FYS3410 - Vår 2010 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/FYS3410/index-eng.xml
 Based on Introduction to Solid State Physics by Kittel

Course content

- Periodic structures, understanding of diffraction experiment and reciprocal lattice
- Imperfections in crystals: diffusion, point defects, dislocations
- Crystal vibrations: phonon heat capacity and thermal conductivity
- Free electron Fermi gas: density of states, Fermi level, and electrical conductivity
- Electrons in periodic potential: energy bands theory classification of metals, semiconductors and insulators
- Semiconductors: band gap, effective masses, charge carrier distributions, doping, pn-junctions
- Metals: Fermi surfaces, temperature dependence of electrical conductivity

[^0]FYS3410 lecture schedule and exams: Spring 2010
M/18/1/2010: Introduction and motivation. Periodicity and lattices 2h
W/20/1/2010: Index system for crystal planes. Crystal structures 1h
M/25/1/2010: Reciprocal space, Laue condition and Ewald construction 2h
W/27/1/2010: Interpretation of a diffraction experiment 1h
M/01/2/2010: Crystal binding and introduction to elastic strain 2h
W/03/2/2010: Point defects, case study - vacancies 1h
M/08/2/2010: Point defects and atomic diffusion 2h
W/10/2/2010: Diffusion (continuation); dislocations 1h
M/15/2/2010: Crystal vibrations and phonons 2h
W/17/2/2010: Crystal vibrations and phonons 1h
M/22/2/2010: Planck distribution and density of states 2h
W/24/2/2010: Debye model 1h
M/01/3/2010: Einstein model and general result for density of states 2h
W/03/3/2010: Thermal conductivity 1h
M/08/3/2010: Free electron Fermi gas in 1D and 3D - ground state 2h
W/10/3/2010: Density of states, effect of temperature - FD distribution 1h
M/15/3/2010: Heat capacity of FEFG 2h
W/17/3/2010: Repetition 1h
22/3/2010: Mid-term exam
M/14/4/2010: Electrical and thermal conductivity in metals 2h
W/12/4/2010: Bragg reflection of electron waves at the boundary of BZ 1h
M/19/4/2010: Energy bands, Kronig - Penny model 2h
W/21/4/2010: Empty lattice approximation; number of orbitals in a band 1h
M/26/4/2010: Semiconductors, effective mass method, intrinsic carriers 2h
W/28/4/2010: Impurity states in semiconductors and carrier statistics 1h
M/03/5/2010: p-n junctions and heterojunctions 2h
W/05/5/2010: surface structure, surface states, Schottky contacts 2h
M/10/5/2010: no lectures
W/12/5/2010: no lectures
W/19/5/2010: Repetition 2h
W26/5/2010: Repetition 2h
28/5/2010: Final Exam (sensor: Prof. Arne Nylandsted Larsen at the Århus University, Denmark, http://person.au.dk/en/an!@phys.au.dk)

Lecture 3: Reciprocal space, Laue condition and Ewald construction

- (hkl) plain indices and distance between plains in cubic, tetragonal and orthorombic lattices;
- introduction of the reciprocal lattice;
- Bragg diffraction, Laue condition and Ewald construction;
- Some consequences: how many lines = reciprocal lattice point will we see

Lecture 3: Reciprocal space, Laue condition and Ewald construction

- (hkl) plain indices and distance between plains in cubic, tetragonal and orthorombic lattices;
- introduction of the reciprocal lattice;
- Bragg diffraction, Laue condition and Ewald construction;

Some consequences: how many lines = reciprocal lattice point will we see
(hkl) plain indices

Distance between (hkl)-plains in cubic lattices

$$
d_{h k l}=\frac{a}{\sqrt{\left(h^{2}+k^{2}+l^{2}\right)}}
$$

Lecture 3: Reciprocal space, Laue condition and Ewald construction

(hkl) plain indices and distance between plains in cubic, tetragonal and orthorombic lattices;

- introduction of the reciprocal lattice;
- Brag Diffraction, Laue condition and Ewald construction;
- Some consequences: how many lines = reciprocal lattice point will we see

