FYS 3610 EXERCISES WEEK 36

1) Visit NASA's home page for the CGM model of the Earth's magnetic field:
http://nssdc.gsfc.nasa.gov/space/model/models/igrf.html\#year
i) Where is the north CGM pole located?
ii) Calculate CGMLat, CGMLon, magnetic conjugate point, L- value, H, D, Z component for the magnetic field, magnetic field strength, Inclination for the following geographic co-ordinates:
University of Oslo: $(59.91,10.73)$
University of Tromsø: $(69.7,18.9)$
Andøya Rocket Range: $(69.28,16.01)$
Longyearbyen: (78.2, 15.7)
2)

Figure 1: An illustration showing the geometry of the magnetic field line to assist in deriving a geometric formula for B.

Assume a dipole magnetic field. Introducing the magnetic latitude λ_{m} of which unit vector relates to the co-latitude unit vector defined in the lecture in the following way:

$$
\hat{\lambda}_{m}=-\hat{\theta}
$$

Then the magnetic field can be written as:

$$
\vec{B}=B_{r} \widehat{r}+B_{\lambda_{m}}=H_{0}\left(-2 \sin \lambda_{m} \widehat{r}+\cos \lambda_{m} \hat{\lambda}_{m}\right)
$$

i) Show that $L=\frac{r_{0}}{R_{E}}=\frac{1}{\cos ^{2} \lambda_{m}}$

Hint: $\tan \alpha=\frac{r \cdot d \lambda_{m}}{d r}=\frac{B_{\lambda}}{B_{r}}$
ii) Estimate B-field strength, inclination and L-value based on the dipole model, and compare with corresponding values calculated in Exercise 1.
3) Estimate the magnetopause standoff distance in the case when the solar wind speed is $600 \mathrm{~km} / \mathrm{s}$ and the solar wind density is $10 \mathrm{~cm}^{-3}$.

