UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in: FYS4110/9110 Modern Quantum Mechanics

Day of exam: 27. November 2017 Exam hours: 14.30-18.30, 4 hours This examination paper consists of 3 pages

Permitted materials: Approved electronic calculator.

Angell and Lian: Størrelser og enheter i fysikken

Rottmann: Matematisk formelsamling

Language: The solutions may be written in Norwegian or English depending on your own preference.

Make sure that your copy of this examination paper is complete before answering.

PROBLEM 1

Two interacting Two Level Systems

We have two interacting Two Level Systems, which we call systems A and B, with their corresponding sets of Pauli matrices σ_i^A and σ_i^B . The Hamiltonian is the following:

$$H = \frac{1}{2}\hbar g \sigma_z^A \otimes \sigma_z^B$$

where g is the interaction strength. Here we use a representation where for each system $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

- a) Find the time evolution operator $U(t) = e^{-\frac{i}{\hbar}Ht}$ in the form of a 4×4 matrix.
- b) Assume that at time t=0 the two systems are in a product state

$$|\psi(0)\rangle = |\psi^A(0)\rangle \otimes |\psi^B(0)\rangle$$

with

$$|\psi^A(0)\rangle = a|0\rangle + b|1\rangle$$
 and $|\psi^B(0)\rangle = c|0\rangle + d|1\rangle$.

with $|a|^2 + |b|^2 = 1$ and $|c|^2 + |d|^2 = 1$. Find the reduced density matrices for systems A and B as functions of time.

1

c) We define the Bloch vectors of A and B as **m** and **n**, respectively, so that

$$\rho^A = \frac{1}{2} (\mathbb{1} + \mathbf{m} \cdot \sigma^A)$$
 and $\rho^B = \frac{1}{2} (\mathbb{1} + \mathbf{n} \cdot \sigma^B)$

Consider now the special case $a = b = \frac{1}{\sqrt{2}}$. Find the Bloch vector **m** for system A and show that as a function of time it is describing an ellipse in the xy-plane.

d) For given initial values c and d for system B and still $a = b = \frac{1}{\sqrt{2}}$, find the maximal value of the entanglement entropy, and show that it depends only in the component n_z of the Bloch vector \mathbf{n} for system B.

PROBLEM 2

Squeezed states of the harmonic oscillator

We have in the lectures studied coherent states of the harmonic oscillator as examples of minimal uncertainty states. Here we will consider a related class of minimal uncertainty states called squeezed states. We define the squeeze operator

$$S(\zeta) = e^{-\frac{1}{2}(\zeta \hat{a}^2 - \zeta^* \hat{a}^{\dagger 2})}$$

where ζ is a complex number and \hat{a} and \hat{a}^{\dagger} are the usual annihilation and creation operators of the harmonic oscillator. The squeezed vacuum state is defined as

$$|sq_{\zeta}\rangle = S(\zeta)|0\rangle$$

a) Show that the action of the squeeze operator on \hat{a} and \hat{a}^{\dagger} is given by

$$S^{\dagger}(\zeta)\hat{a}S(\zeta) = \cosh r\hat{a} + e^{-i\phi}\sinh r\hat{a}^{\dagger}$$
$$S^{\dagger}(\zeta)\hat{a}^{\dagger}S(\zeta) = \cosh r\hat{a}^{\dagger} + e^{i\phi}\sinh r\hat{a}$$

where $\zeta = re^{i\phi}$.

b) In the state $|sq_{\zeta}\rangle$, find the variance of the position and momentum operators

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a}^{\dagger} + \hat{a} \right)$$
 and $\hat{p} = i\sqrt{\frac{\hbar m\omega}{2}} \left(\hat{a}^{\dagger} - \hat{a} \right)$.

That is, calculate

$$\Delta x^{2} = \langle sq_{\zeta} | \hat{x}^{2} | sq_{\zeta} \rangle - \langle sq_{\zeta} | \hat{x} | sq_{\zeta} \rangle^{2}$$
$$\Delta p^{2} = \langle sq_{\zeta} | \hat{p}^{2} | sq_{\zeta} \rangle - \langle sq_{\zeta} | \hat{p} | sq_{\zeta} \rangle^{2}$$

- c) The Heisenberg uncertainty relation tells us that $\Delta x \Delta p \geq \frac{\hbar}{2}$ with equality only for minimal uncertainty states. Calculate the product $\Delta x \Delta p$ for the states $|sq_{\zeta}\rangle$ and show that for certain ϕ they are minimal uncertainty states.
- d) For those ϕ which gives minimal uncertainty, compare Δx and Δp with the corresponding values in vacuum and describe what happens to the uncertainties.
- e) For a general value of ϕ the state $|sq_{\zeta}\rangle$ is not of minimal uncertainty with respect to the operators \hat{x} and \hat{p} . However, for any ϕ we can find transformed operators \hat{x}_{ϕ} and \hat{p}_{ϕ} satisfying the usual commutator relation $[\hat{x}_{\phi}, \hat{p}_{\phi}] = i\hbar$ and where $\Delta x_{\phi} \Delta p_{\phi} = \frac{\hbar}{2}$. Here Δx_{ϕ} and Δp_{ϕ} are defined by the same equations as Δx and Δp with \hat{x} and \hat{p} replaced by \hat{x}_{ϕ} and \hat{p}_{ϕ} . Determine \hat{x}_{ϕ} and \hat{p}_{ϕ} expressed in terms of ϕ , \hat{x} and \hat{p} .

We remind you of the general relation

$$e^{B}Ae^{-B} = A + [B, A] + \frac{1}{2}[B, [B, A]] + \cdots$$