FYS3410 - Vår 2010 (Kondenserte fasers fysikk)

http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml

Based on Introduction to Solid State Physics by Kittel

Course content

- Periodic structures, understanding of diffraction experiment and reciprocal lattice
- Crystal binding, elastic strain and waves
- Imperfections in crystals: diffusion, point defects, dislocations
- Crystal vibrations: phonon heat capacity and thermal conductivity
- Free electron Fermi gas: density of states, Fermi level, and electrical conductivity
- Electrons in periodic potential: energy bands theory classification of metals, semiconductors and insulators
- Semiconductors: band gap, effective masses, charge carrier distributions, doping, pn-junctions
- Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology Postboks 1048 Blindern, 0316 OSLO Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010: W/20/1/2010:	 Introduction and motivation. Periodicity and lattices Index system for crystal planes. Crystal structures 		
M/25/1/2010: Reciprocal space, Laue condition and Ewald construction W/27/1/2010: Brillouin Zones. Interpretation of a diffraction experiment			
M/01/2/2010:	Crystal binding, elastic strain and waves	2h	
W/03/2/2010:	Elastic waves in cubic crystals; defects in crystals	1h	
M/08/2/2010:	Defects in crystals; case study - vacancies	2h	
W/10/2/2010:	Atomic diffusion	1h	
M/15/2/2010:	Crystal vibrations and phonons	2h	
W/17/2/2010:	Crystal vibrations and phonons	1h	
M/22/2/2010:	Planck distribution and density of states	2h	
W/24/2/2010:	Debye model	1h	
M/01/3/2010:	Einstein model and general result for density of states	2h	
W/03/3/2010:	Thermal conductivity	1h	
M/08/3/2010:	Free electron Fermi gas in 1D and 3D – ground state	2h	
W/10/3/2010:	Density of states, effect of temperature – FD distribution	1h	
M/15/3/2010:	Heat capacity of FEFG	2h	
W/17/3/2010:	Repetition	1h	
22/3/2010	Mid-term exam		

M/14/4/2010:	Electrical and thermal conductivity in metals	2h
W/12/4/2010:	Bragg reflection of electron waves at the boundary of BZ	1h
M/19/4/2010:	Energy bands, Kronig - Penny model	2h
W/21/4/2010:	Empty lattice approximation; number of orbitals in a band	1h
M/26/4/2010:	Semiconductors, effective mass method, intrinsic carriers	2h
W/28/4/2010:	Impurity states in semiconductors and carrier statistics	1h
M/03/5/2010:	p-n junctions and heterojunctions	2h
W/05/5/2010:	surface structure, surface states, Schottky contacts	2h
M/10/5/2010: W/12/5/2010:	no lectures no lectures	
W/19/5/2010:	Repetition	2h
W26/5/2010:	Repetition	2h
28/5/2010:	Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Århus University, Denmark, http://person.au.dk/en/anl@phys.au.dk))

- defects in crystals; vacancies
- Configurational entropy due to vacancy
- Equilibrium concentration of vacancies temperature dependence
- Equilibrium concentration of vacancy pressure dependence
- Excess concentration and clustering of vacancies
- Clustering of ion implantation induced vacancies in ZnO

Lecture 7: Defects in crystals; case study - vacancies

• defects in crystals; vacancies

- Configurational entropy due to vacancy
- Equilibrium concentration of vacancies temperature dependence
- Equilibrium concentration of vacancy pressure dependence
- Excess concentration and clustering of vacancies
- Clustering of ion implantation induced vacancies in ZnO

Defects	Dimensionality	Examples
Point	0	Vacancy
Line	1	Dislocation
Surface	2	Free surface,
		Grain boundary

Vacancies

Fact

There *may* be vacant sites in a crystal

Surprising Fact

There *must* be a certain fraction of vacant sites in a crystal in *equilibrium*.

Vacancies

- Crystal in equilibrium
- Minimum Gibbs free energy G at constant T and P
- A certain concentration of vacancy lowers the free energy of a crystal

Vacancies

Gibbs free energy G involves two terms:

1. Enthalpy $H = E + PV$	<i>E</i> internal energy	
	P pressure	
	V volume	
2. Entropy $S = k \ln W$	<i>k</i> Boltzmann constant <i>W</i> number of microstates	
G = H - TS	T Absolute temperature	

Vacancies

Vacancy increases *H* of the crystal due to energy required to break bonds

- defects in crystals; vacancies
- Configurational entropy due to vacancy
- Equilibrium concentration of vacancies temperature dependence
- Equilibrium concentration of vacancy pressure dependence
- Excess concentration and clustering of vacancies
- Clustering of ion implantation induced vacancies in ZnO

Configurational entropy due to vacancy

Configurational entropy due to vacancy

Number of atoms: NNumber of vacacies: nTotal number of sites: N+nHow many distinguished configurations, so called microstates?

