I. PROBLEM SESSION 3

A. Problem 3.1

Show from thermodynamic considerations that the concentration of point defects in a crystal at equilibrium is:

$$\frac{n}{N} = e^{-\frac{E_v + PV_o}{k_b T}} \tag{1}$$

Where $E_V = \frac{\delta U}{\delta n}$ is the change in potential energy (at zero temperature) required to remove a single impurity. Hint: Minimize the free energy G = U - TS + PV, expressed as a function of the number of impurities. The relation $\ln X! \approx X(\ln X - 1)$, valid for large X, might be useful.

B. Problem 3.2

Suppose that the energy required to remove a sodium atom from the inside of a sodium crystal to the boundary is 1eV. Calculate the concentration of Schottky vacancies at 300K. What happens with the concentration of impurities if the pressure is varied.

C. Problem 3.3

The rate of cluster formation is described by the differential equation given in the lectures:

$$\frac{\delta V_n}{\delta t} = 4\pi R D v [V_{n-1}] [V] - [V_N] C_0 e^{-E_b/kT}.$$
(2)

Explain the physics behind the different terms and quantities in the equation. In what temperature interval would you expect the cluster concentration to vary steeply.