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Based on Introduction to Solid State Physics by Kittel

Course content
• Periodic structures, understanding of diffraction experiment and reciprocal lattice

• Imperfections in crystals: diffusion, point defects, dislocations

• Crystal vibrations: phonon heat capacity and thermal conductivity

• Free electron Fermi gas: density of states, Fermi level, and electrical conductivity

• Electrons in periodic potential: energy bands theory classification of metals,   
semiconductors and insulators

• Semiconductors: band gap, effective masses, charge carrier distributions, 
doping, pn-junctions

• Metals: Fermi surfaces, temperature dependence of electrical conductivity

Andrej Kuznetsov, Dept of Physics and Centre for Material Science and Nanothechnology
Postboks 1048 Blindern, 0316 OSLO
Tel: +47-22852870, e-post: andrej.kuznetsov@fys.uio.no
visiting address: MiNaLab, Gaustadaleen 23b

FYS3410 lecture schedule and exams: Spring 2010

M/18/1/2010: Introduction and motivation. Periodicity and lattices 2h
W/20/1/2010: Index system for crystal planes. Crystal structures 1h

M/25/1/2010: Reciprocal space, Laue condition and Ewald construction 2h
W/27/1/2010: Interpretation of a diffraction experiment 1h

M/01/2/2010: Crystal binding and introduction to elastic strain 2h
W/03/2/2010: Point defects, case study – vacancies 1h

M/08/2/2010: Point defects and atomic diffusion 2h
W/10/2/2010: Diffusion (continuation); dislocations 1h

M/15/2/2010: Crystal vibrations and phonons 2h
W/17/2/2010: Crystal vibrations and phonons 1h

M/22/2/2010: Planck distribution and density of states 2h
W/24/2/2010: Debye model 1h

M/01/3/2010: Einstein model and general result for density of states 2h
W/03/3/2010: Thermal conductivity 1h

M/08/3/2010: Free electron Fermi gas in 1D and 3D – ground state 2h
W/10/3/2010: Density of states, effect of temperature – FD distribution 1h

M/15/3/2010: Heat capacity of FEFG 2h
W/17/3/2010: Repetition 1h

22/3/2010: Mid-term exam



M/14/4/2010: Electrical and thermal conductivity in metals 2h
W/12/4/2010: Bragg reflection of electron waves at the boundary of BZ 1h

M/19/4/2010: Energy bands, Kronig - Penny model 2h
W/21/4/2010: Empty lattice approximation; number of orbitals in a band 1h

M/26/4/2010: Semiconductors, effective mass method, intrinsic carriers 2h
W/28/4/2010: Impurity states in semiconductors and carrier statistics 1h

M/03/5/2010: p-n junctions and heterojunctions 2h
W/05/5/2010: surface structure, surface states, Schottky contacts 2h

M/10/5/2010: no lectures
W/12/5/2010: no lectures

W/19/5/2010: Repetition 2h

W26/5/2010: Repetition 2h

28/5/2010:    Final Exam (sensor: Prof. Arne Nylandsted Larsen 
at the Århus University, Denmark, http://person.au.dk/en/anl@phys.au.dk)

Lecture 3: Reciprocal space, Laue condition and Ewald construction

• (hkl) plain indices and distance between plains in cubic, tetragonal and 
orthorombic lattices;

• introduction of the reciprocal lattice;

• Bragg diffraction, Laue condition and Ewald construction;

• Some consequences: how many lines = reciprocal lattice point will we see
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Lecture 3: Reciprocal space, Laue condition and Ewald construction

• (hkl) plain indices and distance between plains in cubic, tetragonal and 
orthorombic lattices;

• introduction of the reciprocal lattice;

• Brag Diffraction, Laue condition and Ewald construction;

• Some consequences: how many lines = reciprocal lattice point will we see

Reciprocal lattice

Crystal planes (hkl) in the real-space or direct lattice are characterized by the 

normal vector          and the interplanar spacing          :

Defining a different lattice in reciprocal space whose points lie at positions given 

by the vectors
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These vectors are parallel to 

the [hkl] direction but has 

magnitude 2π/dhkl, which is a 

reciprocal distance



The reciprocal lattice is composed of all points lying at positions         from 

the origin, so that there is one point in the reciprocal lattice for each set of 

planes (hkl) in the real-space lattice.

