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Based on Introduction to Solid State Physics by Kittel

Course content
• Periodic structures, understanding of diffraction experiment and reciprocal lattice

• Imperfections in crystals: diffusion, point defects, dislocations

• Crystal vibrations: phonon heat capacity and thermal conductivity

• Free electron Fermi gas: density of states, Fermi level, and electrical conductivity

• Electrons in periodic potential: energy bands theory classification of metals,   

semiconductors and insulators

• Semiconductors: band gap, effective masses, charge carrier distributions, 

doping, pn-junctions

• Metals: Fermi surfaces, temperature dependence of electrical conductivity
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visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010: Introduction and motivation. Periodicity and lattices 2h
W/20/1/2010: Index system for crystal planes. Crystal structures 1h

M/25/1/2010: Reciprocal space, Laue condition and Ewald construction 2h
W/27/1/2010: Interpretation of a diffraction experiment 1h

M/01/2/2010: Crystal binding and introduction to elastic strain 2h
W/03/2/2010: Point defects, case study – vacancies 1h

M/08/2/2010: Point defects and atomic diffusion 2h
W/10/2/2010: Diffusion (continuation); dislocations 1h

M/15/2/2010: Crystal vibrations and phonons 2h
W/17/2/2010: Crystal vibrations and phonons 1h

M/22/2/2010: Planck distribution and density of states 2h
W/24/2/2010: Debye model 1h

M/01/3/2010: Einstein model and general result for density of states 2h
W/03/3/2010: Thermal conductivity 1h

M/08/3/2010: Free electron Fermi gas in 1D and 3D – ground state 2h
W/10/3/2010: Density of states, effect of temperature – FD distribution 1h

M/15/3/2010: Heat capacity of FEFG 2h
W/17/3/2010: Repetition 1h

22/3/2010: Mid-term exam



M/14/4/2010: Electrical and thermal conductivity in metals 2h
W/12/4/2010: Bragg reflection of electron waves at the boundary of BZ 1h

M/19/4/2010: Energy bands, Kronig - Penny model 2h
W/21/4/2010: Empty lattice approximation; number of orbitals in a band 1h

M/26/4/2010: Semiconductors, effective mass method, intrinsic carriers 2h
W/28/4/2010: Impurity states in semiconductors and carrier statistics 1h

M/03/5/2010: p-n junctions and heterojunctions 2h
W/05/5/2010: surface structure, surface states, Schottky contacts 2h

M/10/5/2010: no lectures
W/12/5/2010: no lectures

W/19/5/2010: Repetition 2h

W26/5/2010: Repetition 2h

28/5/2010:    Final Exam (sensor: Prof. Arne Nylandsted Larsen 
at the Århus University, Denmark, http://person.au.dk/en/anl@phys.au.dk)

Lecture 2: Periodicity, lattices, and index system for crystal planes 



Ideal Crystal

• An ideal crystal is a periodic array of  structural units, such as atoms or molecules.  

• It can be constructed by the infinite repetition of these identical structural units in space.

• Structure can be described in terms of a lattice, with a group of atoms attached to each 

lattice point.  The group of atoms is the basis.

Bravais Lattice

• An infinite array of discrete points with an arrangement and orientation that 

appears exactly the same, from any of the points the array is viewed from.

• A three dimensional Bravais lattice consists of all points with position vectors R that 

can be written as a linear combination of primitive vectors.  The expansion 

coefficients must be integers.

Primitive Unit Cell
• A primitive cell or primitive unit cell is a volume of space that when translated 

through all the vectors in a Bravais lattice just fills all of space without either 

overlapping itself or leaving voids.  

• A primitive cell must contain precisely one lattice point.



Primitive (a1,a2) and not primitive (a1’’’,a2’’’) translation vectors

Crystal structure II

Wigner-Seitz Primitive Cell: Full symmetry of 

Bravais Lattice



2-D lattices

3-D lattices
Cubic

a=b=c

α=β=γ=90°

Hexagonal

a=b≠c

α=β= 90° ; γ=120°

Tetragonal

a=b≠c

α=β=γ=90°

Rhombohedral

a=b=c=

α=β=γ≠90°

Orthorhombic

a≠b≠c

a=b=g=90°

Monoclinic

a≠b≠c

α=γ=90°≠β

Triclinic

a≠b≠c

α≠β≠γ≠90°



Primitive Cell: 

FCC Lattice

The indices of a crystal plane (h,k,l) are defined to be a set of integers with no common 

factors, inversely proportional to the intercepts of the crystal plane along the crystal 

axes:

Miller indices of lattice planes
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Miller indices of lattice planes

Reciprocal lattice

Crystal planes (hkl) in the real-space or direct lattice are characterized by the 

normal vector          and the interplanar spacing          :

Defining a different lattice in reciprocal space whose points lie at positions given 

by the vectors
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These vectors are parallel to 

the [hkl] direction but has 

magnitude 2π/dhkl, which is a 

reciprocal distance

Miller indices were derived as 

the reciprocal (or inverse) of 

unit cell intercepts.



The reciprocal lattice is composed of all points lying at positions         from 

the origin, so that there is one point in the reciprocal lattice for each set of 

planes (hkl) in the real-space lattice.

This seems like an unnecessary abstraction.  What is the payoff for defining such 

a reciprocal lattice? No, the reciprocal lattice simplifies the interpretation of x-

ray diffraction from crystals because:

hkl
G
v

• A diffraction pattern is not a direct 

representation of the crystal lattice

• The diffraction pattern is a 

representation of the reciprocal lattice

Reciprocal lattice