Reciprocal lattice

Crystal planes (hkl) in the real-space or direct lattice are characterized by the normal vector $\hat{n}_{h k l}$ and the interplanar spacing $d_{h k l}$:

y

Defining a different lattice in reciprocal space whose points lie at positions given by the vectors

$$
\vec{G}_{h k l} \equiv \frac{2 \pi \hat{n}_{h k l}}{d_{h k l}}
$$

These vectors are parallel to the [hkl] direction but has magnitude $2 \pi / \mathrm{d}_{\mathrm{hk}}$, which is a reciprocal distance

Reciprocal lattice

The reciprocal lattice is composed of all points lying at positions $\vec{G}_{h k l}$ from the origin, so that there is one point in the reciprocal lattice for each set of planes (hkl) in the real-space lattice.

This seems like an unnecessary abstraction. What is the payoff for defining such a reciprocal lattice? No, the reciprocal lattice simplifies the interpretation of x ray diffraction from crystals because:

- Diffraction pattern is not a direct representation of the crystal lattice
- Diffraction pattern is a representation of the reciprocal lattice

Reciprocal lattice

Generallizing, we introduce a set of new unit vectors so that they are normal to the plains determined by the previously introduced translation vectors

Definition of reciprocal translation vectors

$$
\begin{gathered}
\vec{b}_{1}=\left(\vec{a}_{2} \times \vec{a}_{3}\right) 2 \pi / V_{c} \quad \vec{b}_{2}=\left(\vec{a}_{3} \times \vec{a}_{1}\right) 2 \pi / V_{c} \quad \vec{b}_{3}=\left(\vec{a}_{1} \times \vec{a}_{2}\right) 2 \pi / V_{c} \\
V_{c}=\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)-\text { volume of a unit cell }
\end{gathered}
$$

$$
\vec{G}=v_{1} \vec{b}_{1}+v_{2} \vec{b}_{2}+v_{3} \vec{b}_{3}
$$

Reciprocal lattice

Reciprocal lattice is nothing with "anti-matter" or "black holes" to do - it is determined by a set of vectors with specific magnitudes just having a bit unusual dimentions $1 /$ length. It is actually relatively straightforward - as long as we understood the definitions - to schetch the reciprocal lattice.

Reciprocal lattice

Reciprocal lattice is nothing with "anti-matter" or "black holes" to do - it is determined by a set of vectors with specific magnitudes just having a bit unusual dimentions $1 / l e n g t h$. It is actually relatively straightforward - as long as we understood the definitions - to schetch the reciprocal lattice.

The important part is that b_{1} should be normal to a plain determined by $\left[a_{2} \times a_{3}\right]$ and having a magnitude of $1 / a_{1}-$ just by definition - or $1 / d_{100}$, where d_{100} is the interplain distance between (100) family of plains. NB, for any plain from (100) familly the point in the reciprocal space is exactly the same meaning that any reciprocal lattice point represents its own family of plains in the real space.

$$
\begin{aligned}
& \vec{b}_{1}=\left(\vec{a}_{2} \times \vec{a}_{3}\right) 2 \pi / V V_{c} \\
& V_{c}=\vec{a}_{1} \bullet\left(\vec{a}_{2} \times \vec{a}_{3}\right)
\end{aligned}
$$

Reciprocal lattice

Reciprocal lattice is nothing with "anti-matter" or "black holes" to do - it is determined by a set of vectors with specific magnitudes just having a bit unusual dimentions $1 / l e n g t h$. It is actually relatively straightforward - as long as we understood the definitions - to schetch the reciprocal lattice.

The important part is that b_{1} should be normal to a plain determined by $\left[a_{2} \times a_{3}\right]$ and having a magnitude of $1 / a_{1}-$ just by definition - or $1 / \mathrm{d}_{100}$, where d_{100} is the interplain distance between (100) family of plains. NB, for any plain from (100) familly the point in the reciprocal space is exactly the same meaning that any reciprocal lattice point represents its own family of plains in the real space.

