
Le
ture NotesOnGeneral Relativity
Øyvind GrønOslo College, Department of engineering, Cort Adelers gt. 30, N-0254 Oslo,NorwayandDepartment of Physi
s, University of Oslo, Box 1048 Blindern, N-0316, Norway



May 15, 2008



Prefa
eThese notes are a trans
ript of le
tures delivered by Øyvind Grøn during thespring of 1997 at the University of Oslo. Two 
ompendia, (Grøn and Flø 1984)and (Ravndal 1978) were provided by Grøn as additional referen
e materialduring the le
tures.The present version of this do
ument is an extended and 
orre
ted version ofa set of Le
ture Notes whi
h were typesetted by S. Bard, Andreas O. Jaunsen,Frode Hansen and Ragnvald J. Irgens using LATEX2ǫ. Svend E. Hjelmeland hasmade many useful suggestions whi
h have improved the text.While we hope that these typeset notes are of bene�t parti
ularly to stu-dents of general relativity and look forward to their 
omments, we wel
ome allinterested readers and a

ept all feedba
k with thanks.All 
omment may be sent to the author either by e-mail or snail mail.Øyvind GrønFysisk InstituttUniversitetet i OsloP.O.Boks 1048, Blindern0315 OSLOE-mail: Oyvind.Gron�iu.hio.no





Contents
List of Figures vList of De�nitions ixList of Examples xi1 Newton's law of universal gravitation 11.1 The for
e law of gravitation . . . . . . . . . . . . . . . . . . . . . 11.2 Newton's law of gravitation in its lo
al form . . . . . . . . . . . . 21.3 Tidal For
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 The Prin
iple of Equivalen
e . . . . . . . . . . . . . . . . . . . . 91.5 The general prin
iple of relativity . . . . . . . . . . . . . . . . . . 101.6 The 
ovarian
e prin
iple . . . . . . . . . . . . . . . . . . . . . . . 111.7 Ma
h's prin
iple . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Ve
tors, Tensors and Forms 132.1 Ve
tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.1 4-ve
tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.2 Tangent ve
tor �elds and 
oordinate ve
tors . . . . . . . . 172.1.3 Coordinate transformations . . . . . . . . . . . . . . . . . 202.1.4 Stru
ture 
oe�
ients . . . . . . . . . . . . . . . . . . . . . 232.2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2.1 Transformation of tensor 
omponents . . . . . . . . . . . . 272.2.2 Transformation of basis 1-forms . . . . . . . . . . . . . . . 282.2.3 The metri
 tensor . . . . . . . . . . . . . . . . . . . . . . 282.3 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 A

elerated Referen
e Frames 353.1 Rotating referen
e frames . . . . . . . . . . . . . . . . . . . . . . 353.1.1 The spatial metri
 tensor . . . . . . . . . . . . . . . . . . 353.1.2 Angular a

eleration in the rotating frame . . . . . . . . . 393.1.3 Gravitational time dilation . . . . . . . . . . . . . . . . . 423.1.4 Path of photons emitted from axes in the rotating refer-en
e frame (RF) . . . . . . . . . . . . . . . . . . . . . . . 433.1.5 The Sagna
 e�e
t . . . . . . . . . . . . . . . . . . . . . . . 433.2 Hyperboli
ally a

elerated referen
e frames . . . . . . . . . . . . 44i



4 Covariant Di�erentiation 504.1 Di�erentiation of forms . . . . . . . . . . . . . . . . . . . . . . . . 504.1.1 Exterior di�erentiation . . . . . . . . . . . . . . . . . . . . 504.1.2 Covariant derivative . . . . . . . . . . . . . . . . . . . . . 524.2 The Christo�el Symbols . . . . . . . . . . . . . . . . . . . . . . . 544.3 Geodesi
 
urves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.4 The 
ovariant Euler-Lagrange equations . . . . . . . . . . . . . . 584.5 Appli
ation of the Lagrangian formalism to free parti
les . . . . . 604.5.1 Equation of motion from Lagrange's equation . . . . . . . 614.5.2 Geodesi
 world lines in spa
etime . . . . . . . . . . . . . . 624.5.3 Gravitational Doppler e�e
t . . . . . . . . . . . . . . . . . 714.6 The Koszul 
onne
tion . . . . . . . . . . . . . . . . . . . . . . . . 724.7 Conne
tion 
oe�
ients Γαµν and stru
ture 
oe�
ients cαµν in ... . 754.8 Covariant di�erentiation of ve
tors, forms and tensors . . . . . . 764.8.1 Covariant di�erentiation of a ve
tor in an arbitrary basis . 764.8.2 Covariant di�erentiation of forms . . . . . . . . . . . . . . 764.8.3 Generalization for tensors of higher rank . . . . . . . . . . 784.9 The Cartan 
onne
tion . . . . . . . . . . . . . . . . . . . . . . . . 785 Curvature 825.1 The Riemann 
urvature tensor . . . . . . . . . . . . . . . . . . . 825.2 Di�erential geometry of surfa
es . . . . . . . . . . . . . . . . . . . 875.2.1 Surfa
e 
urvature, using the Cartan formalism . . . . . . . 905.3 The Ri

i identity . . . . . . . . . . . . . . . . . . . . . . . . . . 915.4 Bian
hi's 1st identity . . . . . . . . . . . . . . . . . . . . . . . . . 915.5 Bian
hi's 2nd identity . . . . . . . . . . . . . . . . . . . . . . . . 926 Einstein's Field Equations 946.1 Energy-momentum 
onservation . . . . . . . . . . . . . . . . . . . 946.1.1 Newtonian �uid . . . . . . . . . . . . . . . . . . . . . . . . 946.1.2 Perfe
t �uids . . . . . . . . . . . . . . . . . . . . . . . . . 966.2 Einstein's 
urvature tensor . . . . . . . . . . . . . . . . . . . . . . 966.3 Einstein's �eld equations . . . . . . . . . . . . . . . . . . . . . . . 976.4 The �geodesi
 postulate� as a 
onsequen
e of the �eld equations . 997 The S
hwarzs
hild spa
etime 1017.1 S
hwarzs
hild's exterior solution . . . . . . . . . . . . . . . . . . . 1017.2 Radial free fall in S
hwarzs
hild spa
etime . . . . . . . . . . . . . 1057.3 Light 
ones in S
hwarzs
hild spa
etime . . . . . . . . . . . . . . . 1077.4 Analyti
al extension of the S
hwarzs
hild spa
etime . . . . . . . . 1097.5 Embedding of the S
hwarzs
hild metri
 . . . . . . . . . . . . . . . 1117.6 De
eleration of light . . . . . . . . . . . . . . . . . . . . . . . . . 1117.7 Parti
le traje
tories in S
hwarzs
hild 3-spa
e . . . . . . . . . . . 1137.7.1 Motion in the equatorial plane . . . . . . . . . . . . . . . 1157.8 Classi
al tests of Einstein's general theory of relativity . . . . . . 1177.8.1 The Hafele-Keating experiment . . . . . . . . . . . . . . . 117ii



7.8.2 Mer
ury's perihelion pre
ession . . . . . . . . . . . . . . . 1197.8.3 De�e
tion of light . . . . . . . . . . . . . . . . . . . . . . . 1208 Bla
k Holes 1228.1 'Surfa
e gravity':gravitational a

eleration on the horizon of abla
k hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228.2 Hawking radiation:radiation from a bla
k hole (1973) . . . . . . . 1238.3 Rotating Bla
k Holes: The Kerr metri
 . . . . . . . . . . . . . . . 1248.3.1 Zero-angular-momentum-observers (ZAMO's) . . . . . . . 1258.3.2 Does the Kerr spa
e have a horizon? . . . . . . . . . . . . 1269 S
hwarzs
hild's Interior Solution 1289.1 Newtonian in
ompressible star . . . . . . . . . . . . . . . . . . . 1289.2 The pressure 
ontribution to the gravitational mass of a stati
,spheri
al symmetri
 system . . . . . . . . . . . . . . . . . . . . . 1309.3 The Tolman-Oppenheimer-Volkov equation . . . . . . . . . . . . 1319.4 An exa
t solution for in
ompressible stars - S
hwarzs
hild's inte-rior solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13310 Cosmology 13510.1 Comoving 
oordinate system . . . . . . . . . . . . . . . . . . . . 13510.2 Curvature isotropy - the Robertson-Walker metri
 . . . . . . . . 13610.3 Cosmi
 dynami
s . . . . . . . . . . . . . . . . . . . . . . . . . . . 13710.3.1 Hubbles law . . . . . . . . . . . . . . . . . . . . . . . . . . 13710.3.2 Cosmologi
al redshift of light . . . . . . . . . . . . . . . . 13710.3.3 Cosmi
 �uids . . . . . . . . . . . . . . . . . . . . . . . . . 13910.3.4 Isotropi
 and homogeneous universe models . . . . . . . . 14010.4 Some 
osmologi
al models . . . . . . . . . . . . . . . . . . . . . . 14310.4.1 Radiation dominated model . . . . . . . . . . . . . . . . . 14310.4.2 Dust dominated model . . . . . . . . . . . . . . . . . . . . 14410.4.3 Transition from radiation- to matter dominated universe . 14810.4.4 Friedmann-Lemaître model . . . . . . . . . . . . . . . . . 14910.5 In�ationary Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 16010.5.1 Problems with the Big Bang Models . . . . . . . . . . . . 16010.5.2 Cosmi
 In�ation . . . . . . . . . . . . . . . . . . . . . . . 162Bibliography 167

