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Problem set 2

2.1 Heisenberg’s equation of motion
In the Heisenberg picture the state vectors are time independent, while the observables change with
time. An observable Â which has no explicit time dependence satisfies Heisenberg’s equation of
motion, in the form

d

dt
Â =

i

h̄

[
Ĥ, Â

]
(1)

with Ĥ as the Hamiltonian of the system.
Assume a particle of mass m moves in a one-dimensional potential V (x). In the coordinate

representation the position and momentum operators are given as

x̂ = x , p̂ = −ih̄ ∂
∂x

(2)

Find the expressions for Heisenberg’s equation of motion for x̂ and p̂ and show that these give for the
position operator a differential equation with the same form as the classical equation of motion of a
particle with mass m in the potential V (x).

2.2 Time dependent unitary transform
Two unitarily equivalent descriptions of a quantum system are related by a time dependent unitary
transformation Û(t), which acts on state vectors as

|ψ(t)〉 → |ψ′(t)〉 = Û(t)|ψ(t)〉 (3)

and on the observables as

Â → Â′(t) = Û(t) Â Û(t)−1 . (4)

Show that the Hamiltonian Ĥ ′, which determines the Schrödinger equation of the transformed state
vector |ψ′(t)〉, includes an additional term which depends on the time derivative of Û(t),

Ĥ → Ĥ ′(t) = Û(t) Ĥ Û(t)−1 + ih̄
dÛ

dt
Û−1 (5)

Discuss the meaning of the difference between the equations (4) and (5).

2.3 Gaussian integrals
The following formula gives the integral of a gaussian function

I ≡
∫ ∞
−∞

dxe−λx
2

=

√
π

λ
(6)
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This is correct for complex λ provided the real part of λ is positive. Verify this by evaluating the
square I2 as a two-dimensional integral

I2 =

∫ ∞
−∞

∫ ∞
−∞

dx dy e−λ(x2+y2) (7)

and by changing to to polar coordinates in the evaluation.
Determine also the integral

I ′ ≡
∫ ∞
−∞

dx e−λx
2+ax+b (8)

with two additional parameters, a and b.

2.4 Path integral for free particle
We will make a direct calculation of the propagator for a free particle. Start from the discretized path
integral, Eq (1.101) in the lecture notes, with the potential term V (x) = 0. We are going to calculate
each of the integrals succesively.

a) Show first that for the terms containing x1 we have

I1 = N2
∆t

∫
dx1e

im
2h̄∆t [(x1−xi)2+(x2−x1)2] =

√
m

2πih̄ · 2∆t
e

im
2h̄·2∆t

(x2−xi)2

b) Multiply by the remaining term containing x2 and show that

I2 = N∆t

∫
dx2e

im
2h̄∆t

(x3−x2)2
I1 = N∆t

√
m

2πih̄ · 2∆t

∫
dx2e

im
2h̄∆t [

1
2

(x2−xi)2+(x3−x2)2]

=

√
m

2πih̄ · 3∆t
e

im
2h̄·3∆t

(x3−xi)2

Notice how this is similar to the previous step, only with 3 replacing 2 in several places. This
pattern will continue for the following steps.

c) Using this pattern prove/guess the final result after all n − 1 integrals and compare to the result
(1.109) in the lecture notes.

2.5 Path integral for harmonic oscillator
We will calculate the propagator for a harmonic oscillator by evaluating the path integral using the
same method as in was done for the free particle in Eqs (1.105)-(1.108) in the lecture notes.

a) Using the Fourier expansion (1.105) in the harmonic oscillator Lagrangian L = 1
2mẋ

2− 1
2mω

2x2,
show that the action can be written

S[x(t)] = S[xcl(t)] +
mT

4

∑
n

[(nπ
T

)2
− ω2

]
c2
n
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b) Evaluate the path integral in the form of integrals over the Fourier coefficients cn as in Eq (1.107)
in the lecture notes and show that the propagator is

G(xf tf , xiti) = Ne
i
h̄
S[xcl(t)]

∏
n

[
1−

(
ωT

nπ

)2
]−1/2

WhereN is a ω-independent normalization factor. To determine the normalization we can take the
limit ω → 0 and compare to the result for a free particle that we found in Problem 2.4. You will
also need the product formula

∏
n

(
1− a2

n2

)
=

sin aπ

aπ

In the end you should find that

G(xf tf , xiti) =

√
mω

2πih̄ sinωT
e

i
h̄
S[xcl(t)]

where T = tf − ti.

c) We still need the action along the classical path, prove that

S[xcl(t)] =
mω

2 sinωT

[
(x2
f + x2

i ) cosωT − 2xfxi
]

Warning: Even if this is a simple problem in classical mechanics, the calculations may be a bit
long.

d) Use the classical action from the previous question in Eq (1.119) of the lecture notes and find the
semiclasical propagator (1.116) for the harmonic oscillator. Compare it to the exact solution found
above, and confirm that the semiclassical approximation is exact in this case, as expected since the
Lagrangian is quadratic.