Similar excercise can be done with vector b_{2} which points out to a reciprocal lattice point representing (010) family of plains.

In adition (110) family of plaines in the real space would naturally result in to (110)-points in the reciprocal space.

The procedure can be repeated any type of plain cuts in the real space

Reciprocal lattice

Reciprocal lattice is nothing with "anti-matter" or "black holes" to do - it is determined by a set of vectors with specific magnitudes just having a bit unusual dimentions $1 / l e n g t h$. It is actually relatively straightforward - as long as we understood the definitions - to schetch the reciprocal lattice.

$$
d_{h k l}=\frac{a}{\sqrt{\left(h^{2}+k^{2}+l^{2}\right)}}
$$

Reciprocal lattice

Reciprocal lattice is nothing with "anti-matter" or "black holes" to do - it is determined by a set of vectors with specific magnitudes just having a bit unusual dimentions $1 / l e n g t h$. It is actually relatively straightforward - as long as we understood the definitions - to schetch the reciprocal lattice.

Lecture 3: Reciprocal space, Laue condition and Ewald construction
(hkl) plain indices and distance between plains in cubic, tetragonal and orthorombic lattices;

- introduction of the reciprocal lattice;
- Bragg diffraction, Laue condition and Ewald construction;
- Some consequences: how many lines = reciprocal lattice point will we see

Bragg diffraction

interference:
in phase only when $A B+B C$
$=n \lambda$

The conditions leading to diffraction are given by the Bragg's law, relating the angle of incidence of the radiation (theta) to the wavelength (lambda) of the incident radiation and the spacing between the crystal lattice planes (d):

$$
2 \mathrm{~d} \sin (\text { theta) }=\mathrm{n} \text { lambda }
$$

Laue condition

Laue condition

$$
|\mathrm{K}|=2|\mathrm{k}| \sin \theta_{\mathrm{hkl}}=\frac{2 \sin \theta_{\mathrm{hkl}}}{\lambda}
$$

$\overrightarrow{\mathbf{K}}$ is perpendicular to the (hkl) plane, so can be defined as:

$$
\overrightarrow{\mathrm{K}}=\left[\frac{2 \sin \theta_{\mathrm{hkl}}}{\lambda}\right] \hat{\mathbf{n}}
$$

Laue condition

$|K|=2|k| \sin \theta_{\mathrm{hkl}}=\frac{2 \sin \theta_{\mathrm{hkl}}}{\lambda}$
$\overrightarrow{\mathbf{K}}$ is perpendicular to the (hkl) plane, so can be defined as:

$$
\overrightarrow{\mathrm{K}}=\left[\frac{2 \sin \theta_{\mathrm{hkl}}}{\lambda}\right] \hat{\mathrm{n}}
$$

\mathbf{G} is also perpendicular to (hkl) so $\hat{\mathbf{n}}=\frac{\mathrm{G}_{\mathrm{hk}}}{\left|\mathrm{G}_{\mathrm{hk}}\right|}$

Laue condition

$$
|\mathrm{K}|=2|\mathrm{k}| \sin \theta_{\mathrm{hkl}}=\frac{2 \sin \theta_{\mathrm{hkl}}}{\lambda}
$$

$\overrightarrow{\mathbf{K}}$ is perpendicular to the (hkl) plane, so can be defined as:

$$
\overrightarrow{\mathrm{K}}=\left[\frac{2 \sin \theta_{\mathrm{hkl}}}{\lambda}\right] \hat{\mathrm{n}}
$$

\mathbf{G} is also perpendicular to (hkl) so $\hat{\mathbf{n}}=\frac{\mathrm{G}_{\text {hkl }}}{\left|\mathrm{G}_{\mathrm{hk}}\right|}$
$\Rightarrow K=\frac{2}{\lambda\left|G_{h k l}\right|} \sin \theta_{\mathrm{hkl}} G_{\mathrm{hkl}} \quad$ and $\quad\left|G_{\mathrm{hkl}}\right|=\frac{1}{d_{\mathrm{hkl}}} \quad$ from previous