iii





List of Figures1.1 Newton's law of universal gravitation . . . . . . . . . . . . . . . . 11.2 Newton's law of gravitation in its lo
al form . . . . . . . . . . . . 21.3 The de�nition of solid angle dΩ . . . . . . . . . . . . . . . . . . . 51.4 Tidal For
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.5 A small Cartesian 
oordinate system at a distan
e R from a mass
M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.6 An elasti
, 
ir
ular ring falling freely in the Earth's gravitational�eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.1 Closed polygon (linearly dependent) . . . . . . . . . . . . . . . . 132.2 Carriage at rest (top) and with velo
ity ~v (bottom) . . . . . . . . 142.3 World-lines in a Minkowski diagram . . . . . . . . . . . . . . . . 162.4 No position ve
tors . . . . . . . . . . . . . . . . . . . . . . . . . . 172.5 Tangentplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.6 Proper time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.7 Coordinate transformation, �at spa
e. . . . . . . . . . . . . . . . 222.8 Basis-ve
tors ~e1 and ~e2 . . . . . . . . . . . . . . . . . . . . . . . . 302.9 The 
ovariant- and 
ontravariant 
omponents of a ve
tor . . . . . 313.1 Simultaneity in rotating frames . . . . . . . . . . . . . . . . . . . 373.2 Rotating system: Distan
e between points on the 
ir
umferen
e . 373.3 Rotating system: Dis
ontinuity in simultaneity . . . . . . . . . . 383.4 Rotating system: Angular a

eleration . . . . . . . . . . . . . . . 403.5 Rotating system: Distan
e in
rease . . . . . . . . . . . . . . . . . 403.6 Rotating system: Lorentz 
ontra
tion . . . . . . . . . . . . . . . . 413.7 The Sagna
 e�e
t . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.8 Hyperboli
 a

eleration . . . . . . . . . . . . . . . . . . . . . . . 453.9 Simultaneity and hyperboli
 a

eleration . . . . . . . . . . . . . . 473.10 The hyperboli
ally a

elerated referen
e system . . . . . . . . . . 494.1 Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 564.2 Di�erent world-lines 
onne
ting P1 and P2 in a Minkowski diagram 584.3 Geodesi
 on a �at surfa
e . . . . . . . . . . . . . . . . . . . . . . 604.4 Geodesi
 on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . 604.5 Timelike geodesi
s . . . . . . . . . . . . . . . . . . . . . . . . . . 624.6 Proje
tiles in 3-spa
e . . . . . . . . . . . . . . . . . . . . . . . . . 644.7 Geodesi
s in rotating referen
e frames . . . . . . . . . . . . . . . 65v



4.8 Coordinates on a rotating dis
 . . . . . . . . . . . . . . . . . . . . 664.9 Proje
tiles in a

elerated frames . . . . . . . . . . . . . . . . . . . 674.10 The twin �paradox� . . . . . . . . . . . . . . . . . . . . . . . . . . 694.11 Rotating 
oordinate system . . . . . . . . . . . . . . . . . . . . . 735.1 Parallel transport of ~A . . . . . . . . . . . . . . . . . . . . . . . . 825.2 Parallel transport of a ve
tor along a triangle of angles 90◦ isrotated 90◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835.3 Geometry of parallel transport . . . . . . . . . . . . . . . . . . . 845.4 Surfa
e geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.1 Light 
ones in S
hwarzs
hild spa
etime . . . . . . . . . . . . . . . 1087.2 Light 
ones in S
hwarzs
hild spa
etime . . . . . . . . . . . . . . . 1087.3 Embedding of the S
hwarzs
hild metri
 . . . . . . . . . . . . . . . 1127.4 De
eleration of light . . . . . . . . . . . . . . . . . . . . . . . . . 1127.5 Newtonian 
entrifugal barrier . . . . . . . . . . . . . . . . . . . . 1167.6 Gravitational 
ollapse . . . . . . . . . . . . . . . . . . . . . . . . 1177.7 De�e
tion of light . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208.1 Stati
 border and horizon of a Kerr bla
k hole . . . . . . . . . . . 1279.1 Hydrostati
 equilibrium . . . . . . . . . . . . . . . . . . . . . . . 12910.1 S
hemati
 representation of 
osmologi
al redshift . . . . . . . . . 13810.2 Expansion of a radiation dominated universe . . . . . . . . . . . 14410.3 The size of the universe . . . . . . . . . . . . . . . . . . . . . . . 14710.4 Expansion fa
tor . . . . . . . . . . . . . . . . . . . . . . . . . . . 14810.5 The expansion fa
tor as fun
tion of 
osmi
 time in units of theage of the universe. . . . . . . . . . . . . . . . . . . . . . . . . . . 15210.6 The Hubble parameter as fun
tion of 
osmi
 time. . . . . . . . . 15210.7 ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15310.8 The de
eleration parameter as fun
tion of 
osmi
 time. . . . . . . 15410.9 The ratio of the point of time when 
osmi
 de
elerations turnover to a

eleration to the age of the universe. . . . . . . . . . . . 15510.10The 
osmi
 red shift of light emitted at the turnover time fromde
eleration to a

eleration as fun
tion of the present relativedensity of va
uum energy. . . . . . . . . . . . . . . . . . . . . . . 15610.11The 
riti
al density in units of the 
onstant density of the va
uumenergy as fun
tion of time. . . . . . . . . . . . . . . . . . . . . . . 15610.12The relative density of the va
uum energy density as fun
tion oftime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15710.13The density of matter in units of the density of va
uum energyas fun
tion of time. . . . . . . . . . . . . . . . . . . . . . . . . . . 15710.14The relative density of matter as fun
tion of time. . . . . . . . . 15810.15Rate of 
hange of ΩΛ as fun
tion of ln( tt0 ). The value ln( tt0 ) =
−40 
orresponds to the 
osmi
 point of time t0 ∼ 1s. . . . . . . . 15910.16The shape of the potential depends on the sign of µ2. . . . . . . . 163vi



10.17The temperature dependen
e of a Higgs potential with a �rstorder phase transition. . . . . . . . . . . . . . . . . . . . . . . . . 164

vii





List of De�nitions1.2.1 Solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.1.1 4-velo
ity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.2 4-momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.3 4-a

eleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.4 Referen
e frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1.5 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.1.6 Comoving 
oordinate system . . . . . . . . . . . . . . . . . . . . . . 182.1.7 Orthonormal basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.1.8 Coordinate basis ve
tors. . . . . . . . . . . . . . . . . . . . . . . . . 182.1.9 Coordinate basis ve
tors. . . . . . . . . . . . . . . . . . . . . . . . . 212.1.10Orthonormal basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.1.11Commutators between ve
tors . . . . . . . . . . . . . . . . . . . . . . 232.1.12Stru
ture 
oe�
ients cρµν . . . . . . . . . . . . . . . . . . . . . . . . 242.2.1 Multilinear fun
tion, tensors . . . . . . . . . . . . . . . . . . . . . . . 262.2.2 Tensor produ
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.2.3 The metri
 tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.2.4 Contravariant 
omponents . . . . . . . . . . . . . . . . . . . . . . . . 292.3.1 p-form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.2.1 Born-sti� motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.3.1 Geodesi
 
urves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.6.1 Koszul's 
onne
tion 
oe�e
ients in an arbitrary basis . . . . . . . . . 734.8.1 Covariant derivative of a ve
tor . . . . . . . . . . . . . . . . . . . . . 764.8.2 Covariant dire
tional derivative of a one-form �eld . . . . . . . . . . 764.8.3 Covariant derivative of a one-form . . . . . . . . . . . . . . . . . . . 774.8.4 Covariant derivative of a tensor . . . . . . . . . . . . . . . . . . . . . 784.9.1 Exterior derivative of a basis ve
tor . . . . . . . . . . . . . . . . . . . 784.9.2 Conne
tion forms Ων
µ . . . . . . . . . . . . . . . . . . . . . . . . . . 794.9.3 S
alar produ
t between ve
tor and 1-form . . . . . . . . . . . . . . . 795.5.1 Contra
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927.1.1 Physi
al singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057.1.2 Coordinate singularity . . . . . . . . . . . . . . . . . . . . . . . . . . 1058.3.1 Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

ix





List of Examples2.1.1 Photon 
lo
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.2 Coordinate transformation . . . . . . . . . . . . . . . . . . . . . . . . 212.1.3 Relativisti
 Doppler E�e
t . . . . . . . . . . . . . . . . . . . . . . . . 232.1.4 Stru
ture 
oe�
ients in planar polar 
oordinates . . . . . . . . . . . 252.2.1 Example of a tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.2.2 A mixed tensor of rank 3 . . . . . . . . . . . . . . . . . . . . . . . . 282.2.3 Cartesian 
oordinates in a plane . . . . . . . . . . . . . . . . . . . . 292.2.4 Basis-ve
tors in plane polar-
oordinates . . . . . . . . . . . . . . . . 292.2.5 Non-diagonal basis-ve
tors . . . . . . . . . . . . . . . . . . . . . . . . 292.2.6 Cartesian 
oordinates in a plane . . . . . . . . . . . . . . . . . . . . 312.2.7 Plane polar 
oordinates . . . . . . . . . . . . . . . . . . . . . . . . . 312.3.1 antisymmetri
 
ombinations . . . . . . . . . . . . . . . . . . . . . . . 322.3.2 antisymmetri
 
ombinations . . . . . . . . . . . . . . . . . . . . . . . 322.3.3 A 2-form in 3-spa
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.1.1 Outer produ
t of 1-forms in 3-spa
e . . . . . . . . . . . . . . . . . . 514.1.2 The derivative of a ve
tor �eld with rotation . . . . . . . . . . . . . . 534.2.1 The Christo�el symbols in plane polar 
oordinates . . . . . . . . . . 554.3.1 verti
al motion of free parti
le in hyperb. a