This seems like an unnecessary abstraction.  What is the payoff for defining such 

a reciprocal lattice? No, the reciprocal lattice simplifies the interpretation of x-

ray diffraction from crystals because:

hkl
G
v

• Diffraction pattern is not a direct 
representation of the crystal 
lattice

• Diffraction pattern is a 
representation of the reciprocal 
lattice

Reciprocal lattice

Vc = a1•(a2 x a3) – volume of a unit cell

Definition of reciprocal translation vectors

b3 = (a1 x a2) 2π/Vc

G = v1b1 + v2b2 + v3b3

Reciprocal lattice

Generallizing,we introduce a set of new unit
vectors so that they are normal to the plains
determined by the previously introduced
translation vectors

b1 = (a2 x a3) 2π/Vc

a3

a2

b1

b2 = (a3 x a1) 2π/Vc



Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is determined
by a set of vectors with specific magnitudes just having a bit unusual dimentions –
1/length. It is actually relatively straightforward – as long as we understood the
definitions – to schetch the reciprocal lattice.
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Reciprocal lattice

The important part is that b1 should be normal to a plain
determined by [a2 x a3] and having a magnitude of 1/a1 –
just by definition - or 1/d100, where d100 is the interplain
distance between (100) family of plains. NB, for any plain
from (100) familly the point in the reciprocal space is 
exactly the same meaning that any reciprocal lattice point
represents its own family of plains in the real space.                                                               

2π/a1 = 2π/d100
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Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is determined
by a set of vectors with specific magnitudes just having a bit unusual dimentions –
1/length. It is actually relatively straightforward – as long as we understood the
definitions – to schetch the reciprocal lattice.

b1 = (a2 x a3) 2π/Vc

Vc = a1•(a2 x a3)

(100)



The important part is that b1 should be normal to a plain
determined by [a2 x a3] and having a magnitude of 1/a1 –
just by definition - or 1/d100, where d100 is the interplain
distance between (100) family of plains. NB, for any plain
from (100) familly the point in the reciprocal space is 
exactly the same meaning that any reciprocal lattice point
represents its own family of plains in the real space. 

Similar excercise can be done with vector b2 which points
out to a reciprocal lattice point representing (010) family of
plains. 

In adition (110) family of plaines in the real space would
naturally result in to (110)-points in the reciprocal space.

The procedure can be repeated any type of plain cuts in 
the real space

1/d100

1/d010

b1a2

a1

Reciprocal lattice

b2

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is determined
by a set of vectors with specific magnitudes just having a bit unusual dimentions –
1/length. It is actually relatively straightforward – as long as we understood the
definitions – to schetch the reciprocal lattice.
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000

Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is determined
by a set of vectors with specific magnitudes just having a bit unusual dimentions –
1/length. It is actually relatively straightforward – as long as we understood the
definitions – to schetch the reciprocal lattice.
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Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is determined
by a set of vectors with specific magnitudes just having a bit unusual dimentions –
1/length. It is actually relatively straightforward – as long as we understood the
definitions – to schetch the reciprocal lattice.
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Bragg diffraction

The conditions leading to diffraction are given by the Bragg's law, relating
the angle of incidence of the radiation (theta) to the wavelength (lambda) of
the incident radiation and the spacing between the crystal lattice planes (d):

2 d sin (theta) = n lambda
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But Bragg:    2dsinθ = λ

K = Ghkl the Laue condition



Laue assumed that each set of atoms could radiate the incident radiation in all 
directions

Constructive interference 

only occurs when the 

scattering vector, K (∆k in 
the Kittel’s notations), 

coincides with a reciprocal 

lattice vector, G

This naturally leads to the Ewald Sphere construction

Diffraction pattern as representation of the reciprocal lattice

We superimpose the imaginary “sphere” of radiated radiation 
upon the reciprocal lattice

Draw sphere of radius 
1/λ centred on end of ko

Reflection is only 
observed if sphere 
intersects a point

i.e. where K=G

Ewald construction



This means that when a lattice point intersects the Ewald sphere, the reflection 

corresponding to that family of planes will be observed and the diffraction angle will 

be apparent. 

Starting with an indexed reciprocal lattice, an incident x-ray beam must pass 

through the origin (000) point, corresponding to the incident beam of x-rays.

