Problem set 12

12.1 A state in thermal equilibrium (Exam 2011)

A quantum state in thermal equilibrium is described by the density operator

$$
\hat{\rho}(\beta)=N(\beta) e^{-\beta \hat{H}}=N(\beta) \sum_{n} e^{-\beta E_{n}}|n\rangle\langle n|
$$

with \hat{H} as the Hamiltonian, E_{n} as the corresponding energy eigenvalues, and $N(\beta)$ as a normalization factor. The parameter β is related to the temperature T by $\beta=1 /\left(k_{B} T\right)$, with k_{B} as Boltzmanns constant.
a) Show that the expectation value for the energy can be expressed in terms of $N(\beta)$ as

$$
E(\beta)=\frac{d}{d \beta} \ln N(\beta)
$$

and find a similar expression for the von Neumann entropy $S(\beta)=\operatorname{Tr}[\hat{\rho}(\beta) \ln \hat{\rho}(\beta)]$. (Use here the natural logarithm in the definition of S.)
b) For a two-level system, with Hamiltonian $\hat{H}=(\epsilon / 2) \sigma_{z}$, determine the functions $N(\beta), E(\beta)$ and $S(\beta)$, and make a sketch of the expectation value of the energy E as function of the temperature T.
c) Find the density operator expressed in the form $\hat{\rho}=(1 / 2)(\mathbb{1}+\mathbf{r} \cdot \sigma)$. Determine \mathbf{r} as a function of β and relate this to the results in b).

12.2 Coupled harmonic oscillators (Exam 2016)

Two harmonic oscillators, referred to as A and B, form a composite quantum mechanical system. The Hamiltonian of the system has the form

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\hat{b}^{\dagger} \hat{b}+\mathbb{1}\right)+\hbar \lambda\left(\hat{a}^{\dagger} \hat{b}+\hat{b}^{\dagger} \hat{a}\right)
$$

with $\left(\hat{a}, \hat{a}^{\dagger}\right)$ as lowering and raising operators for A and $\left(\hat{b}, \hat{b}^{\dagger}\right)$ as corresponding operators for B , while ω and λ are real valued constants.
a) Show that the Hamilton operator can be expressed in diagonal form as

$$
\hat{H}=\hbar \omega_{c} \hat{c}^{\dagger} \hat{c}+\hbar \omega_{d} \hat{d}^{\dagger} \hat{d}+\hbar \omega \mathbb{1}
$$

where \hat{c} and \hat{d} are linear combinations of \hat{a} and \hat{b},

$$
\hat{c}=\mu \hat{a}+\nu \hat{b}, \quad \hat{d}=-\nu \hat{a}+\mu \hat{b},
$$

with μ and ν as real constants satisfying $\mu^{2}+\nu^{2}=1$, and determine the new parameters μ, ν, ω_{c} and ω_{d}, expressed in terms of ω and λ. Check that the new operators \hat{c} and \hat{d} satisfy the same set of harmonic oscillator commutation relations as \hat{a} and \hat{b}. It is sufficient to show

$$
\left[\hat{c}, \hat{c}^{\dagger}\right]=\left[\hat{d}, \hat{d}^{\dagger}\right]=1, \quad\left[\hat{c}, \hat{d}^{\dagger}\right]=0
$$

b) Assume that the state $|\psi(0)\rangle$ of the composite system, at time $t=0$, is a coherent state when expressed in terms of the new variables,

$$
\hat{c}|\psi(0)\rangle=z_{c 0}|\psi(0)\rangle, \quad \hat{d}|\psi(0)\rangle=z_{d 0}|\psi(0)\rangle .
$$

Also at a later time the state $|\psi(t)\rangle$ will be a coherent state for both \hat{c} and \hat{d},

$$
z_{c}(t)=e^{i \omega_{c} t} z_{c 0}, \quad z_{d}(t)=e^{i \omega_{d} t} z_{d 0} .
$$

Show this for $z_{c}(t)$. (The expression for $z_{d}(t)$ follows in the same way, and is therefore not needed to be shown.)
c) Show that the state $|\psi(t)\rangle$ is a coherent state also for the original harmonic oscillator operators \hat{a} and \hat{b}, and find the eigenvalues $z_{a}(t)$ and $z_{b}(t)$ expressed in terms of $z_{a 0}$ and $z_{b 0}$.

12.3 Time evolution in a two-level system (Exam 2013)

The Hamiltonian of a two-level system (denoted A) is $\hat{H}_{0}=(1 / 2) \hbar \omega \sigma_{z}$, with σ_{z} as the diagonal Pauli matrix. We refer to the normalized ground state vector as $|g\rangle$ and the exited state as $|e\rangle$. In reality the system is coupled to a radiation field (denoted S), and the excited state will therefore decay to the ground state under emission of a quantum of radiation. $\hat{\rho}$ denotes the reduced density operator of subsystem A. To a good approximation the time evolution of this system is described by the Lindblad equation

$$
\begin{equation*}
\frac{d \hat{\rho}}{d t}=-\frac{i}{\hbar}\left[H_{0}, \hat{\rho}\right]-\frac{1}{2} \gamma\left[\hat{\alpha}^{\dagger} \hat{\alpha} \hat{\rho}+\hat{\rho} \hat{\alpha}^{\dagger} \hat{\alpha}-2 \hat{\alpha} \hat{\rho} \hat{\alpha}^{\dagger}\right] \tag{1}
\end{equation*}
$$

with γ as the decay rate for the transition $|e\rangle \rightarrow|g\rangle, \hat{\alpha}=|g\rangle\langle e|$ and $\hat{\alpha}^{\dagger}=|e\rangle\langle g|$.
In matrix form, with $\{|e\rangle,|g\rangle\}$ as basis, we write the density matrix as $\hat{\rho}$

$$
\hat{\rho}=\left(\begin{array}{cc}
p_{e} & b \tag{2}\\
b^{*} & p_{g}
\end{array}\right)
$$

with p_{e} as the probability for the system to be in state $|e\rangle$ and p_{g} as the probability for the system to be in state $|g\rangle$.
a) Assume initially the two-level system, at time $t=0$, to be in state $\hat{\rho}=|e\rangle\langle e|$. Show, by use of Eq. (1), that p_{e} decays exponentially, with γ as decay rate, while the total probability $p_{e}+p_{g}$ is conserved.
b) Assume next that the system is initially in the following superposition of the two eigenstates of $\hat{H}_{0},|\psi\rangle=\frac{1}{\sqrt{2}}(|e\rangle+|g\rangle)$. Determine the time dependent density matrix $\hat{\rho}(t)$ with this initial state.
c) The density operator of subsystem A can alternatively be expressed in terms of the Pauli matrices as $\hat{\rho}=\frac{1}{2}(\mathbb{1}+\mathbf{r} \cdot \boldsymbol{\sigma})$. Determine the function $r^{2}(t)$ in the two cases above and show that in both cases it has a minimum for $t=(1 / \gamma) \ln 2$. What is the minimum value for r in the two cases? Comment on the implication the results give for the entanglement between the two subsystems A and S. (We assume $A+S$ all the time to be in a pure state.)