. ref. frame . . . . . . . 574.5.1 How geodesi
s in spa
etime 
an give parabolas in spa
e . . . . . . . 624.5.2 Spatial geodesi
s des
ribed in the referen
e frame of a rotating dis
. 634.5.3 Christo�el symbols in a hyperboli
ally a

elerated referen
e frame . 664.5.4 Verti
al proje
tile motion in a hyperboli
ally a

elerated referen
eframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.5.5 The twin �paradox� . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.5.6 Measurements of gravitational Doppler e�e
ts (Pound and Rebka 1960) 724.6.1 The 
onne
tion 
oe�
ients in a rotating referen
e frame. . . . . . . . 734.6.2 A

eleration in a non-rotating referen
e frame (Newton) . . . . . . . 744.6.3 The a

eleration of a parti
le, relative to the rotating referen
e frame 744.9.1 Cartan-
onne
tion in an orthonormal basis �eld in plane polar 
oord. 806.1.1 Energy momentum tensor for a Newtonian �uid . . . . . . . . . . . . 9510.4.1Age-redshift relation for dust dominated universe with k = 0 . . . . 146
xi





Chapter 1Newton's law of universalgravitation1.1 The for
e law of gravitation
M

m
F̃

r̃

Figure 1.1: Newton's law of universal gravitation states that the for
e betweentwo masses is attra
tive, a
ts along the line joining them and is inversely pro-portional to the distan
e separating the masses.
~F = −mGM

r3
~r = −mGM

r2
~er (1.1)Let V be the potential energy of m (see �gure 1.1). Then

~F = −∇V (~r), Fi = −∂V
∂xi

(1.2)For a spheri
al mass distribution: V (~r) = −mGM
r , with zero potentialin�nitely far from the 
enter of M . Newton's law of gravitation is valid for�small� velo
ities, i.e. velo
ities mu
h smaller than the velo
ity of light and�weak� �elds. Weak �elds are �elds in whi
h the gravitational potential energyof a test parti
le is very small 
ompared to its rest mass energy. (Note thathere one is interested only in the absolute values of the above quantities andnot their sign).

mG
M

r
≪ mc2 ⇒ r ≫ GM

c2
. (1.3)1



2 Chapter 1. Newton's law of universal gravitationThe S
hwarzs
hild radius for an obje
t of mass M is Rs = 2GM
c2

. Faroutside the S
hwarzs
hild radius we have a weak �eld. To get a feeling formagnitudes 
onsider that Rs ≅ 1 
m for the Earth whi
h is to be 
omparedwith RE ≅ 6400 km. That is, the gravitational �eld at the Earth's surfa
e 
anbe said to be weak! This explains, in part, the su

ess of the Newtonian theory.
1.2 Newton's law of gravitation in its lo
al formLet P be a point in the �eld (see �gure 1.2) with position ve
tor ~r = xi~ei andlet the gravitating point sour
e be at ~r′ = xi

′

~ei′ . Newton's law of gravitationfor a 
ontinuous distribution of mass is
~F = −mG

∫ ∞

r
ρ(~r′)

~r − ~r′

|~r − ~r′|3
d3r′

= −∇V (~r)

(1.4)
See �gure (1.2) for symbol de�nitions.

~r′

~r

~r − ~r′
P

Figure 1.2: Newton's law of gravitation in its lo
al form.



1.2 Newton's law of gravitation in its lo
al form 3Let's 
onsider equation (1.4) term by term.
∇ 1

|~r − ~r′|
= ~ei

∂

∂xi

1
[
(xj − xj′)(xj − xj′)

]1/2

= ~ei
∂

∂xi

[
(xj − xj

′

)(xj − xj′)
]−1/2

= ~ei
−1

2
2(xj − xj′)

∂xj

∂xi

[
(xk − xk

′

)(xk − xk′)
]−3/2

= −~ei
(xj − xj

′

)δij

[(xk − xk′)(xk − xk′)]
3/2

= −~ei
(xi − xi

′

)
[
(xj − xj′)(xj − xj′)

]3/2

= − ~r − ~r′

|~r − ~r′|3

(1.5)
Now equations (1.4) and (1.5) together ⇒

V (~r) = −mG
∫

ρ(~r′)

|~r − ~r′|
d3r′ (1.6)Gravitational potential at point P :

φ(~r) ≡ V (~r)

m
= −G

∫
ρ(~r′)

|~r − ~r′|
d3r′

⇒ ∇φ(~r) = G

∫
ρ(~r′)

~r − ~r′

|~r − ~r′|3
d3r′

⇒ ∇2φ(~r) = G

∫
ρ(~r′)∇· ~r −

~r′

|~r − ~r′|3
d3r′

(1.7)
The above equation simpli�es 
onsiderably if we 
al
ulate the divergen
e in theintegrand. Note that �∇�operates on ~ronly!∇· ~r −

~r′

|~r − ~r′|3
=

∇·~r
|~r − ~r′|3

+ (~r − ~r′) · ∇ 1

|~r − ~r′|3

=
3

|~r − ~r′|3
− (~r − ~r′) · 3(~r − ~r′)

|~r − ~r′|5

=
3

|~r − ~r′|3
− 3

|~r − ~r′|3

= 0 ∀ ~r 6= ~r′

(1.8)
We 
on
lude that the Newtonian gravitational potential at a point in a gravi-tational �eld outside a mass distribution satis�es Lapla
e's equation

∇2φ = 0 (1.9)



4 Chapter 1. Newton's law of universal gravitationDigression 1.2.1 (Dira
's delta fun
tion)The Dira
 delta fun
tion has the following properties:1. δ(~r − ~r′) = 0 ∀ ~r 6= ~r′2. ∫ δ(~r − ~r′)d3r′ = 1 when ~r = ~r′ is 
ontained in the integration domain. Theintegral is identi
ally zero otherwise.3. ∫ f(~r′)δ(~r − ~r′)d3r′ = f(~r)A 
al
ulation of the integral ∫ ∇· ~r−~r′|~r−~r′|3d
3r′ whi
h is valid also in the 
ase wherethe �eld point is inside the mass distribution is obtained through the use ofGauss' integral theorem:

∫v ∇· ~Ad3r′ =

∮s ~A · d~s, (1.10)where s is the boundary of v (s = ∂v is an area).De�nition 1.2.1 (Solid angle)
dΩ ≡ ds′⊥

|~r − ~r′|2
(1.11)where ds′⊥ is the proje
tion of the area ds′ normal to the line of sight. ~ds′⊥ is the
omponent ve
tor of ~ds′ along the line of sight whi
h is equal to the normal ve
torof ds′⊥ (see �gure (1.3)).Now, let's apply Gauss' integral theorem.

∫v ∇· ~r −
~r′

|~r − ~r′|3
d3r′ =

∮s ~r − ~r′

|~r − ~r′|3
· d~s′ =

∮s ds′⊥
|~r − ~r′|2

=

∮s dΩ (1.12)So that,
∫v ∇· ~r −

~r′

|~r − ~r′|3
d3r′ =

{
4π if P is inside the mass distribution,
0 if P is outside the mass distribution. (1.13)The above relation is written 
on
isely in terms of the Dira
 delta fun
tion:
∇· ~r −

~r′

|~r − ~r′|3
= 4πδ(~r − ~r′) (1.14)



1.3 Tidal For
es 5

~r′

~r
~r − ~r′

P
dΩ

d~s′⊥

d~s′ normal to bounding surfa
e
d~s′⊥ = ~r−~r′

|~r−~r′| · d
~s′

Figure 1.3: The solid angle dΩ is de�ned su
h that the surfa
e of a spheresubtends 4π at the 
enterWe now have
∇2φ(~r) = G

∫
ρ(~r′)∇· ~r −

~r′

|~r − ~r′|3
d3r′

= G

∫
ρ(~r′)4πδ(~r − ~r′)d3r′

= 4πGρ(~r)

(1.15)Newton's theory of gravitation 
an now be expressed very su

in
tly indeed!1. Mass generates gravitational potential a

ording to
∇2φ = 4πGρ (1.16)2. Gravitational potential generates motion a

ording to
~g = −∇φ (1.17)where ~g is the �eld strength of the gravitational �eld.1.3 Tidal For
esTidal for
e is di�eren
e of gravitational for
e on two neighboring parti
les in agravitational �eld. The tidal for
e is due to the inhomogeneity of a gravitational�eld.In �gure 1.4 two points have a separation ve
tor ~ζ. The position ve
tors of 1and 2 are ~r and ~r+ ~ζ, respe
tively, where |~ζ| ≪ |~r|. The gravitational for
es on
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F

F

2

1
ζ

1

2

Figure 1.4: Tidal For
esa mass m at 1 and at 2 are ~F (~r) and ~F (~r+ ~ζ). By means of a Taylor expansionto lowest order in |~ζ| we get for the i-
omponent of the tidal for
e
fi = Fi(~r + ~ζ) − Fi(~r) = ζj

(
∂Fi
∂xj

)

~r

. (1.18)The 
orresponding ve
tor equation is
~f = (~ζ · ∇)~r ~F . (1.19)Using that
~F = −m∇φ, (1.20)the tidal for
e may be expressed in terms of the gravitational potential a

ordingto

~f = −m(~ζ · ∇)∇φ. (1.21)It follows that in a lo
al Cartesian 
oordinate system, the i-
oordinate of therelative a

eleration of the parti
les is
d2ζi
dt2

= −
(

∂2φ

∂xi∂xj

)

~r

ζj. (1.22)Let us look at a few simple examples. In the �rst one ~ζ has the same dire
tionas ~g. Consider a small Cartesian 
oordinate system at a distan
e R from a mass
M (see �gure 1.5). If we pla
e a parti
le of mass m at a point (0, 0,+z), it will,a

ording to eq. (1.1) be a
ted upon by a for
e

Fz(+z) = −m GM

(R+ z)2
(1.23)while an identi
al parti
le at the origin will be a
ted upon by the for
e

