## FYS3410 - Vår 2010 (Kondenserte fasers fysikk)

http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml

Based on Introduction to Solid State Physics by Kittel

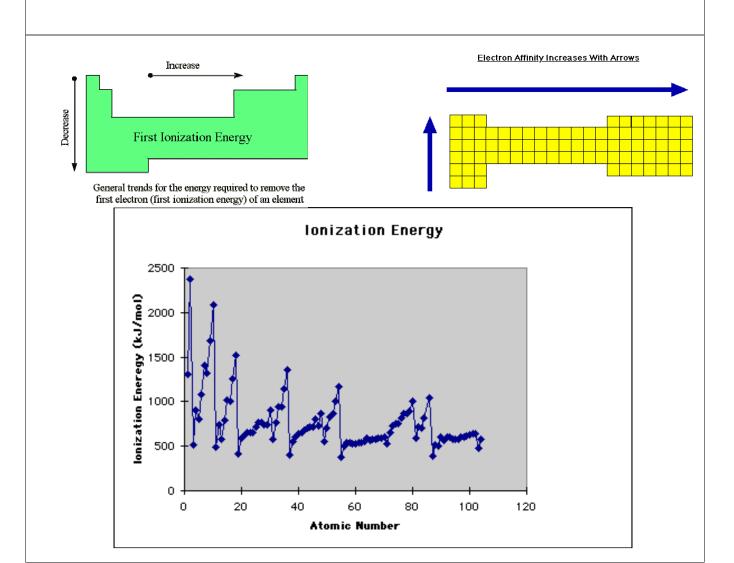
## **Course content**

- Periodic structures, understanding of diffraction experiment and reciprocal lattice
- Crystal binding, elastic strain and waves
- Imperfections in crystals: diffusion, point defects, dislocations
- Crystal vibrations: phonon heat capacity and thermal conductivity
- Free electron Fermi gas: density of states, Fermi level, and electrical conductivity
- Electrons in periodic potential: energy bands theory classification of metals, semiconductors and insulators
- Semiconductors: band gap, effective masses, charge carrier distributions, doping, pn-junctions
- Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology Postboks 1048 Blindern, 0316 OSLO Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no visiting address: MiNaLab, Gaustadaleen 23b

### FYS3410 lecture schedule and exams: Spring 2010

| M/18/1/2010: | Introduction and motivation. Periodicity and lattices       | 2h |
|--------------|-------------------------------------------------------------|----|
| W/20/1/2010: | Index system for crystal planes. Crystal structures         | 1h |
| M/25/1/2010: | Reciprocal space, Laue condition and Ewald construction     | 2h |
| W/27/1/2010: | Brillouin Zones. Interpretation of a diffraction experiment | 1h |
| M/01/2/2010: | Crystal binding, elastic strain and waves                   | 2h |
| W/03/2/2010: | Point defects, case study – vacancies                       | 1h |
| M/08/2/2010: | Point defects and atomic diffusion                          | 2h |
| W/10/2/2010: | Diffusion (continuation); dislocations                      | 1h |
| M/15/2/2010: | Crystal vibrations and phonons                              | 2h |
| W/17/2/2010: | Crystal vibrations and phonons                              | 1h |
| M/22/2/2010: | Planck distribution and density of states                   | 2h |
| W/24/2/2010: | Debye model                                                 | 1h |
| M/01/3/2010: | Einstein model and general result for density of states     | 2h |
| W/03/3/2010: | Thermal conductivity                                        | 1h |
| M/08/3/2010: | Free electron Fermi gas in 1D and 3D – ground state         | 2h |
| W/10/3/2010: | Density of states, effect of temperature – FD distribution  | 1h |
| M/15/3/2010: | Heat capacity of FEFG                                       | 2h |
| W/17/3/2010: | Repetition                                                  | 1h |
| 22/3/2010:   | Mid-term exam                                               |    |


| M/14/4/2010:<br>W/12/4/2010: | Electrical and thermal conductivity in metals<br>Bragg reflection of electron waves at the boundary of BZ                 | 2h<br>1h |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|
| M/19/4/2010:<br>W/21/4/2010: | Energy bands, Kronig - Penny model<br>Empty lattice approximation; number of orbitals in a band                           | 2h<br>1h |
| M/26/4/2010:<br>W/28/4/2010: | Semiconductors, effective mass method, intrinsic carriers<br>Impurity states in semiconductors and carrier statistics     | 2h<br>1h |
| M/03/5/2010:                 | p-n junctions and heterojunctions                                                                                         | 2h       |
| W/05/5/2010:                 | surface structure, surface states, Schottky contacts                                                                      | 2h       |
| M/10/5/2010:<br>W/12/5/2010: | no lectures<br>no lectures                                                                                                |          |
| W/19/5/2010:                 | Repetition                                                                                                                | 2h       |
| W26/5/2010:                  | Repetition                                                                                                                | 2h       |
| 28/5/2010:                   | Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Århus University, Denmark, http://person.au.dk/en/anl@phys.au.dk) | )        |

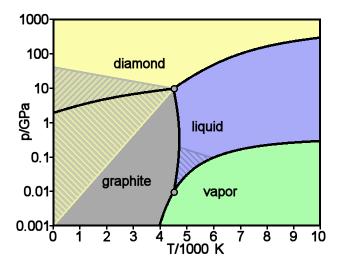
Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals

Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals




| Li<br>158.<br>1.63<br>37.7   | Be<br>320.<br>3.32<br>76.5 | elect                       | electronic state from the solid at 0 K at 1 atm. The data were supplied by 561 711 4<br>Prof. Leo Brewer. 5.81 7.37 4 |                             |                           |                         |                             |                                   |                            |                           |                             |                         |                                |                             |                            | N<br>474.<br>4.92<br>113.4 | 0<br>251<br>2.60<br>60.03 | F<br>81.0<br>0.84<br>19.3   | Ne<br>1.92<br>0.020<br>7 0.46     |                             |                              |
|------------------------------|----------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|-------------------------|-----------------------------|-----------------------------------|----------------------------|---------------------------|-----------------------------|-------------------------|--------------------------------|-----------------------------|----------------------------|----------------------------|---------------------------|-----------------------------|-----------------------------------|-----------------------------|------------------------------|
| Na<br>107.<br>1.113<br>25.67 | Mg<br>145.<br>1.51<br>34.7 | <br>                        | eV/atom                                                                                                               |                             |                           |                         |                             |                                   |                            |                           |                             |                         |                                | ,<br>,                      | AI<br>327<br>3.39<br>78.1  | 4                          | i<br>46.<br>63<br>06.7    | P<br>331.<br>3.43<br>79.16  | <b>S</b><br>275.<br>2:85<br>65.75 | CI<br>135.<br>1.40<br>32.2  | Ar<br>7.74<br>0.08<br>1.85   |
| K<br>90.1<br>0.934<br>21.54  | Ca<br>178.<br>1.84<br>42.5 | Sc<br>376<br>3.90<br>89.9   | Ti<br>468.<br>4.85<br>111.8                                                                                           | V<br>512.<br>5.31<br>122.4  | Cr<br>395<br>4.10<br>94.1 | 0.                      | Mn<br>282.<br>2.92<br>67.4  | Fe<br>413.<br>4.28<br>98.7        | Co<br>42<br>4,3<br>10      | 4.                        | Ni<br>428.<br>4.44<br>102.4 | Cu<br>33<br>3.4<br>80.  | 6.<br>19                       | Zn<br>130<br>1.35<br>31.04  | Ga<br>271<br>2.81<br>64.8  | 3.                         | e<br>72.<br>85<br>3.8     | As<br>285.3<br>2.96<br>68.2 | Se<br>237<br>2.46<br>56.7         | Br<br>118.<br>1.22<br>28.18 | Kr<br>11.2<br>0.11<br>3 2.68 |
| Rb<br>82.2<br>0.852<br>19.64 | Sr<br>166.<br>1.72<br>39.7 | Y<br>422.<br>4.37<br>100.8  | Zr<br>603.<br>6.25<br>144.2                                                                                           | Nb<br>730.<br>7.57<br>174.5 | Mo<br>658<br>6.82<br>157  | 2                       | Tc<br>661.<br>6.85<br>158.  | Ru<br>650.<br>6.74<br>155.        | Rh<br>55-<br>5.7<br>4 133  | 4.<br>'5                  | Pd<br>376.<br>3.89<br>89.8  | Ag<br>284<br>2.9<br>68. | 4.                             | Cd<br>112.<br>1.16<br>26.73 | In<br>243<br>2.52<br>58.1  | 3.                         | n<br>)3.<br>14<br>2.4     | Sb<br>265.<br>2.75<br>63.4  | Te<br>211<br>2.19<br>50.34        | I<br>107.<br>1.11<br>25.62  | Xe<br>15.9<br>0.16<br>3.80   |
| Cs<br>77.6<br>0.804<br>18.54 | Ba<br>183.<br>1.90<br>43.7 | La<br>431.<br>4.47<br>103.1 | Hf<br>621<br>6.44<br>148.4                                                                                            | Ta<br>782.<br>8.10<br>186.9 | W<br>859<br>8.90<br>205   |                         | Re<br>775.<br>8.03<br>185.2 | <b>Os</b><br>788.<br>8.17<br>188. | Ir<br>670<br>6.9<br>4 160  | 0.                        | Pt<br>564.<br>5.84<br>134.7 | Au<br>368<br>3.8<br>87. | 3.<br>1                        | Hg<br>65.<br>0.67<br>15.5   | TI<br>182.<br>1.88<br>43.4 | 2.                         | 96.<br>03 ·               | Bi<br>210.<br>2.18<br>50.2  | Po<br>144,<br>1.50<br>34.5        | At                          | Rn<br>19.5<br>0.202<br>4.66  |
| Fr                           | Ra<br>160.<br>1.66<br>38.2 | Ac<br>410.<br>4.25<br>98.   | Cc<br>41<br>4.3<br>99                                                                                                 | 7. 3<br>32 3                | r<br>57.<br>70<br>5.3     | Nd<br>328<br>3.4<br>78. | 3.<br>O                     |                                   | Sm<br>206.<br>2.14<br>49.3 | Eu<br>179<br>1.86<br>42.8 | 6 4.                        | 0.                      | <b>Tb</b><br>391<br>4.0<br>93. | 5 3.0                       | 4. 3                       | Ho<br>902.<br>3.14<br>72.3 | Er<br>31<br>3.2<br>75     | 7. 23                       | 33. 1<br>42 1                     | 54. 42<br>.60 4.            | 28.                          |
|                              |                            |                             | Th<br>59<br>6.1<br>14                                                                                                 | 8.                          | a                         | U<br>530<br>5.5<br>128  | 5 4.7                       | 6                                 | Pu<br>347.<br>3.60<br>33.0 | Am<br>264<br>2.73<br>63.  | . 38                        | 5                       | Bk                             |                             | _                          | s                          | Fm                        |                             | _                                 | -                           | -                            |