Laue condition

G is also perpendicular to (hkl) so $\quad \hat{\mathbf{n}}=\frac{\mathrm{G}_{\text {hkl }}}{\left|\mathrm{G}_{\text {nk }}\right|}$

$$
\Rightarrow K=\frac{2}{\lambda\left|G_{h k l}\right|} \sin \theta_{\mathrm{hkl}} G_{\mathrm{hkl}} \quad \text { and } \quad\left|G_{\mathrm{hkl}}\right|=\frac{1}{d_{\mathrm{hkl}}} \quad \text { from previous }
$$

$$
\begin{array}{r}
\Rightarrow \mathrm{K}=\frac{2 \mathrm{~d}_{\mathrm{hkl}} \sin \theta_{\mathrm{hkl}}}{\lambda} \mathrm{G}_{\mathrm{hkl}} \quad \text { But Bragg: 2dsir } \\
\mathrm{K}=\mathrm{G}_{\mathrm{hkl}} \quad \text { the Laue condition }
\end{array}
$$

Diffraction pattern as representation of the reciprocal lattice

Laue assumed that each set of atoms could radiate the incident radiation in all directions

Constructive interference only occurs when the scattering vector, $\mathbf{K}(\boldsymbol{\Delta} \boldsymbol{k}$ in the Kittel's notations), coincides with a reciprocal lattice vector, \mathbf{G}

This naturally leads to the Ewald Sphere construction

Ewald construction

We superimpose the imaginary "sphere" of radiated radiation upon the reciprocal lattice

Draw sphere of radius $1 / \lambda$ centred on end of \mathbf{k}_{0}

Reflection is only observed if sphere intersects a point

i.e. where $\mathbf{K}=\mathbf{G}$

Ewald construction

This means that when a lattice point intersects the Ewald sphere, the reflection corresponding to that family of planes will be observed and the diffraction angle will be apparent.

Starting with an indexed reciprocal lattice, an incident x -ray beam must pass through the origin (000) point, corresponding to the incident beam of x-rays.

Ewald construction

The Ewald sphere for this case is defined by making a sphere of radius $1 / \lambda$ having its diameter on the X-ray beam that intersects the origin point. In the diagram on the left, no other reciprocal lattice points are on the surface of the sphere so the Bragg condition is not satisfied for any of the families of planes.

To observe reflections, the reciprocal lattice must be rotated until an reciprocal lattice point contacts the surface of the sphere. Note: it would be easier to rotate the sphere on paper, but in practice, we rotate the crystal lattice and the RL.

Ewald construction

When a reciprocal lattice point intersects the Ewald sphere, a reflection will occur and can be observed at the 2θ angle of the inscribed triangle. To be able to collect as many different reflections as possible, it is thus necessary to be able to rotate the reciprocal lattice to a great extent...

Lecture 3: Reciprocal space, Laue condition and Ewald construction

(hkl) plain indices and distance between plains in cubic, tetragonal and orthorombic lattices;

- introduction of the reciprocal lattice;
- Bragg diffraction, Laue condition and Ewald construction;
- Some consequences: how many lines = reciprocal lattice point will we see

Some consequences:
how many lines = reciprocal lattice point will we see

In the experiment we just correlate the increased intencity with the angle
In cubic crystal:

$$
d_{h k l}=\frac{a}{\sqrt{\left(h^{2}+k^{2}+l^{2}\right)}}
$$

Now put it together with Bragg: $2 \frac{a}{\sqrt{\left(h^{2}+k^{2}+l^{2}\right)}} \sin \theta=\lambda$

Finally $\sqrt{\left(h^{2}+k^{2}+l^{2}\right)}=\frac{2 a}{\lambda} \sin \theta$

Some consequences:

how many lines = reciprocal lattice point will we see

$$
\sqrt{\left(h^{2}+k^{2}+l^{2}\right)}=\frac{2 a}{\lambda} \sin \theta
$$

hkI	$\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}$	hkl	$\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{I}^{2}$
100	1	221,300	9
110	2	310	10
111	3	311	11
200	4	222	12
210	5	320	13
211	6	321	14
220	8	400	16