Fz(0) = −mGM

R2
. (1.24)
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z
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Figure 1.5: A small Cartesian 
oordinate system at a distan
e R from a mass
M . If this little 
oordinate system is falling freely towards M , an observer atthe origin will say that the parti
le at (0, 0,+z) is a
ted upon by a for
e

fz = Fz(z) − Fz(0) ≈ 2mz
GM

R3
(1.25)dire
ted away from the origin, along the positive z-axis. We have assumed

z ≪ R. This is the tidal for
e.In the same way parti
les at the points (+x, 0, 0) and (0,+y, 0) are attra
tedtowards the origin by tidal for
es
fx = −mxGM

R3
, (1.26)

fy = −myGM
R3

. (1.27)Eqs. (1.25)�(1.27) have among others the following 
onsequen
e: If an elasti
,
ir
ular ring is falling freely in the Earth's gravitational �eld, as shown in �gure1.6, it will be stret
hed in the verti
al dire
tion and 
ompressed in the horizontaldire
tion.In general, tidal for
es 
ause 
hanges of shape.The tidal for
es from the Sun and the Moon 
ause �ood and ebb on theEarth. Let us 
onsider the e�e
t due to the Moon. We then let M be the massof the Moon, and 
hoose a 
oordinate system with origin at the Earth's 
enter.The tidal for
e per unit mass at a point is the negative gradient of the tidalpotential
φ(~r) = −GM

R3

(
z2 − 1

2
x2 − 1

2
y2

)
= −GM

2R3
r2(3 cos2 θ − 1), (1.28)
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Figure 1.6: An elasti
, 
ir
ular ring falling freely in the Earth's gravitational�eldwhere we have introdu
ed spheri
al 
oordinates, z = r cos θ, x2 + y2 = r2 sin2 θ,
R is the distan
e between the Earth and the Moon, and the radius r of thespheri
al 
oordinate is equal to the radius of the Earth.The potential at a height h above the surfa
e of the Earth has one term,
mgh, due to the attra
tion of the Earth and one given by eq. (1.28), due to theattra
tion of the Moon. Thus,

Θ(r) = gh − GM

2R3
r2(3 cos2 θ − 1). (1.29)At equilibrium, the surfa
e of the Earth will be an equipotential surfa
e,given by Θ = 
onstant. The height of the water at �ood, θ = 0 or θ = π, istherefore

h�ood = h0 +
GM

gR

( r
R

)2
, (1.30)where h0 is an unknown 
onstant. The height of the water at ebb (θ = π

2 or
θ = 3π

2 ) is
hebb = h0 −

1

2

GM

gR

( r
R

)2
. (1.31)The height di�eren
e between �ood and ebb is therefore

∆h =
3

2

GM

gR

( r
R

)2
. (1.32)For a numeri
al result we need the following values:

MMoon = 7.35 · 1025g, g = 9.81m/s2, (1.33)
R = 3.85 · 105km, rEarth = 6378km. (1.34)With these values we �nd ∆h = 53cm, whi
h is typi
al of tidal height di�eren
es.



1.4 The Prin
iple of Equivalen
e 91.4 The Prin
iple of Equivalen
eGalilei investigated experimentally the motion of freely falling bodies. He foundthat they moved in the same way, regardless what sort of material they 
onsistedof and what mass they had.In Newton's theory of gravitation mass appears in two di�erent ways; asgravitational mass, mG, in the law of gravitation, analogously to 
harge inCoulomb's law, and as inertial mass, mI in Newton's 2nd law.The equation of motion of a freely falling parti
le in the �eld of gravity froma spheri
al body with mass M then takes the form
d2~r

dt2
= −GmG

mI

M

r3
~r. (1.35)The results of Galilei's measurements imply that the quotient between gravita-tional and inertial mass must be the same for all bodies. With a suitable 
hoi
eof units, we then obtain

mG = mI . (1.36)Measurements performed by the Hungarian baron Eötvös around the turnof the 
entury indi
ated that this equality holds with an a

ura
y better than
10−8. More re
ent experiments have given the result |mI

mG
− 1| < 9 · 10−13.Einstein assumed the exa
t validity of eq.(1.52). He did not 
onsider this asan a

idental 
oin
iden
e, but rather as an expression of a fundamental prin
iple,
alled the prin
iple of equivalen
e.A 
onsequen
e of this prin
iple is the possibility of removing the e�e
t ofa gravitational for
e by being in free fall. In order to 
larify this, Einstein
onsidered a homogeneous gravitational �eld in whi
h the a

eleration of gravity,g, is independent of the position. In a freely falling, non-rotating referen
e framein this �eld, all free parti
les move a

ording to

mI
d2~r

dt2
= (mG −mI)~g = 0, (1.37)where eq. (1.36) has been used.This means that an observer in su
h a freely falling referen
e frame will saythat the parti
les around him are not a
ted upon by for
es. They move with
onstant velo
ities along straight paths. In other words, su
h a referen
e frameis inertial.Einstein's heuristi
 reasoning suggests equivalen
e between inertial frames inregions far from mass distributions, where there are no gravitational �elds, andinertial frames falling freely in a gravitational �eld. This equivalen
e between alltypes of inertial frames is so intimately 
onne
ted with the equivalen
e betweengravitational and inertial mass, that the term �prin
iple of equivalen
e� is usedwhether one talks about masses or inertial frames. The equivalen
e of di�erenttypes of inertial frames en
ompasses all types of physi
al phenomena, not onlyparti
les in free fall.The prin
iple of equivalen
e has also been formulated in an �opposite� way.An observer at rest in a homogeneous gravitational �eld, and an observer in



10 Chapter 1. Newton's law of universal gravitationan a

elerated referen
e frame in a region far from any mass distributions, willobtain identi
al results when they perform similar experiments. An inertial�eld 
aused by the a

eleration of the referen
e frame, is equivalent to a �eld ofgravity 
aused by a mass distribution, as far is tidal e�e
ts 
an be ignored.1.5 The general prin
iple of relativityThe prin
iple of equivalen
e led Einstein to a generalization of the spe
ial prin
i-ple of relativity. In his general theory of relativity Einstein formulated a generalprin
iple of relativity, whi
h says that not only velo
ities are relative, but a

el-erations, too.Consider two formulations of the spe
ial prin
iple of relativity.S1 All laws of Nature are the same (may be formulated in the same way) in allinertial frames.S2 Every inertial observer 
an 
onsider himself to be at rest.These two formulations may be interpreted as di�erent formulations of asingle prin
iple. But the generalization of S1 and S2 to the general 
ase, whi
hen
ompasses a

elerated motion and non-inertial frames, leads to two di�erentprin
iples G1 and G2.G1 The laws of Nature are the same in all referen
e frames.G2 Every observer 
an 
onsider himself to he at rest.In the literature both G1 and G2 are mentioned as the general prin
iple ofrelativity. But G2 is a stronger prin
iple (i.e. stronger restri
tion on naturalphenomena) than G1. Generally the 
ourse of events of a physi
al pro
essin a 
ertain referen
e frame, depends upon the laws of physi
s, the boundary
onditions, the motion of the referen
e frame and the geometry of spa
e-time.The two latter properties are des
ribed by means of a metri
al tensor. Byformulating the physi
al laws in a metri
 independent way, one obtains that G1is valid for all types of physi
al phenomena.Even if the laws of Nature are the same in all referen
e frames, the 
ourse ofevents of a physi
al pro
ess will, as mentioned above, depend upon the motionof the referen
e frame. As to the spreading of light, for example, the law is thatlight follows null-geodesi
 
urves (see 
h. 4). This law implies that the path ofa light parti
le is 
urved in non-inertial referen
e frames and straight in inertialframes.The question whether G2 is true in the general theory of relativity has beenthoroughly dis
ussed re
ently, and the answer is not 
lear yet.



1.6 The 
ovarian
e prin
iple 111.6 The 
ovarian
e prin
ipleThe prin
iple of relativity is a physi
al prin
iple. It is 
on
erned with physi
alphenomena. This prin
iple motivates the introdu
tion of a formal prin
iple,
alled the 
ovarian
e prin
iple: The equations of a physi
al theory shall havethe same form in every 
oordinate system.This prin
iple is not 
on
erned dire
tly with physi
al phenomena. Theprin
iple may be ful�lled for every theory by writing the equations in a form-invariant i.e. 
ovariant way. This may he done by using tensor (ve
tor) quanti-ties, only, in the mathemati
al formulation of the theory.The 
ovarian
e prin
iple and the equivalen
e prin
iple may be used to obtaina des
ription of what happens in the presen
e of gravitation. We then startwith the physi
al laws as formulated in the spe
ial theory of relativity. Thenthe laws are written in a 
ovariant form, by writing them as tensor equations.They are then valid in an arbitrary, a

elerated system. But the inertial �eld(��
tive for
e�) in the a

elerated frame is equivalent to a gravitational �eld. So,starting with in a des
ription referred to an inertial frame, we have obtained ades
ription valid in the presen
e of a gravitational �eld.The tensor equations have in general a 
oordinate independent form. Yet,su
h form-invariant, or 
ovariant, equations need not ful�ll the prin
iple of rel-ativity.This is due to the following 
ir
umstan
es. A physi
al prin
iple, for examplethe prin
iple of relativity, is 
on
erned with observable relationships. Therefore,when one is going to dedu
e the observable 
onsequen
es of an equation, onehas to establish relations between the tensor-
omponents of the equation andobservable physi
al quantities. Su
h relations have to be de�ned; they are notdetermined by the 
ovarian
e prin
iple.From the tensor equations, that are 
ovariant, and the de�ned relationsbetween the tensor 
omponents and the observable physi
al quantities, one 
andedu
e equations between physi
al quantities. The spe
ial prin
iple of relativity,for example, demands that the laws whi
h these equations express must be thesame with referen
e to every inertial frameThe relationships between physi
al quantities and tensors (ve
tors) are the-ory dependent. The relative velo
ity between two bodies, for example, is ave
tor within Newtonian kinemati
s. However, in the relativisti
 kinemati
s offour-dimensional spa
e-time, an ordinary velo
ity, whi
h has only three 
om-ponents, is not a ve
tor. Ve
tors in spa
e-time, so 
alled 4-ve
tors, have four
omponents. Equations between physi
al quantities are not 
ovariant in general.For example, Maxwell's equations in three-ve
tor-form are not invariant un-der a Galilei transformation. However, if these equations are rewritten in tensor-form, then neither a Galilei transformation nor any other transformation will
hange the form of the equations.If all equations of a theory are tensor equations, the theory is said to be givena manifestly 
ovariant form. A theory that is written in a manifestly 
ovariantform, will automati
ally ful�ll the 
ovarian
e prin
iple, but it need not ful�llthe prin
iple of relativity.