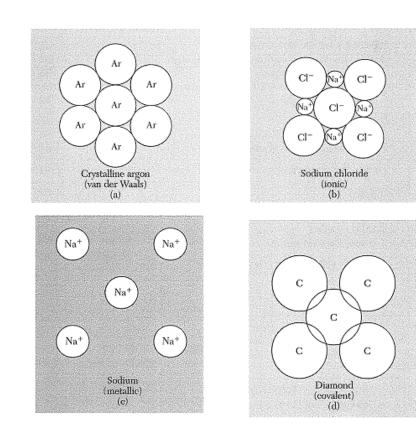
Kcal/mol = 0.0434 eV/molecule

KJ/mol = 0.0104 eV/molecule

| Li<br>453.7 | Be<br>1562 | product of the |           |            | <b>ر</b><br>مەمەر م |            |            |           |           | oints, i<br>oreaux |            | 1920     |           |           |             | В<br>23   | 65        | С           | N<br>63.1       |           | 0<br>54.36  | F<br>53.  | 48              | Ne<br>24.56 |
|-------------|------------|----------------|-----------|------------|---------------------|------------|------------|-----------|-----------|--------------------|------------|----------|-----------|-----------|-------------|-----------|-----------|-------------|-----------------|-----------|-------------|-----------|-----------------|-------------|
| Na<br>371.0 | Mg<br>922  |                |           |            |                     |            |            |           |           |                    |            |          |           |           |             | AI<br>93  | 3.5       | Si<br>1687  | Р<br>w 3<br>r 8 |           | S<br>388.4  | CI<br>172 | 2.2             | Ar<br>83.81 |
| к<br>336.3  | Ca<br>1113 | Sc<br>1814     | Ti<br>194 | 6 2        |                     | Cr<br>2133 | M<br>3 15  | In<br>520 | Fe<br>181 | 1 17               |            | i<br>728 | Cu<br>138 |           | Zn<br>692.7 | G:<br>30  | a<br>2.9  | Ge<br>1211  | As<br>108       |           | Se<br>494   | Br<br>265 |                 | Kr<br>115.8 |
| Rb<br>312.6 | Sr<br>1042 | Y<br>1801      | Zr<br>212 |            | NB<br>1750          | Mo<br>2895 | 5 24       | с<br>477  | Ru<br>252 |                    |            | d<br>827 | Ag<br>123 |           | Cd<br>594.3 | In<br>42  | 9.8       | Sn<br>505.1 | Sb<br>903       |           | Те<br>722.7 | 1<br>386  | 3.7             | Xe<br>161.4 |
| Cs<br>301.6 | Ba<br>1002 | La<br>1194     | Hf<br>250 |            | a<br>293            | W<br>3695  |            | e<br>459  | Os<br>330 |                    | 20 2       | t<br>045 | Au<br>133 |           | Hg<br>234.3 | ТІ<br>57  |           | РЬ<br>600.7 | Bi<br>544       | 1.6       | Po<br>527   | At        |                 | Rn          |
| Fr          | Ra<br>973  | Ac<br>1324     | U         | Ce<br>1072 |                     | 05         | Nd<br>1290 |           |           | Sm<br>1346         | Eu<br>1091 |          | 587       | Tb<br>163 | 32 1        | 9y<br>684 | Hc<br>174 | 45 13       | 797             | Tm<br>182 | 20 1        |           | Lu<br>193<br>Lw |             |
|             |            |                |           | Th<br>2031 | 1 18                |            | U<br>1406  | Np<br>910 |           | Pu<br>913          | Am<br>1449 |          | m<br>513  | Bk<br>15  |             | 1         | Es        |             | m               | Mo        |             | 10        | LW              |             |

At atmospheric pressure carbon has no melting point as its triple point is at  $10.8 \pm 0.2$  MPa and  $4600 \pm 300$  K, so it sublimates at about 3900 K




101.325 kPa is "one standard atmosphere" and **1 Pa =** 1 N/m2

$$1 J = 1 N \cdot m = \left(\frac{kg \cdot m}{s^2}\right) \cdot m = \frac{kg \cdot m^2}{s^2} = Pa \cdot m^3 = 1 W \cdot s$$

1 eV = 1.602176487×10-19 Joule

### Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals



Cohesive energy = energy required to break up crystal into neutral free atoms.

Lattice energy (ionic crystals) = energy required to break up crystal into free ions.