Ewald construction

The Ewald sphere for this case is defined by making a sphere of radius 1/λ having its 

diameter on the X-ray beam that intersects the origin point.  In the diagram on the left, 

no other reciprocal lattice points are on the surface of the sphere so the Bragg 

condition is not satisfied for any of the families of planes.  

To observe reflections, the reciprocal lattice must be rotated until an reciprocal 

lattice point contacts the surface of the sphere.  Note: it would be easier to rotate 

the sphere on paper, but in practice, we rotate the crystal lattice and the RL. 

Ewald construction



When a reciprocal lattice point intersects the Ewald sphere, a reflection will occur 

and can be observed at the 2θ angle of the inscribed triangle.  To be able to collect 

as many different reflections as possible, it is thus necessary to be able to rotate the 

reciprocal lattice to a great extent…

Ewald construction
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In the experiment we just correlate the increased intencity with the angle

Some consequences: 
how many lines = reciprocal lattice point will we see

h k l h2 + k2 + l2 h k l h2 + k2 + l2

1 0 0 1 2 2 1, 3 0 0 9
1 1 0 2 3 1 0 10
1 1 1 3 3 1 1 11
2 0 0 4 2 2 2 12
2 1 0 5 3 2 0 13
2 1 1 6 3 2 1 14
2 2 0 8 4 0 0 16
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Some consequences: 
how many lines = reciprocal lattice point will we see

Is there anything limiting 

(h2 + k2 + l2) values of the 
“last” reflection? 

Yes it it’s the wavelength. 
Why?
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Lambda:  1.54178  Magnif:   1.0  FWHM:  0.200
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λλλλ = 1.54 Å

λλλλ = 1.22 Å

Some consequences: 
how many lines = reciprocal lattice point will we see

h k l h2 + k2 + l2 h k l h2 + k2 + l2

1 0 0 1 2 2 1, 3 0 0 9
1 1 0 2 3 1 0 10
1 1 1 3 3 1 1 11
2 0 0 4 2 2 2 12
2 1 0 5 3 2 0 13
2 1 1 6 3 2 1 14
2 2 0 8 4 0 0 16

Still if one knows the lattice it should
quite stright to index the peaks, but…

Some consequences: 
how many lines = reciprocal lattice point will we see

Let’s take an example: The unit cell of copper is 3.613 Å.   What is the Bragg 
angle for the (100) reflection with Cu Kα radiation (λ = 1.5418 Å)?








= −

hkld2
sin 1 λ

θ

θ= 12.32o, so 2θ = 24.64o

BUT…. 10 20 30 40 50 60 70 80

Copper,   [W. L. Bragg (Philosophical Magazine, Serie 6 (1914) 28, 255-360]
Lambda:  1.54180  Magnif:   1.0  FWHM:  0.200
Space grp: F m -3 m  Direct cell:    3.6130    3.6130    3.6130   90.00   90.00   90.00
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• Due to symmetry, certain reflections cancel each other out.  

• These are non-random – hence “systematic absences”

• For each Bravais lattice, there are thus rules for allowed 
reflections:

Some consequences: 
how many lines = reciprocal lattice point will we see

Relation to real diffraction experiment

The presence of translational symmetry elements and centering in the real lattice causes 
some series of reflections to be absent – can be accurately derived from the expressions 
of the structure factors.

e.g. the (001) reflection in a BCC lattice 
is absent.

Consider the additional path lengths 
vs. beam “1”:

For “2” it is 2d sin(q); 

For “3” it is 2(d/2) sin(q), thus the rays 
from “3” will be exactly out-of-phase 
with those of “2” and no reflection will 
be observed.



Relation to real diffraction experiment

So for each Bravais lattice:

PRIMITIVE BODY FACE
h2 + k2 + l2 All possible h+k+l=2n h,k,l all 

odd/even1 1 0 0
2 1 1 0 1 1 0
3 1 1 1 1 1 1
4 2 0 0 2 0 0 2 0 0
5 2 1 0
6 2 1 1 2 1 1
8 2 2 0 2 2 0 2 2 0
9 2 2 1, 3 0 0
10 3 1 0 3 1 0
11 3 1 1 3 1 1
12 2 2 2 2 2 2 2 2 2
13 3 2 0
14 3 2 1 3 2 1
16 4 0 0 4 0 0 4 0 0

Some consequences: 
how many lines = reciprocal lattice point will we see