12 Chapter 1. Newton's law of universal gravitation1.7 Ma
h's prin
ipleEinstein gave up Newton's idea of an absolute spa
e. A

ording to Einstein allmotion is relative. This may sound simple, but it leads to some highly non-trivialand fundamental questions.Imagine that there are only two parti
les 
onne
ted by a spring, in theuniverse. What will happen if the two parti
les rotate about ea
h other? Willthe spring be stret
hed due to 
entrifugal for
es? Newton would have 
on�rmedthat this is indeed what will happen. However, when there is no longer anyabsolute spa
e that the parti
les 
an rotate relatively to, the answer is not soobvious. If we, as observers, rotate around the parti
les, and they are at rest,we would not observe any stret
hing of the spring. But this situation is nowkinemati
ally equivalent to the one with rotating parti
les and observers at rest,whi
h leads to stret
hing.Su
h problems led Ma
h to the view that all motion is relative. The motionof a parti
le in an empty universe is not de�ned. All motion is motion relativelyto something else, i.e. relatively to other masses. A

ording to Ma
h this impliesthat inertial for
es must be due to a parti
le's a

eleration relatively to the greatmasses of the universe. If there were no su
h 
osmi
 masses, there would notexist inertial for
es, like the 
entrifugal for
e. In our example with two parti
les
onne
ted by a string, there would not be any stret
hing of the spring, if therewere no 
osmi
 masses that the parti
les 
ould rotate relatively to.Another example may be illustrated by means of a turnabout. If we stayon this, while it rotates, we feel that the 
entrifugal for
es lead us outwards.At the same time we observe that the heavenly bodies rotate. A

ording toMa
h identi
al 
entrifugal for
es should appear if the turnabout is stati
 andthe heavenly bodies rotate.Einstein was strongly in�uen
ed by Ma
h's arguments, whi
h probably hadsome in�uen
e, at least with regards to motivation, on Einstein's 
onstru
tionof his general theory of relativity. Yet, it is 
lear that general relativity does notful�ll all requirements set by Ma
h's prin
iple. For example there exist generalrelativisti
, rotating 
osmologi
al models, where free parti
les will tend to rotaterelative to the 
osmi
 masses of the model.However, some Ma
hian e�e
ts have been shown to follow from the equationsof the general theory of relativity. For example, inside a rotating, massiveshell the inertial frames, i.e. the free parti
les, are dragged on and tend torotate in the same dire
tion as the shell. This was dis
overed by Lense andThirring in 1918 and is therefore 
alled the Lense-Thirring e�e
t. More re
entinvestigations of this e�e
t have, among others, lead to the following result (Brilland Cohen 1966): �A massive shell with radius equal to its S
hwarzs
hild radiushas often been used as an idealized model of our universe. Our result showsthat in su
h models lo
al inertial frames near the 
enter 
annot rotate relativelyto the mass of the universe. In this way our result gives an explanation ina

ordan
e with Ma
h's prin
iple, of the fa
t that the ��xed stars� is at rest onheaven as observed from an inertial referen
e frame.�



Chapter 2Ve
tors, Tensors and Forms2.1 Ve
torsAn expression on the form aµ~eµ, where aµ, µ = 1, 2, ..., n are real numbers, isknown as a linear 
ombination of the ve
tors ~eµ.The ve
tors ~e1, ..., ~en are said to be linearly independent if there does notexist real numbers aµ 6= 0 su
h that aµ~eµ = 0.

Figure 2.1: Closed polygon (linearly dependent)Geometri
al interpretation: A set of ve
tors are linearly independent if itis not possible to 
onstru
t a 
losed polygon of the ve
tors (even by adjustingtheir lengths).A set of ve
tors ~e1, . . . , ~en are said to bemaximally linearly independentif ~e1, . . . , ~en, ~v are linearly dependent for all ve
tors ~v 6= ~eµ. We de�ne thedimension of a ve
tor-spa
e as the number of ve
tors in a maximally linearlyindependent set of ve
tors of the spa
e. The ve
tors ~eµ in su
h a set are known13



14 Chapter 2. Ve
tors, Tensors and Formsas the basis-ve
tors of the spa
e.
~v + aµ~eµ = 0

⇓
~v = −aµ~eµ (2.1)The 
omponents of ~v are the numbers vµ de�ned by vµ = −aµ ⇒ ~v = vµ~eµ.2.1.1 4-ve
tors4-ve
tors are ve
tors whi
h exist in (4-dimensional) spa
e-time. A 4-ve
torequation represents 4 independent 
omponent equations.

L c

cL

v ∆ t

2

v

Figure 2.2: Carriage at rest (top) and with velo
ity ~v (bottom)Example 2.1.1 (Photon 
lo
k)Carriage at rest:
∆t0 =

2L

c



2.1 Ve
tors 15Carriage with velo
ity ~v:
∆t =

2
√

(v∆t
2 )2 + L2

c
⇓

c2∆t2 = v2∆t2 + 4L2

⇓

∆t =
2L√
c2 − v2

=
2L/c√

1 − v2/c2
=

∆t0√
1 − v2/c2

(2.2)The proper time-interval is denoted by dτ (above it was denoted ∆t0). Theproper time-interval for a parti
le is measured with a standard 
lo
k whi
hfollows the parti
le.De�nition 2.1.1 (4-velo
ity)
~U = c

dt

dτ
~et +

dx

dτ
~ex +

dy

dτ
~ey +

dz

dτ
~ez, (2.3)where t is the 
oordinate time, measured with 
lo
ks at rest in the referen
e frame.

~U = Uµ~eµ =
dxµ

dτ
~eµ, xµ = (ct, x, y, z), x0 ≡ ct

dt

dτ
=

1√
1 − v2

c2

≡ γ (2.4)
~U = γ(c, ~v), where ~v is the 
ommon 3-velo
ity of the parti
le.De�nition 2.1.2 (4-momentum)

~P = m0
~U, (2.5)where m0 is the rest mass of the parti
le.

~P = (Ec , ~p), where ~p = γm0~v = m~v and E is the relativisti
 energy.The 4-for
e or Minkowski-for
e ~F ≡ d~P
dτ and the '
ommon for
e' ~f = d~p

dt .Then
~F = γ(

1

c
~f · ~v, ~f) (2.6)
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lightcone

world line of a material particle

ct

y

x

should have v > c
tachyons, if they exist,

Figure 2.3: World-lines in a Minkowski diagramDe�nition 2.1.3 (4-a

eleration)
~A =

d~U

dτ
(2.7)The 4-velo
ity has the s
alar value c so that

~U · ~U = −c2 (2.8)The 4-velo
ity identity eq. 2.8 gives ~U · ~A = 0, in other words ~A ⊥ ~U and ~A isspa
e-like.The line element for Minkowski spa
e-time (�at spa
e-time) with Cartesian
oordinates is
ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.9)In general relativity theory, gravitation is not 
onsidered a for
e. Gravitationis instead des
ribed as motion in a 
urved spa
e-time.A parti
le in free fall, is in Newtonian gravitational theory said to be onlyin�uen
ed by the gravitational for
e. A

ording to general relativity theory theparti
le is not in�uen
ed by any for
e.Su
h a parti
le has no 4-a

eleration. ~A 6= 0 implies that the parti
le is notin free fall. It is then in�uen
ed by non-gravitational for
es.One has to distinguish between observed a

eleration, ie. 
ommon 3-a

eleration,and the absolute 4-a

eleration.



2.1 Ve
tors 172.1.2 Tangent ve
tor �elds and 
oordinate ve
torsIn a 
urved spa
e position ve
tors with �nite length do not exist. (See �gure2.4).
P

N(North pole)

Figure 2.4: In 
urved spa
e,ve
tors 
an only exist in tangent planes.The ve
torsin the tangent plane of N,do not 
ontain the ve
tor −−→NP (dashed line).Di�erent points in a 
urved spa
e have di�erent tangent planes. Finite ve
-tors do only exist in these tangent planes (See �gure 2.5). However, in�nitesimalposition ve
tors d~r do exist.
P

tangent plane of point P:

Figure 2.5: In 
urved spa
e,ve
tors 
an only exist in tangent planes
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tors, Tensors and FormsDe�nition 2.1.4 (Referen
e frame)A referen
e frame is de�ned as a 
ontinuum of non-interse
ting timelike worldlines in spa
etime.We 
an view a referen
e frame as a set of referen
e parti
les with a spe
i�edmotion. An inertial referen
e frame is a non-rotating set of free parti
les.De�nition 2.1.5 (Coordinate system)A 
oordinate system is a 
ontinuum of 4-tuples giving a unique set of 
oordinatesfor events in spa
etime.De�nition 2.1.6 (Comoving 
oordinate system)A 
omoving 
oordinate system in a frame is a 
oordinate system where theparti
les in the referen
e frame have 
onstant spatial 
oordinates.De�nition 2.1.7 (Orthonormal basis)An orthonormal basis {~eµ̂} in spa
etime is de�ned by
~et̂ · ~et̂ = −1(c = 1)

~êi · ~eĵ = δ̂iĵ
(2.10)where î and ĵ are spa
e indi
es.De�nition 2.1.8 (Coordinate basis ve
tors.)Temporary de�nition of 
oordinate basis ve
tor:Assume any 
oordinate system {xµ}.