- The atoms of the inert gasses attract each other via the so-called Van Der Waals interaction (dipoledipole interaction)
- The unperturbed Hamiltonian of the system is the one of two independent oscillators and is given by:

$$H_0 = \frac{p_1^2}{2m} + \frac{1}{2}cx_1^2 + \frac{p_2^2}{2m} + \frac{1}{2}cx_2^2$$

The interaction energy of the oscillators is given by:

$$H_{1} = \frac{1}{4\pi\varepsilon} \left[ \frac{e^{2}}{R} + \frac{e^{2}}{R + x_{2} - x_{1}} - \frac{e^{2}}{R + x_{2}} - \frac{e^{2}}{R - x_{1}} \right] \approx -2 \frac{e^{2} x_{1} x_{2}}{4\pi\varepsilon R^{3}}$$



- Besides the Van der Waals interaction, when two atoms are brought together, their charge distribution begins to overlap, giving rise to the exchange interaction due to the Pauli exclusion principle.
- Since this interaction is difficult to be evaluated from first principles, it is usually parametrized with a term that goes as 1/R12, which then when added to the Van der Waals term gives rise to the famous Lennard-Jones potential that is of the following form:

$$U(R) = 4\varepsilon \left[ \left( \frac{\sigma}{R} \right)^{12} - \left( \frac{\sigma}{R} \right)^{6} \right]$$

1. One first re-writes the Lennard-Jones potential as a sum of all pairs of atoms in the crystal as:

$$U_{TOT}(R) = \frac{1}{2}N(4\varepsilon) \left[ \sum_{j} \left( \frac{\sigma}{p_{ij}R} \right)^{12} - \sum_{j} \left( \frac{\sigma}{p_{ij}R} \right)^{6} \right]$$

where  $p_{ij}R$  is the distance between the reference atom *i* and any other atom *j*. For FCC structure with 12 nearest neighbors, we have:

$$\sum_{j} \left(\frac{1}{p_{ij}}\right)^{12} = 12.13188, \quad \sum_{j} \left(\frac{1}{p_{ij}}\right)^{6} = 14.45392$$

2. The condition that the net force on the atom is zero then gives  $R_0/s = 1.09$ , and the cohesive energy is:

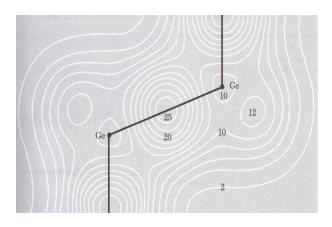
$$U_{TOT}(R) = -2.15(4N\varepsilon)$$

### **Crystals of Inert Gases**

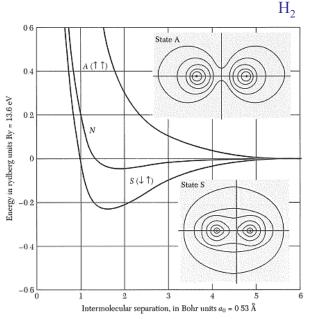
### Table 4 Properties of inert gas crystals

| 10010310310420 | Nearest-<br>neighbor | Experi<br>coh | imental<br>esive |                     | Ionization<br>potential | Parameters in<br>Lennard-Jones<br>potential, Eq. 10 |            |  |  |  |
|----------------|----------------------|---------------|------------------|---------------------|-------------------------|-----------------------------------------------------|------------|--|--|--|
|                | distance,<br>in Å    | k]/mol        | eV/atom          | Melting<br>point, K | of free<br>atom, eV     | $\epsilon$ ,<br>in $10^{-16}$ erg                   | σ,<br>in Å |  |  |  |
| NECTOR (1997   | Charles Charles      |               |                  |                     |                         |                                                     | 231223225  |  |  |  |
| He             | (liquid              | l at zero pr  | essure)          |                     | 24.58                   | 14                                                  | 2.56       |  |  |  |
| Ne             | 3.13                 | 1.88          | 0.02             | 24.56               | 21.56                   | 50                                                  | 2.74       |  |  |  |
| Ar             | 3.76                 | 7.74          | 0.080            | 83.81               | 15.76                   | 167                                                 | 3.40       |  |  |  |
| Kr             | 4.01                 | 11.2          | 0.116            | 115.8               | 14.00                   | 225                                                 | 3.65       |  |  |  |
| Xe             | 4.35                 | 16.0          | 0.17             | 161.4               | 12.13                   | 320                                                 | 3.98       |  |  |  |

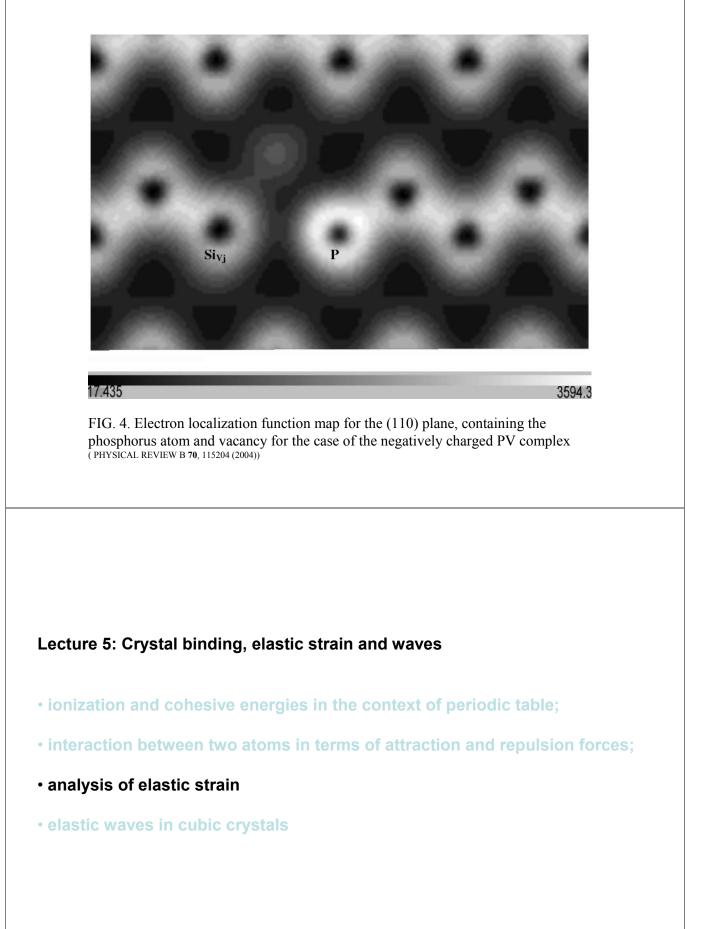
(Extrapolated to 0 K and zero pressure)