Is there anything limiting $\left(h^{2}+\mathbf{k}^{2}+1^{2}\right)$ values of the "last" reflection?
Yes it it's the wavelength. Why?

$$
\left(\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right)=\frac{4 \mathrm{a}^{2}}{\lambda^{2}} \sin ^{2} \theta
$$

$\boldsymbol{\operatorname { s i n }}^{2} \theta$ has a limiting value of $\mathbf{1}$, so for this limit:

$$
\left(h^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right) \leq \frac{4 \mathrm{a}^{2}}{\lambda^{2}}
$$

Some consequences:

how many lines = reciprocal lattice point will we see

$$
\left(\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right) \leq \frac{4 \mathrm{a}^{2}}{\lambda^{2}}
$$

Still if one knows the lattice it should quite stright to index the peaks, but...

h k I	$\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}$	h k l	$h^{2}+k^{2}+l^{2}$
100	1	221,300	9
110	2	310	10
111	3	311	11
200	4	222	12
210	5	320	13
211	6	321	14
220	8	400	16

SPINEL: LAMBDA $=1.54$
Lambda: 1.54178 Magnif: 1.0 FWHM: 0.200
Space grp: $\mathrm{Fd}-3 \mathrm{~m}: 2$ Direct cell:
8.0800
8.0800
8.0800
90.00
90.00

$$
\lambda=1.54 \AA
$$

SPINEL: LAMBDA $=1.22$
Lambda: 1.22000 Magnif: 1.0 FWHM: 0.200
$\begin{array}{llllllllllll}\text { Space grp: F d -3 m:2 Direct cell: } & 8.0800 & 8.0800 & 8.0800 & 90.00 & 90.00 & 90.00\end{array}$

Some consequences:

 how many lines = reciprocal lattice point will we seeLet's take an example: The unit cell of copper is $3.613 \AA$. What is the Bragg angle for the (100) reflection with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$)?

Copper, [W. L. Bragg (Philosophical Magazine, Serie 6 (1914) 28, 255-3t Lambda: 1.54180 Magnif: 1.0 FWHM: 0.200
$\theta=\sin ^{-1}\left(\frac{\lambda}{2 d_{h k l}}\right)$
$d_{h k l}=\frac{a}{\sqrt{\left(h^{2}+k^{2}+l^{2}\right)}}$
$\theta=12.32^{\circ}$, so $2 \theta=24.64{ }^{\circ}$
BUT....

Some consequences:

how many lines = reciprocal lattice point will we see

- Due to symmetry, certain reflections cancel each other out.
- These are non-random - hence "systematic absences"
- For each Bravais lattice, there are thus rules for allowed reflections:

Relation to real diffraction experiment

The presence of translational symmetry elements and centering in the real lattice causes some series of reflections to be absent - can be accurately derived from the expressions of the structure factors.
e.g. the (001) reflection in a BCC lattice is absent.

Consider the additional path lengths vs. beam " 1 ":

For " 2 " it is $2 d \sin (q)$;
For " 3 " it is $2(\mathrm{~d} / 2) \sin (q)$, thus the rays from " 3 " will be exactly out-of-phase with those of " 2 " and no reflection will be observed.

Relation to real diffraction experiment

Some consequences: how many lines = reciprocal lattice point will we see

So for each Bravais lattice:

	PRIMITIVE	BODY	FACE
$\mathbf{h}^{\mathbf{2}}+\mathbf{k}^{\mathbf{2}}+\mathbf{l}^{\mathbf{2}}$	All possible	$\mathbf{h}+\mathrm{k}+\mathrm{l}=2 \mathrm{n}$	h,k,l all
1	100		odd/even
2	110	110	
3	111		111
4	200	200	200
5	210		
6	211	211	
8	220	220	220
9	221,300		
10	310	310	
11	311		311
12	222	222	222
13	320		
14	321	321	
16	400	400	400

[^0]: Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology Postboks 1048 Blindern, 0316 OSLO
 Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no visiting address: MiNaLab, Gaustadaleen 23b

