
FYS3410 - Vår 2010 (Kondenserte fasers fysikk)
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Based on Introduction to Solid State Physics by Kittel

Course content
• Periodic structures, understanding of diffraction experiment and reciprocal lattice

• Crystal binding, elastic strain and waves

• Imperfections in crystals: diffusion, point defects, dislocations

• Crystal vibrations: phonon heat capacity and thermal conductivity

• Free electron Fermi gas: density of states, Fermi level, and electrical conductivity

• Electrons in periodic potential: energy bands theory classification of metals,   

semiconductors and insulators

• Semiconductors: band gap, effective masses, charge carrier distributions, 

doping, pn-junctions

• Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology
Postboks 1048 Blindern, 0316 OSLO
Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no
visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010: Introduction and motivation. Periodicity and lattices 2h
W/20/1/2010: Index system for crystal planes. Crystal structures 1h

M/25/1/2010: Reciprocal space, Laue condition and Ewald construction 2h
W/27/1/2010: Brillouin Zones. Interpretation of a diffraction experiment 1h

M/01/2/2010: Crystal binding, elastic strain and waves 2h
W/03/2/2010: Point defects, case study – vacancies 1h

M/08/2/2010: Point defects and atomic diffusion 2h
W/10/2/2010: Diffusion (continuation); dislocations 1h

M/15/2/2010: Crystal vibrations and phonons 2h
W/17/2/2010: Crystal vibrations and phonons 1h

M/22/2/2010: Planck distribution and density of states 2h
W/24/2/2010: Debye model 1h

M/01/3/2010: Einstein model and general result for density of states 2h
W/03/3/2010: Thermal conductivity 1h

M/08/3/2010: Free electron Fermi gas in 1D and 3D – ground state 2h
W/10/3/2010: Density of states, effect of temperature – FD distribution 1h

M/15/3/2010: Heat capacity of FEFG 2h
W/17/3/2010: Repetition 1h

22/3/2010: Mid-term exam



M/14/4/2010: Electrical and thermal conductivity in metals 2h
W/12/4/2010: Bragg reflection of electron waves at the boundary of BZ 1h

M/19/4/2010: Energy bands, Kronig - Penny model 2h
W/21/4/2010: Empty lattice approximation; number of orbitals in a band 1h

M/26/4/2010: Semiconductors, effective mass method, intrinsic carriers 2h
W/28/4/2010: Impurity states in semiconductors and carrier statistics 1h

M/03/5/2010: p-n junctions and heterojunctions 2h
W/05/5/2010: surface structure, surface states, Schottky contacts 2h

M/10/5/2010: no lectures
W/12/5/2010: no lectures

W/19/5/2010: Repetition 2h

W26/5/2010: Repetition 2h

28/5/2010:    Final Exam (sensor: Prof. Arne Nylandsted Larsen 
at the Århus University, Denmark, http://person.au.dk/en/anl@phys.au.dk)

Lecture 5: Crystal binding, elastic strain and waves

• ionization and cohesive energies in the context of periodic table;

• interaction between two atoms in terms of attraction and repulsion forces;

• analysis of elastic strain

• elastic waves in cubic crystals
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Kcal/mol = 0.0434 eV/molecule KJ/mol = 0.0104 eV/molecule



At atmospheric pressure carbon has no melting point as its triple point is at 

10.8 ± 0.2 MPa and 4600 ± 300 K, so it sublimates at about 3900 K 

101.325 kPa is “one standard atmosphere” and 1 Pa = 1 N/m2

1 eV = 1.602176487×10−19 Joule 
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Cohesive energy = energy 

required to break up crystal 

into neutral free atoms.

Lattice energy (ionic crystals) 

= energy required to break 

up crystal into free ions.

� The atoms of the inert gasses attract each other via 
the so-called Van Der Waals interaction (dipole-
dipole interaction)

� The unperturbed Hamiltonian of the system is the 
one of two independent oscillators and is given by:

� The interaction energy of the oscillators is given by: 
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� Besides the Van der Waals interaction, when 
two atoms are brought together, their charge 
distribution begins to overlap, giving rise to the 
exchange interaction due to the Pauli exclusion 
principle.

� Since this interaction is difficult to be evaluated 
from first principles, it is usually parametrized
with a term that goes as 1/R12, which then 
when added to the Van der Waals term gives 
rise to the famous Lennard-Jones potential that 
is of the following form:
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1. One first re-writes the Lennard-Jones potential 
as a sum of all pairs of atoms in the crystal as:

where pijR is the distance between the reference 
atom i and any other atom j. For FCC structure 
with 12 nearest neighbors, we have:

2. The condition that the net force on the atom is 
zero then gives R0/s = 1.09, and the cohesive 
energy is:
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Crystals of Inert Gases

Atoms:  

•high ionization energy

•outermost shell filled

•charge distribution spherical

Crystal: 

•transparent insulators

•weakly bonded

•low melting point

•closed packed (fcc, except He3 & He4).

Covalent Crystals

• Electron  pair localized midway of bond.

• Tetrahedral:  diamond, zinc-blende structures.

• Low filling:  0.34  vs 0.74 for closed-packed.

Pauli exclusion →
exchange interaction

H2



FIG. 4. Electron localization function map for the (110) plane, containing the

phosphorus atom and vacancy for the case of the negatively charged PV complex
( PHYSICAL REVIEW B 70, 115204 (2004))
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stress      =  
load  W

area  A
σ

strain     =  
increase in length  x

original length  L
ε σij =Cij•εij

εij =Sij•σij

See Eqs 37 and 38 in Kittel, p.77

Is there a good reason to introduce complications with so many different indexes as in 

p.73-80? Yes it is, becase, for example elastic waves in crystals often propagate in different

directions, specifically can be longitudinal or transverse (share) waves

Hooke’s law
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1. Initial 2. Small load 3. Unload

Elastic means reversible!

Elastic strain (deformation)
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• Below the yield stress

Elasticity of Modulus         

or Modulus Youngs=
=

E

Eεσ

• Strength is affected by alloying, 

heat treating, and manufacturing 

process but stiffness (Modulus of 

Elasticity) is not.

Elastic/plastic deformation

How is strain applied to the electronic chips? 

Si1-xGex

p-type MOSFET

Si1-xGex

Strained Si

45 nm
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Elastic Waves in Cubic Crystals

Newton’s 2nd law:
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Dispersion Equation
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Waves in the [110] direction
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