#### Atoms:

high ionization energyoutermost shell filledcharge distribution spherical


Crystal:

- •transparent insulators
- •weakly bonded
- •low melting point
- •closed packed (fcc, except He<sup>3</sup> & He<sup>4</sup>).


# **Covalent Crystals**



- Electron pair localized midway of bond.
- Tetrahedral: diamond, zinc-blende structures.
- Low filling: 0.34 vs 0.74 for closed-packed.



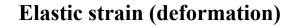
Pauli exclusion → exchange interaction

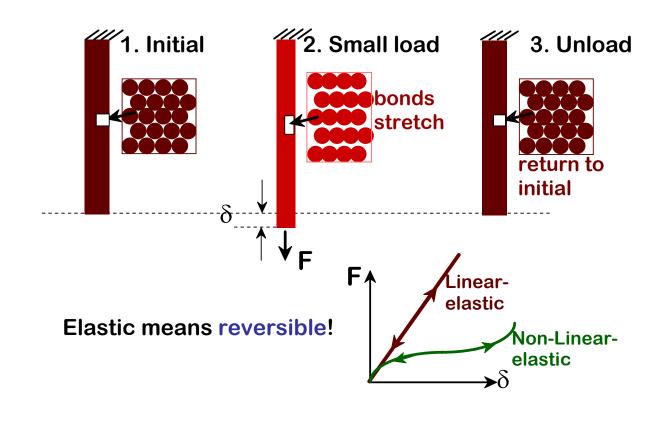


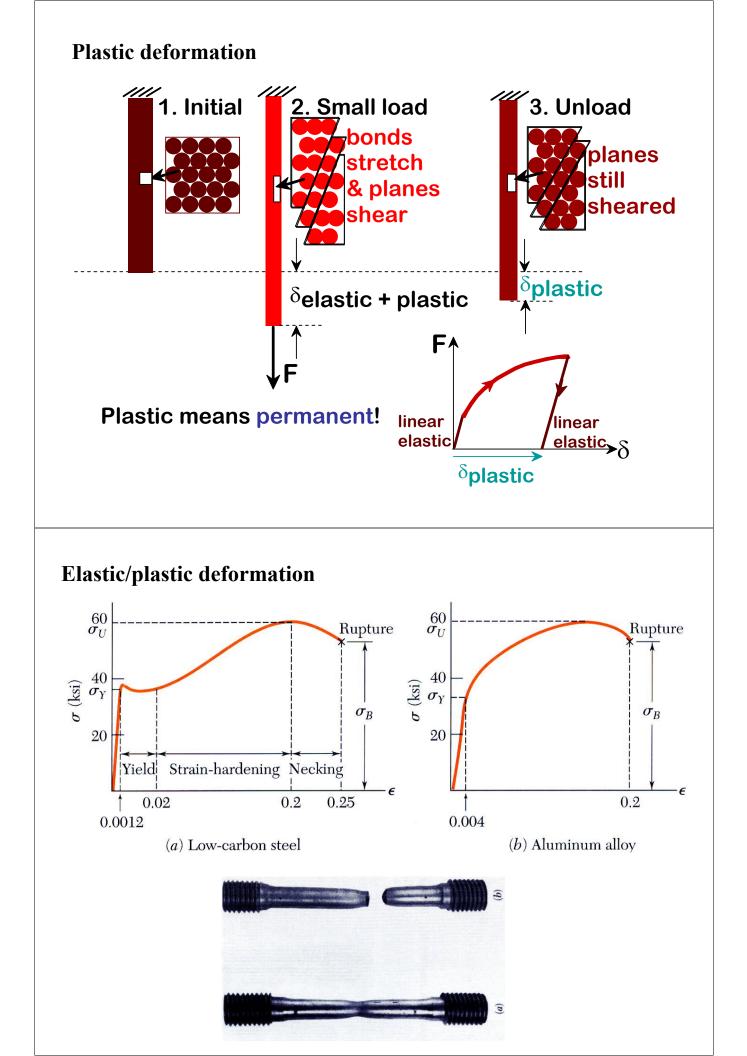
stress 
$$\sigma = \frac{load W}{area A}$$

$$\boldsymbol{\varepsilon}_{ij} = S_{ij} \cdot \boldsymbol{\sigma}_{ij}$$

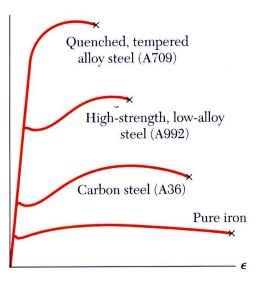
Hooke's law


 $\sigma_{ij} = C_{ij} \cdot \varepsilon_{ij}$ 


strain 
$$\varepsilon = \frac{\text{increase in length } x}{\text{original length } L}$$