We calculate this explicitly

Configurational entropy due to vacancy

- defects in crystals; vacancies
- Configurational entropy due to vacancy
- Equilibrium concentration of vacancies temperature dependence
- Equilibrium concentration of vacancy pressure dependence
- Excess concentration and clustering of vacancies
- Clustering of ion implantation induced vacancies in ZnO

Equilibrium concentration of vacancies – temperature dependence

Equilibrium concentration of vacancies – temperature dependence

$$N = 7.97 \times 10^{28}$$
 at - sites / m^3

Now apply the Arrhenius relation @1000 °C

$$N_{v} = N \exp\left(-\frac{H_{f}}{kT}\right)$$

= 7.97×10²⁸ exp $\left[\frac{-0.9eV/at}{(8.62 \times 10^{-5} eV/at - K) 1273K}\right]$
 $N_{v} = 2.18 \times 10^{25} vac/m^{3}$

Equilibrium concentration of vacancies – temperature dependence

$$\frac{n_{eq}}{N} = \exp\left(-\frac{\Delta H_f}{kT}\right)$$

AI: $\Delta H_f = 0.70 \text{ ev/vacancy}$ Ni: $\Delta H_f = 1.74 \text{ ev/vacancy}$

n/N	0 K	300 K	900 K
AI	0	1.45x10 ⁻¹²	1.12x10 ⁻⁴
Ni	0	5.59x10 ⁻³⁰	1.78x10 ⁻¹⁰

Lecture 7: Defects in crystals; case study - vacancies

- defects in crystals; vacancies
- Configurational entropy due to vacancy
- Equilibrium concentration of vacancies temperature dependence
- Equilibrium concentration of vacancy pressure dependence
- Excess concentration and clustering of vacancies
- Clustering of ion implantation induced vacancies in ZnO

Equilibrium concentration of vacancy – pressure dependence

$$H_f = E_f + PV_f \qquad \Longrightarrow \qquad \varDelta G_f = E_f + PV_f - TS_f$$

Neighboring atoms tend to move into the vacancy, which creates a tensile stress field
The stress/strain field is nearly spherical and short-range.

$$C_V^{eq} = e^{-\Delta G_f/kT} = e^{S_f/k} e^{-E_f/kT} e^{\sigma V_f/kT}$$

Equilibrium concentration of vacancy – pressure dependence

$$C_V^{eq} = e^{-\Delta G_f/kT} = e^{S_f/k} e^{-E_f/kT} e^{\sigma V_f/kT}$$

 $V_f = \Omega + relaxation volume$

How big the pressure should be to make a measurable effect on vacancy concentration?

 $\Delta H_f \qquad \sigma V_f$

Equilibrium concentration of vacancy – pressure dependence

101.325 kPa is "one standard atmosphere" and **1 Pa =** 1 N/m2

$$1 \text{ J} = 1 \text{ N} \cdot \text{m} = \left(\frac{\text{kg} \cdot \text{m}}{\text{s}^2}\right) \cdot \text{m} = \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2} = \text{Pa} \cdot \text{m}^3 = 1 \text{ W} \cdot \text{s}$$

1 eV = 1.602176487×10-19 Joule

As we calculate the effect of pressure/stress on vacancy concentration starts to be significant at quite high values – in the range of 100 MPa.

Are these conditions available in real "life" or happens only in a laboratory experiment?

Excess concentration and clustering of vacancies

Radiation

Chemical reactions

The amount of single vacancies exceed the "solubility" limit and vacancies may start cluster

- defects in crystals; vacancies
- Configurational entropy due to vacancy
- Equilibrium concentration of vacancies temperature dependence
- Equilibrium concentration of vacancy pressure dependence
- Excess concentration and clustering of vacancies
- Clustering of ion implantation induced vacancies in ZnO

Clustering of ion implantation induced vacancies in ZnO

Clustering of ion implantation induced vacancies in ZnO

Clustering of ion implantation induced vacancies in ZnO

Clustering of ion implantation induced vacancies in ZnO

vacancies build clusters consisting of at least 3-4 V_{zn}

Why clusters do not survive 1h anneals at ≥ 800 °C?

Clustering of ion implantation induced vacancies in ZnO

vacancies build clusters consisting of at least 3-4 V_{Zn}

Why clusters do not survive 1h anneals at ≥ 800 °C?

$$\frac{\partial [V_n]}{\partial t} = 4\pi R D_V [V_{n-1}] [V] - [V_n] \cdot C_0 \exp(-E_b/kT)$$
generation
dissociation

- clustering take place as long as the vacancy diffusivity (D_v) , supersaturation level ([V]), and clustering reaction radii (R) are high enough
- E_b dissociation energy determines the dissociation rate at a given temperature

Clustering of ion implantation induced vacancies in ZnO