~eµ ≡ ∂~r

∂xµ
(2.11)A ve
tor �eld is a 
ontinuum of ve
tors in a spa
e, where the 
omponents are
ontinuous and di�erentiable fun
tions of the 
oordinates. Let ~v be a tangentve
tor to the 
urve ~r(λ):

~v =
d~r

dλ
where ~r = ~r[xµ(λ)] (2.12)



2.1 Ve
tors 19The 
hain rule for di�erentiation yields:
~v =

d~r

dλ
=

∂~r

∂xµ
dxµ

dλ
=
dxµ

dλ
~eµ = vµ~eµ (2.13)Thus, the 
omponents of the tangent ve
tor �eld along a 
urve, parameterisedby λ, is given by:

vµ =
dxµ

dλ
(2.14)In the theory of relativity, the invariant parameter is often 
hosen to be theproper time. Tangent ve
tor to the world line of a material parti
le:

uµ =
dxµ

dτ
(2.15)These are the 
omponents of the 4-velo
ity of the parti
le!Digression 2.1.1 (Proper time of the photon.)Minkowski-spa
e:

ds2 = −c2dt2 + dx2

= −c2dt2
(
1 − 1

c2
(dx
dt

)2)

= −
(
1 − v2

c2
)
c2dt2

(2.16)For a photon,v = c so:
lim
v→c

ds2 = 0 (2.17)Thus, the spa
etime interval between two points on the world line of a photon, iszero! This also means that the proper time for the photon is zero!! (See example2.1.2).
Digression 2.1.2 (Relationships between spa
etime intervals, time and proper time.)Physi
al interpretation of the spa
etime interval for a timelike interval:

ds2 = −c2dτ2 (2.18)where dτ is the proper time interval between two events, measured on a 
lo
kmoving in a way, su
h that it is present on both events (�gure 2.6).
−c2dτ2 = −c2

(
1 − v2

c2
)
dt2

⇒ dτ =

√
1 − v2

c2
dt (2.19)
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x

ct

d

P 1

P 2τ

Figure 2.6: P1 and P2 are two events in spa
etime, separated by a proper timeinterval dτ .The time interval between to events in the laboratory, is smaller measured on amoving 
lo
k than measured on a stationary one, be
ause the moving 
lo
k isti
king slower!2.1.3 Coordinate transformationsGiven two 
oordinate systems {xµ} and {xµ′}.
~eµ′ =

∂~r

∂xµ′
(2.20)Suppose there exists a 
oordinate transformation, su
h that the primed 
oor-dinates are fun
tions of the unprimed, and vi
e versa. Then we 
an apply the
hain rule:

~eµ′ =
∂~r

∂xµ
′

=
∂~r

∂xµ
∂xµ

∂xµ
′

= ~eµ
∂xµ

∂xµ
′

(2.21)This is the transformation equation for the basis ve
tors. ∂xµ

∂xµ′ are elementsof the transformation matrix. Indi
es that are not sum-indi
es are 
alled 'freeindi
es'.Rule: In all terms on ea
h side in an equation, the free indi
es shouldbehave identi
ally (high or low), and there should be exa
tly the sameindi
es in all terms!



2.1 Ve
tors 21Applying this rule, we 
an now �nd the inverse transformation
~eµ = ~eµ′

∂xµ
′

∂xµ

~v = vµ
′

~eµ′ = vµ~eµ = vµ
′

~eµ
∂xµ

∂xµ′So, the transformation rules for the 
omponents of a ve
tor be
omes
vµ = vµ

′ ∂xµ

∂xµ′
; vµ

′

= vµ
∂xµ

′

∂xµ
(2.22)The dire
tional derivative along a 
urve, parametrised by λ:

d

dλ
=

∂

∂xµ
dxµ

dλ
= vµ

∂

∂xµ
(2.23)where vµ = dxµ

dλ are the 
omponents of the tangent ve
tor of the 
urve. Dire
-tional derivative along a 
oordinate 
urve:
λ = xν

∂

∂xµ
∂xµ

∂xν
= δµν

∂

∂xµ
=

∂

∂xν
(2.24)In the primed system:

∂

∂xµ′
=
∂xµ

∂xµ′
∂

∂xµ
(2.25)De�nition 2.1.9 (Coordinate basis ve
tors.)We de�ne the 
oordinate basis ve
tors as:

~eµ =
∂

∂xµ
(2.26)This de�nition is not based upon the existen
e of �nite position ve
tors. It appliesin 
urved spa
es as well as in �at spa
es.Example 2.1.2 (Coordinate transformation)From Figure 2.7 we see that

x = r cos θ, y = r sin θ (2.27)
Coordinate basis ve
tors were de�ned by

~eµ ≡ ∂

∂xµ
(2.28)
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y

x

y

e

e
r

θ

e

e

y

x

r

θ

xFigure 2.7: Coordinate transformation, �at spa
e.This means that we have
~ex =

∂

∂x
, ~ey =

∂

∂y
, ~er =

∂

∂r
, ~eθ =

∂

∂θ

~er =
∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y

(2.29)Using the 
hain rule and Equations (2.27) and (2.29) we get
~er = cos θ ~ex + sin θ ~ey

~eθ =
∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y

= −r sin θ ~ex + r cos θ ~ey

(2.30)But are the ve
tors in (2.30) also unit ve
tors?
~er · ~er = cos2θ + sin2θ = 1 (2.31)So ~er is a unit ve
tor, |~er| = 1.

~eθ · ~eθ = r2(cos2θ + sin2θ) = r2 (2.32)and we see that ~eθ is not a unit ve
tor, |~eθ| = r. But we have that ~er · ~eθ = 0 ⇒
~er⊥~eθ. Coordinate basis ve
tors are not generally unit ve
tors.



2.1 Ve
tors 23De�nition 2.1.10 (Orthonormal basis)An orthonormal basis is a ve
tor basis 
onsisting of unit ve
tors that are normal toea
h other. To show that we are using an orthonormal basis we will use 'hats' overthe indi
es, {~eµ̂}.Orthonormal basis asso
iated with planar polar 
oordinates:
~er̂ = ~er , ~eθ̂ =

1

r
~eθ (2.33)Example 2.1.3 (Relativisti
 Doppler E�e
t)The Lorentz transformation is known from spe
ial relativity and relates the referen
eframes of two systems where one is moving with a 
onstant velo
ity v with regardto the other,

x′ = γ(x− vt)

t′ = γ(t− vx

c2
)A

ording to the ve
tor 
omponent transformation (2.22), the 4-momentum for aparti
le moving in the x-dire
tion, Pµ = (Ec , p, 0, 0) transforms as

Pµ
′

=
∂xµ

′

∂xµ
Pµ,

E′ = γ(E − vp).Using the fa
t that a photon has energy E = hν and momemtum p = hν
c , where

h is Plan
k's 
onstant and ν is the photon's frequen
y, we get the equation for thefrequen
y shift known as the relativisti
 Doppler e�e
t,
ν ′ = γ(ν − v

c
ν) =

(
1 − v

c

)
ν

√(
1 − v

c

) (
1 + v

c

)

ν ′

ν
=

√
c− v

c+ v
(2.34)

2.1.4 Stru
ture 
oe�
ientsDe�nition 2.1.11 (Commutators between ve
tors)The 
ommutator between two ve
tors, ~u and ~v, is de�ned as
[~u , ~v] ≡ ~u~v − ~v~u (2.35)
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tors, Tensors and Formswhere ~u~v is de�ned as
~u~v ≡ uµ ~eµ(v

ν ~eν) = uµ
∂

∂xµ
(vν

∂

∂xν
) (2.36)We 
an think of a ve
tor as a linear 
ombination of partial derivatives. We get:

~u~v = uµ
∂vν

∂xµ
∂

∂xν
+ uµvν

∂2

∂xµ∂xν

= uµ
∂vν

∂xµ
~eν + uµvν

∂2

∂xµ∂xν

(2.37)Due to the last term, ~u~v is not a ve
tor.
~v~u = vν

∂

∂xν
(uµ

∂

∂xµ
)

= vν
∂uµ

∂xν
~eµ + vνuµ

∂2

∂xν∂xµ

~u~v − ~v~u = uµ
∂vν

∂xµ
~eν − vν

∂uµ

∂xν
~eµ

︸ ︷︷ ︸
vµ ∂uν

∂xµ ~eν

= (uµ
∂vν

∂xµ
− vµ

∂uν

∂xµ
)~eν

(2.38)
Here we have used that

∂2

∂xµ∂xν
=

∂2

∂xν∂xµ
(2.39)The Einstein 
omma notation ⇒

~u~v − ~v~u = (uµvν,µ − vµuν,µ)~eν (2.40)As we 
an see, the 
ommutator between two ve
tors is itself a ve
tor.De�nition 2.1.12 (Stru
ture 
oe�
ients c
ρ

µν
)The stru
ture 
oe�
ients cρµν in an arbitrary basis { ~eµ} are de�ned by:

[ ~eµ , ~eν ] ≡ cρµν ~eρ (2.41)Stru
ture 
oe�
ients in a 
oordinate basis:
[ ~eµ , ~eν ] = [

∂

∂xµ
,
∂

∂xν
]

=
∂

∂xµ
(
∂

∂xν
) − ∂

∂xν
(
∂

∂xµ
)

=
∂2

∂xµ∂xν
− ∂2

∂xν∂xµ
= 0

(2.42)
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ommutator between two 
oordinate basis ve
tors is zero, so the stru
ture
oe�
ients are zero in 
oordinate basis.Example 2.1.4 (Stru
ture 
oe�
ients in planar polar 
oordinates)We will �nd the stru
ture 
oe�
ients of an orthonormal basis in planar polar 
oor-dinates. In (2.33) we found that
~er̂ = ~er , ~eθ̂ =

1

r
~eθ (2.43)We will now use this to �nd the stru
ture 
oe�
ients.