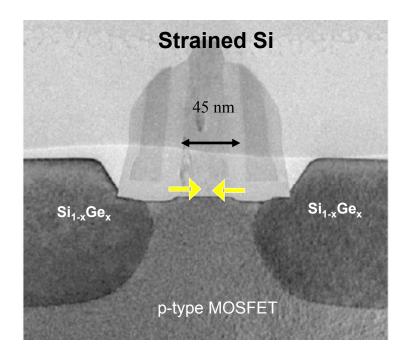

W

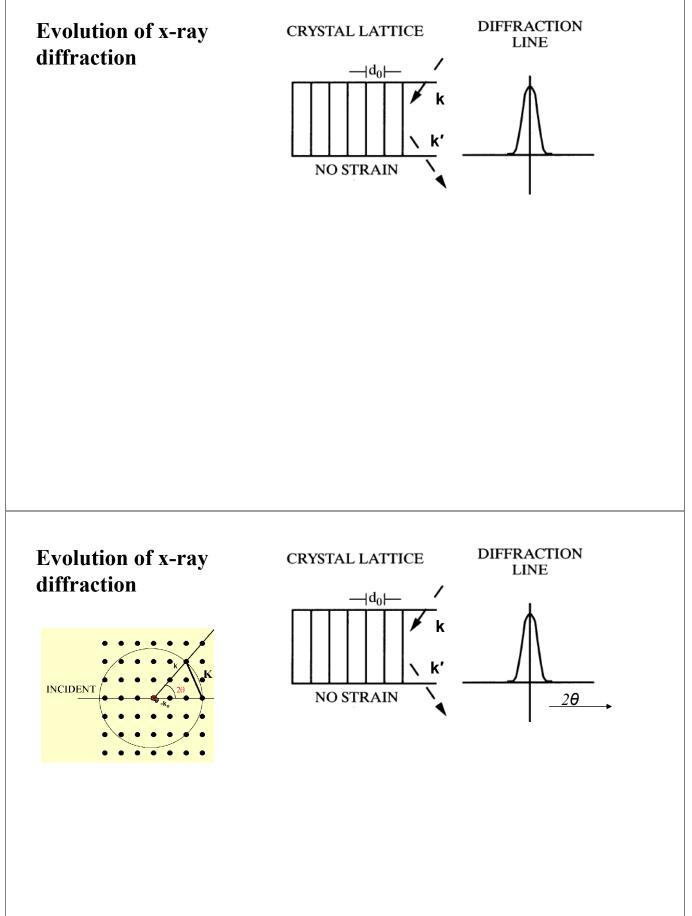
See Eqs 37 and 38 in Kittel, p.77

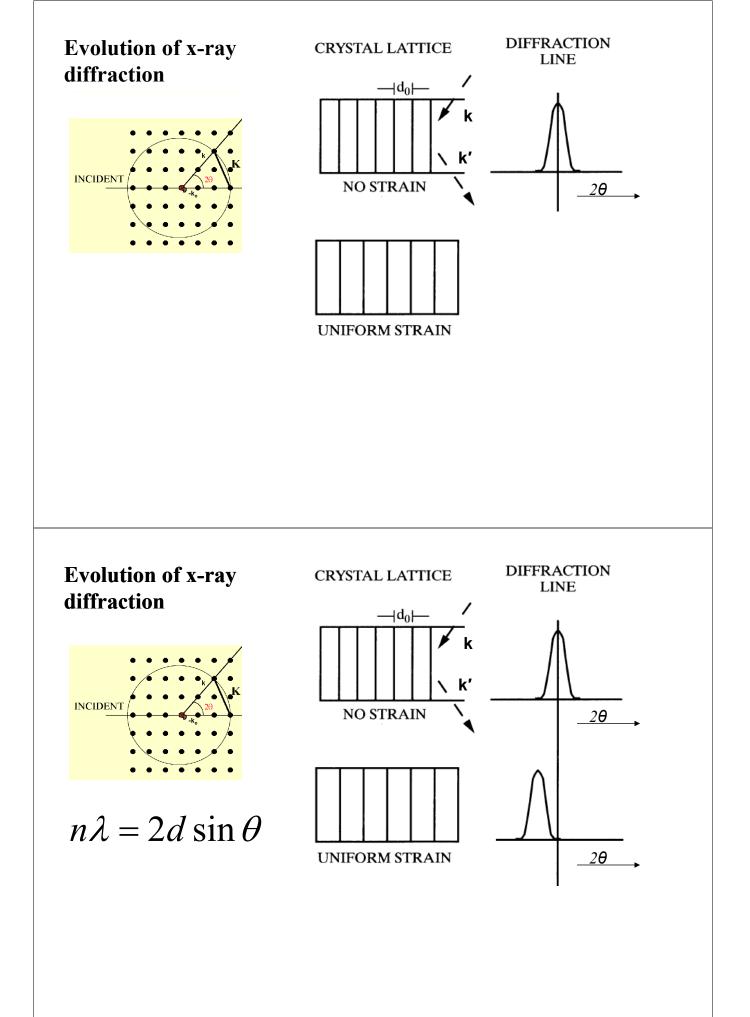

Is there a good reason to introduce complications with so many different indexes as in p.73-80? Yes it is, becase, for example elastic waves in crystals often propagate in different directions, specifically can be longitudinal or transverse (share) waves

