FYS 3610

EXERCISES WEEK 35

EXERCISE 1

a) Calculate the scale height for normal air $\left(\sim 21.5 \% \mathrm{O}_{2}\right.$ and $\left.78.5 \% \mathrm{~N}_{2}\right)$ at $\mathrm{T}=293 \mathrm{~K}$ and for $\mathrm{T}=243 \mathrm{~K}$. Calculate the scale height for atomic oxygen at $\mathrm{T}=2500 \mathrm{~K}$.
b) What is the meaning of $\omega_{B}=0$.
c) Show that equation 3.22 can be written as

$$
\omega_{B}^{2}=\frac{g}{T}\left[\frac{\partial T}{\partial z}-\frac{\partial T}{\partial z_{\mid a d}}\right]
$$

EXERCISE 2

Show that the maximum ion production at a zenith-angle χ is given as
$q_{m}=q_{m o} \cos \chi$
where $q_{m o}$ is the ion production for $\chi=0$. This equation is a scaling factor for maximum ion production.

EXERCISE 3

Maximum ion production occur at an altitude z_{m}^{\prime} where $\tau=\cos \chi$ and we have that $z_{m}^{\prime}=\ln \sec \chi$. Show that
$z_{m}=z_{m o}+H \ln \sec \chi$
This is a scale law for how the height of maximum ion production varies with zenithangle χ.