[~er̂ , ~eθ̂] = [
∂

∂r
,

1

r

∂

∂θ
]

=
∂

∂r
(
1

r

∂

∂θ
) − 1

r

∂

∂θ
(
∂

∂r
)

= − 1

r2
∂

∂θ
+

1

r

∂2

∂r∂θ
− 1

r

∂2

∂θ∂r

= − 1

r2
~eθ = −1

r
~eθ̂

(2.44)
To �nd the stru
ture 
oe�
ients in an orthonormal basis we must use [~er̂ , ~eθ̂] =
−1
r~eθ̂.

[~eµ̂ , ~eν̂ ] = cρ̂µ̂ν̂~eρ̂ (2.45)Using (2.44) and (2.45) we get
cθ̂
r̂θ̂

= −1

r
(2.46)From the de�nition of cρµν ([~u , ~v] = −[~v , ~u]) we see that the stru
ture 
oe�
ientsare anti symmetri
 in their lower indi
es:

cρµν = −cρνµ (2.47)
cθ̂
θ̂r̂

=
1

r
= −cθ̂

r̂θ̂
(2.48)2.2 TensorsA 1-form-basis ω1, . . ., ωn is de�ned by:

ωµ(~eν) = δµν (2.49)
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tors, Tensors and FormsAn arbitrary 1-form 
an be expressed, in terms of its 
omponents, as a linear
ombination of the basis forms:
α = αµω

µ (2.50)where αµ are the 
omponents of α in the given basis.Using eqs.(2.49) and (2.50), we �nd:
α(~eν) = αµω

µ(~eν) = αµδ
µ
ν = αν

α(~v) = α(vµ~eµ) = vµα(~eµ) = vµαµ = v1α1 + v2α2 + . . .
(2.51)We will now look at fun
tions of multiple variables.De�nition 2.2.1 (Multilinear fun
tion, tensors)A multilinear fun
tion is a fun
tion that is linear in all its arguments and maps one-forms and ve
tors into real numbers. A tensor is a multilinear fun
tion that mapsone-forms and ve
tors into real numbers.

• A 
ovariant tensor only maps ve
tors.
• A 
ontravariant tensor only maps forms.
• A mixed tensor maps both ve
tors and forms into R.A tensor of rank (NN ′

) maps N one-forms and N ′ ve
tors into R. It is usual tosay that a tensor is of rank (N +N ′). A one-form, for example, is a 
ovarianttensor of rank 1:
α(~v) = vµαµ (2.52)De�nition 2.2.2 (Tensor produ
t)The basis of a tensor R of rank q 
ontains a tensor produ
t, ⊗. If T and S aretwo tensors of rank m and n, the tensor produ
t is de�ned by:

T ⊗ S( ~u1,..., ~um, ~v1,..., ~vn) ≡ T ( ~u1,..., ~um)S(~v1,..., ~vn) (2.53)where T and S are tensors of rank m and n, respe
tively. T ⊗S is a tensor of rank
(m+ n).Let R = T ⊗ S. We then have

R = Rµ1,...,µqω
µ1 ⊗ ωµ2 ⊗ · · · ⊗ ωµq (2.54)
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e that S ⊗ T 6= T ⊗ S. We get the 
omponents of a tensor (R) by usingthe tensor on the basis ve
tors:
Rµ1,...,µq = R( ~eµ1

,..., ~eµq ) (2.55)The indi
es of the 
omponents of a 
ontravariant tensor are written as upperindi
es, and the indi
es of a 
ovariant tensor as lower indi
es.Example 2.2.1 (Example of a tensor)Let ~u and ~v be two ve
tors and α and β two 1-forms.
~u = uµ~eµ; ~v = vµ~eµ; α = αµω

µ; β = βµω
µ (2.56)From these we 
an 
onstru
t tensors of rank 2 through the relation R = ~u ⊗ ~v asfollows: The 
omponents of R are

Rµ1µ2 = R(ωµ1 , ωµ2)

= ~u⊗ ~v(ωµ1 , ωµ2)

= ~u(ωµ1)~v(ωµ2)

= uµ~eµ(ω
µ1)vν~eν(ω

µ2)

= uµδµ1
µ v

νδµ2
ν

= uµ1vµ2

(2.57)
2.2.1 Transformation of tensor 
omponentsWe shall not limit our dis
ussion to 
oordinate transformations. Instead, wewill 
onsider arbitrary transformations between bases, {~eµ} −→

{
~eµ′
}. Theelements of transformation matri
es are denoted by Mµ

µ′ su
h that
~eµ′ = ~eµM

µ
µ′ and ~eµ = ~eµ′M

µ′
µ (2.58)where Mµ′

µ are elements of the inverse transformation matrix. Thus, it followsthat
Mµ

µ′M
µ′

ν = δµν (2.59)If the transformation is a 
oordinate transformation, the elements of the matrixbe
ome
Mµ′

µ =
∂xµ

′

∂xµ
(2.60)
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tors, Tensors and Forms2.2.2 Transformation of basis 1-forms
ωµ

′

= Mµ′
µω

µ

ωµ = Mµ
µ′ω

µ′
(2.61)The 
omponents of a tensor of higher rank transform su
h that every 
on-travariant index (upper) transforms as a basis 1-form and every 
ovariant index(lower) as a basis ve
tor. Also, all elements of the transformation matrix aremultiplied with one another.Example 2.2.2 (A mixed tensor of rank 3)

Tα
′

µ′ν′ = Mα′

αM
µ
µ′M

ν
ν′T

α
µν (2.62)The 
omponents in the primed basis are linear 
ombinations of the 
omponentsin the unprimed basis.Tensor transformation of 
omponents means that tensors have a basis in-dependent existen
e. That is, if a tensor has non-vanishing 
omponents in agiven basis then it has non-vanishing 
omponents in all bases. This meansthat tensor equations have a basis independent form. Tensor equations areinvariant. A basis transformation might result in the vanishing of one or moretensor 
omponents. Equations in 
omponent form may di�er from one basis toanother. But an equation expressed in tensor 
omponents 
an be transformedfrom one basis to another using the tensor 
omponent transformation rules. Anequation that is expressed only in terms of tensor 
omponents is said to be
ovariant.2.2.3 The metri
 tensorDe�nition 2.2.3 (The metri
 tensor)The s
alar produ
t of two ve
tors ~u and ~v is denoted by g(~u,~v) and is de�ned asa symmetri
 linear mapping whi
h for ea
h pair of ve
tors gives a s
alar g(~v,~u) =g(~u,~v).The value of the s
alar produ
t g(~u,~v) is given by spe
ifying the s
alarprodu
ts of ea
h pair of basis-ve
tors in a basis.g is a symmetri
 
ovariant tensor of rank 2. This tensor is known as the
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 tensor. The 
omponents of this tensor are
g(~eµ, ~eν) = g µν (2.63)

~u · ~v = g(~u,~v) = g(uµ~eµ, v
ν~eν) = uµvνg(~eµ, ~eν) = uµuνg µν (2.64)Usual notation:

~u · ~v = g µνu
µvν (2.65)The absolute value of a ve
tor:

|~v| =
√
g(~v,~v) =

√
|g µνvµvν | (2.66)Example 2.2.3 (Cartesian 
oordinates in a plane)

~ex · ~ex = 1, ~ey · ~ey = 1, ~ex · ~ey = ~ey · ~ex = 0

g xx = g yy = 1, g xy = g yx = 0 (2.67)
g µν =

(
1 0
0 1

)

Example 2.2.4 (Basis-ve
tors in plane polar-
oordinates)
~er · ~er = 1, ~eθ · ~eθ = r2, ~er · ~eθ = 0, (2.68)The metri
 tensor in plane polar-
oordinates:

g µν =

(
1 0
0 r2

) (2.69)Example 2.2.5 (Non-diagonal basis-ve
tors)
~e1 · ~e1 = 1, ~e2 · ~e2 = 1, ~e1 · ~e2 = cos θ = ~e2 · ~e1

g µν =

(
1 cos θ

cos θ 1

)
=

(
g 11 g 12

g 21 g 22

) (2.70)
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e 1

2e

ΘFigure 2.8: Basis-ve
tors ~e1 and ~e2De�nition 2.2.4 (Contravariant 
omponents)The 
ontravariant 
omponents gµα of the metri
 tensor are de�ned as:
gµαg αν ≡ δµν gµν = ~wµ · ~wν , (2.71)where ~wµ is de�ned by

~wµ · ~wν ≡ δµν . (2.72)
gµν is the inverse matrix of g µν .It is possible to de�ne a mapping between tensors of di�erent type (eg.
ovariant on 
ontravariant) using the metri
 tensor.We 
an for instan
e map a ve
tor on a 1-form:

vµ = g(~v,~eµ) = g(vα~eα, ~eµ) = vαg(~eα, ~eµ) = vαg αµ (2.73)This is known as lowering of an index. Raising of an index be
omes :
vµ = gµαvα (2.74)The mixed 
omponents of the metri
 tensor be
omes:

gµν = gµαg αν = δµν (2.75)We now de�ne distan
e along a 
urve. Let the 
urve be parameterized by λ(proper-time τ for time-like 
urves). Let ~v be the tangent ve
tor-�eld of the
urve.The squared distan
e ds2 between the points along the 
urve is de�ned as:
ds2 ≡ g(~v,~v)dλ2 (2.76)gives
ds2 = g µνv