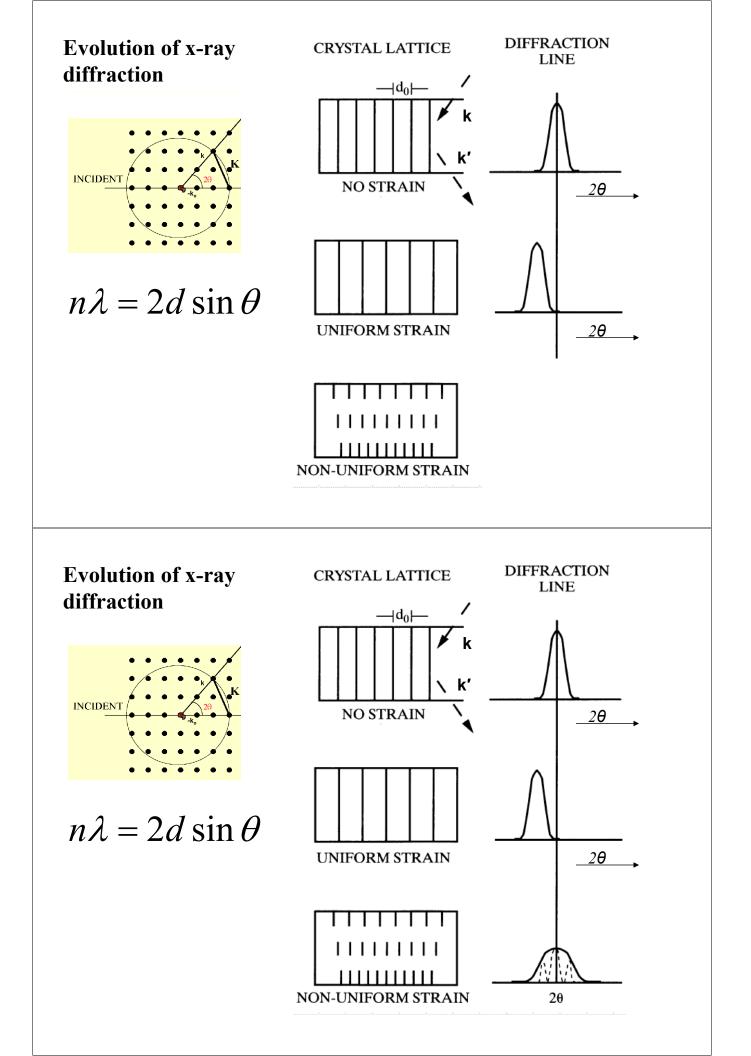








## **Elastic/plastic deformation**





- Below the yield stress  $\sigma = E\varepsilon$  E = Youngs Modulus or Modulus of Elasticity
- Strength is affected by alloying, heat treating, and manufacturing process but stiffness (Modulus of Elasticity) is not.

## How is strain applied to the electronic chips?









### Lecture 5: Crystal binding, elastic strain and waves

- ionization and cohesive energies in the context of periodic table;
- interaction between two atoms in terms of attraction and repulsion forces;
- analysis of elastic strain
- elastic waves in cubic crystals

### **Elastic Waves in Cubic Crystals**

Newton's 2<sup>nd</sup> law: 
$$\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ik}}{\partial x_k}$$

$$\sigma_{ik} = C_{ikjl} u_{jl} \rightarrow \rho \frac{\partial^2 u_i}{\partial t^2} = C_{ikjl} \frac{\partial u_{jl}}{\partial x_k} = \frac{1}{2} C_{ikjl} \left( \frac{\partial^2 u_i}{\partial x_k \partial x_j} + \frac{\partial^2 u_j}{\partial x_k \partial x_l} \right) = C_{ikjl} \frac{\partial^2 u_l}{\partial x_k \partial x_j}$$

$$\rho \frac{\partial^2 u_1}{\partial t^2} = C_{1111} \frac{\partial^2 u_1}{\partial x_1^2} + C_{1122} \frac{\partial^2 u_2}{\partial x_1 \partial x_2} + C_{1133} \frac{\partial^2 u_3}{\partial x_1 \partial x_3} + C_{1212} \frac{\partial^2 u_2}{\partial x_2 \partial x_1} + C_{1221} \frac{\partial^2 u_1}{\partial x_2^2} + C_{1313} \frac{\partial^2 u_3}{\partial x_3 \partial x_1} + C_{1331} \frac{\partial^2 u_1}{\partial x_3^2}$$

$$= C_{1111} \frac{\partial^2 u_1}{\partial x_1^2} + C_{1122} \left( \frac{\partial^2 u_2}{\partial x_1 \partial x_2} + \frac{\partial^2 u_3}{\partial x_1 \partial x_3} \right) + C_{1212} \left( \frac{\partial^2 u_2}{\partial x_2 \partial x_1} + \frac{\partial^2 u_3}{\partial x_2^2} + \frac{\partial^2 u_3}{\partial x_3 \partial x_1} + \frac{\partial^2 u_1}{\partial x_3^2} \right)$$

