\right.
\end{array}\right)=\frac{k^{2}}{2}\left(\begin{array}{ccc}
C_{11}+C_{44} & C_{12}+C_{44} & 0 \\
C_{12}+C_{44} & C_{11}+C_{44} & 0 \\
0 & 0 & 2 C_{44}
\end{array}\right) . \quad \begin{gathered}
\text { Lonitudinal } \\
\omega_{L}=\sqrt{\frac{1}{2 \rho}\left(C_{11}+C_{12}+2 C_{44}\right)} k \\
\omega_{T 1}=\sqrt{\frac{1}{2 \rho}\left(C_{11}-C_{12}\right)} k \\
\mathbf{u}_{0}=(1,1,0) \\
\omega_{T 2}=\sqrt{\frac{C_{44}}{\rho} k} k
\end{gathered}
$$

Figure 20 Effective elastic constants for the three modes of elastic waves in the principal propagation directions in cubic crystals. The two transverse modes are degenerate for propagation in the [100] and [111] directions.