$$\therefore \qquad \rho \frac{\partial^2 u_1}{\partial t^2} = C_{11} \frac{\partial^2 u_1}{\partial x_1^2} + (C_{12} + C_{44}) \left( \frac{\partial^2 u_2}{\partial x_1 \partial x_2} + \frac{\partial^2 u_3}{\partial x_1 \partial x_3} \right) + C_{44} \left( \frac{\partial^2 u_2}{\partial x_1^2} + \frac{\partial^2 u_2}{\partial x_3^2} \right)$$
Similarly 
$$\rho \frac{\partial^2 u_2}{\partial t^2} = C_{11} \frac{\partial^2 u_2}{\partial x_2^2} + (C_{12} + C_{44}) \left( \frac{\partial^2 u_3}{\partial x_2 \partial x_2} + \frac{\partial^2 u_1}{\partial x_2 \partial x_1} \right) + C_{44} \left( \frac{\partial^2 u_2}{\partial x_1^2} + \frac{\partial^2 u_2}{\partial x_3^2} \right)$$

$$\rho \frac{\partial^2 u_3}{\partial t^2} = C_{11} \frac{\partial^2 u_3}{\partial x_3^2} + (C_{12} + C_{44}) \left( \frac{\partial^2 u_2}{\partial x_2 \partial x_2} + \frac{\partial^2 u_1}{\partial x_2 \partial x_1} \right) + C_{44} \left( \frac{\partial^2 u_2}{\partial x_1^2} + \frac{\partial^2 u_2}{\partial x_3^2} \right)$$

## **Dispersion Equation**

$$\rho \frac{\partial^2 u_i}{\partial t^2} = C_{ikjl} \frac{\partial^2 u_l}{\partial x_k \partial x_j}$$

$$u_i = u_{0i} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \longrightarrow \qquad \omega^2 \rho \ u_{0i} = C_{ikjl} \ k_k \ k_j \ u_{0l}$$

$$\left(\omega^2 \rho \ \delta_{il} - C_{ikjl} \ k_k \ k_j \ \right) u_{0l} = 0$$

$$\left| \ \omega^2 \rho \ \delta_{il} - C_{ikjl} \ k_k \ k_j \ \right| = 0 \qquad \text{dispersion equation}$$

$$\left| \ \omega^2 \rho \ I - \mathbf{C}(\mathbf{k}) \ \right| = 0 \qquad \mathbf{C}_{ij}(\mathbf{k}) = C_{imnj} \ k_m \ k_n$$

# Waves in the [100] direction

$$\begin{vmatrix} \omega^{2} \rho I - \mathbf{C}(\mathbf{k}) \end{vmatrix} = 0 \qquad \mathbf{C}_{ij}(\mathbf{k}) = C_{imnj} k_{m} k_{n}$$
$$\mathbf{k} = k(1,0,0) \rightarrow \mathbf{C}_{ij}(\mathbf{k}) = C_{i11j} k^{2}$$
$$\mathbf{C}(\mathbf{k}) = k^{2} \begin{pmatrix} C_{111} & 0 & 0 \\ 0 & C_{2112} & 0 \\ 0 & 0 & C_{3113} \end{pmatrix} = k^{2} \begin{pmatrix} C_{11} & 0 & 0 \\ 0 & C_{44} & 0 \\ 0 & 0 & C_{44} \end{pmatrix}$$
$$\omega_{L} = \sqrt{\frac{C_{11}}{\rho}} k \qquad \mathbf{u}_{0} = (1,0,0) \qquad \text{Longitudinal}$$
$$\omega_{T} = \sqrt{\frac{C_{44}}{\rho}} k \qquad \mathbf{u}_{0} = (0,1,0) \qquad \text{Transverse,}$$
$$\text{degenerate}$$

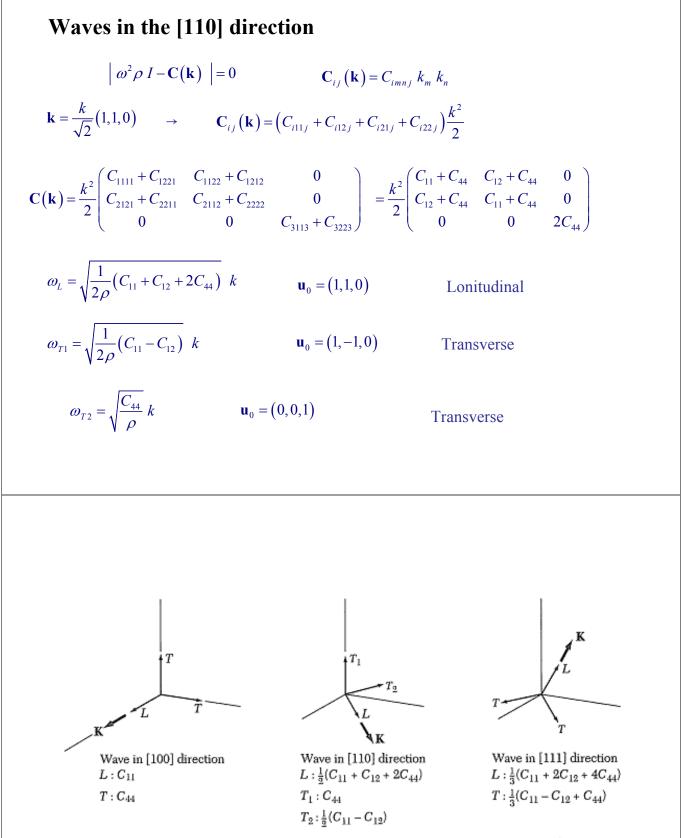



Figure 20 Effective elastic constants for the three modes of elastic waves in the principal propagation directions in cubic crystals. The two transverse modes are degenerate for propagation in the [100] and [111] directions.