µvνdλ2. (2.77)The tangent ve
tor has 
omponents vµ = dxµ

dλ , whi
h gives:
ds2 = g µνdx

µdxν (2.78)The expression ds2 is known as the line-element.
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x = constant

x = constant

1
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A

A ω2
2

A e

e

2
2

2

ω 2

A2

1A e1 1e

1A

A ω1
1 ω 1Figure 2.9: The 
ovariant- and 
ontravariant 
omponents of a ve
torExample 2.2.6 (Cartesian 
oordinates in a plane)

g xx = g yy = 1, gxy = gyx = 0

ds2 = dx2 + dy2
(2.79)

Example 2.2.7 (Plane polar 
oordinates)
g rr = 1, g θθ = r2

ds2 = dr2 + r2dθ2
(2.80)

Cartesian 
oordinates in the (�at) Minkowski spa
e-time :
ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.81)In an arbitrary 
urved spa
e, an orthonormal basis 
an be adopted in anypoint. If ~et̂ is tangent ve
tor to the world line of an observer, then ~et̂ = ~u
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tors, Tensors and Formswhere ~u is the 4-velo
ity of the observer. In this 
ase, we are using what we 
allthe 
omoving orthonormal basis of the observer. In a su
h basis, we have theMinkowski-metri
:
ds2 = ηµ̂ν̂dx

µ̂dxν̂ (2.82)2.3 FormsAn antisymmetri
 tensor is a tensor whose sign 
hanges under an arbitraryex
hange of two arguments.
A(· · · , ~u, · · · , ~v, · · · ) = −A(· · · , ~v, · · · , ~u, · · · ) (2.83)The 
omponents of an antisymmetri
 tensor 
hange sign under ex
hange oftwo indi
es.

A···µ···ν··· = −A···ν···µ··· (2.84)De�nition 2.3.1 (p-form)A p-form is de�ned to be an antisymmetri
, 
ovariant tensor of rank p.An antisymmetri
 tensor produ
t ∧ is de�ned by:
ω[µ1 ⊗ · · · ⊗ ωµp] ∧ ω[ν1 ⊗ · · · ⊗ ωνq] ≡ (p+ q)!

p!q!
ω[µ1 ⊗ · · · ⊗ ωνq] (2.85)where [ ℄ denotes antisymmetri
 
ombinations de�ned by:

ω[µ1 ⊗ · · · ⊗ ωµp] ≡ 1

p!
· (the sum of terms withall possible permutationsof indi
es with, �+� for evenand �-� for odd permutations) (2.86)

Example 2.3.1 (antisymmetri
 
ombinations)
ω[µ1 ⊗ ωµ2] =

1

2
(ωµ1 ⊗ ωµ2 − ωµ2 ⊗ ωµ1) (2.87)
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ombinations)
ω[µ1 ⊗ ωµ2 ⊗ ωµ3] =

1

3!
(ωµ1 ⊗ ωµ2 ⊗ ωµ3 + ωµ3 ⊗ ωµ1 ⊗ ωµ2 + ωµ2 ⊗ ωµ3 ⊗ ωµ1

− ωµ2 ⊗ ωµ1 ⊗ ωµ3 − ωµ3 ⊗ ωµ2 ⊗ ωµ1 − ωµ1 ⊗ ωµ3 ⊗ ωµ2)

=
1

3!
ǫijk(ω

µi ⊗ ωµj ⊗ ωµk) (2.88)Example 2.3.3 (A 2-form in 3-spa
e)
α = α12ω

1⊗ω2+α21ω
2⊗ω1+α13ω

1⊗ω3+α31ω
3⊗ω1+α23ω

2⊗ω3+α32ω
3⊗ω2(2.89)Now the antisymmetry of α means that

+α21 = −α12; +α31 = −α13; +α32 = −α23 (2.90)
α =α12(ω

1 ⊗ ω2 − ω2 ⊗ ω1)

+ α13(ω
1 ⊗ ω3 − ω3 ⊗ ω1)

+ α23(ω
2 ⊗ ω3 − ω3 ⊗ ω2)

= α|µν|2ω
[µ ⊗ ων]

(2.91)where |µν| means summation only for µ < ν (see (Misner, Thorne and Wheeler1973)). We now use the de�nition of ∧ with p = q = 1. This gives
α = α|µν|ω

µ ∧ ων

ωµ
∧ ων is theform basis.We 
an also write

α =
1

2
αµνω

µ ∧ ων

A tensor of rank 2 
an always be split up into a symmetri
 and an anti-symmetri
 part. (Note that tensors of higher rank 
an not be split up in thisway.)
Tµν =

1

2
(Tµν − Tνµ) +

1

2
(Tµν + Tνµ)

= Aµν + Sµν

(2.92)
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tors, Tensors and FormsWe thus have:
SµνA

µν =
1

4
(Tµν + Tνµ)(T

µν − T νµ)

=
1

4
(TµνT

µν − TµνT
νµ + TνµT

µν − TνµT
νµ)

= 0

(2.93)In general, summation over indi
es of a symmetri
 and an antisymmetri
 quan-tity vanishes. In a summation TµνAµν where Aµν is antisymmetri
 and Tµν hasno symmetry, only the antisymmetri
 part of Tµν 
ontributes. So that, in
α =

1

2
αµνω

µ ∧ ων (2.94)only the antisymmetri
 elements ανµ = −αµν , 
ontribute to the summation.These antisymmetri
 elements are the form 
omponentsForms are antisymmetri
 
ovariant tensors. Be
ause of this antisymmetrya form with two identi
al 
omponents must be a null form (= zero). e.g.
α131 = −α131 ⇒ α131 = 0In an n-dimensional spa
e all p-forms with p > n are null forms.



Chapter 3A

elerated Referen
e Frames3.1 Rotating referen
e frames3.1.1 The spatial metri
 tensorLet ~e0̂ be the 4-velo
ity �eld (x0 = ct, c = 1, x0 = t) of the referen
e parti
lesin a referen
e frame R. We are going to �nd the metri
 tensor γij in a tangentspa
e orthogonal to ~e0̂, expressed by the metri
 tensor gµν of spa
etime.In an arbitrary 
oordinate basis {~eµ}, {~ei} is not ne
essarily orthogonal to
~e0. We 
hoose ~e0‖~e0̂. Let ~e⊥i be the 
omponent of ~ei orthogonal to ~e0, thatis:~e⊥i · ~e0 = 0. The metri
 tensor of spa
e is de�ned by:

γij = ~e⊥i · ~e⊥j , γi0 = 0, γ00 = 0

~e⊥i = ~ei − ~e‖i

~e‖i =
~ei · ~e0
~e0 · ~e0

~e0 =
gi0
g00

~e0

γij = (~ei − ~e‖i) · (~ej − ~e‖j)

= (~ei −
gi0
g00

~e0) · (~ej −
gj0
g00

~e0)

= ~ei · ~ej −
gj0
g00

~e0 · ~ei −
gi0
g00

~e0 · ~ej +
gi0gj0
g2
00

~e0 · ~e0

= gij −
gi0gj0
g00

− gi0gj0
g00

+
gi0gj0
g00

⇒ γij = gij −
gi0gj0
g00

(3.1)(Note:gij = gji ⇒ γij = γji)The line element in spa
e:
dl2 = γijdx

idxj =
(
gij −

gi0gj0
g00

)
dxidxj (3.2)gives the distan
e between simultaneous events in a referen
e frame where themetri
 tensor of spa
etime in a 
omoving 
oordinate system is gµν .35



36 Chapter 3. A

elerated Referen
e FramesThe line element for spa
etime 
an be expressed as:
ds2 = −dt̂2 + dl2 (3.3)It follows that dt̂ = 0 represents the simultaneity de�ning the spatial line ele-ment. The temporal part of the spa
etime line element may be expressed as

dt̂2 = dl2 − ds2 = (γµν − gµν)dx
µdxν

= (γij − gij)dx
idxj + 2(γi0 − gi0)dx

idx0 + (γ00 − g00)dx
0dx0

= (gij −
gi0gj0
g00

− gij)dx
idxj − 2gi0dx

idx0 − g00(dx
0)2

= −g00
[
(dx0)2 + 2

gi0
g00

dx0dxi +
gi0gj0
g2
00

dxidxj
]

=

[
(−g00)1/2(dx0 +

gi0
g00

dxi)

]2So �nally we get
dt̂ = (−g00)1/2(dx0 +

gi0
g00

dxi) (3.4)The 3-spa
e orthogonal to the world lines of the referen
e parti
les in R, dt̂ =
0, 
orresponds to a 
oordinate time interval dt = − gi0

g00
dxi. This is not anexa
t di�erential, that is, dt is not integrable, whi
h means that one 
annot ingeneral de�ne a 3-spa
e orthogonal to the world lines of the world lines of thereferen
e parti
les, i.e. a �simultaneity spa
e�, in an arbitrary referen
e frame.We must also 
on
lude that unless gi0/g00 is 
onstant, it is not possible toEinstein syn
hronize 
lo
ks around 
losed 
urves.In parti
ular, it is not possible to Einstein-syn
hronize 
lo
ks around a 
losed
urve in a rotating referen
e frame. If this is attempted, 
ontradi
tory bound-ary 
onditions in the non-rotating lab frame will arise, due to the relativity ofsimultaneity. (See �gure 3.1)The distan
e in the laboratory frame between two points is:

∆x =
2πr

n
(3.5)Lorentz transformation from the instantaneous rest frame (x′, t′) to the labo-ratory system (x, t):

∆t = γ(∆t′ +
v

c2
∆x′), γ =

1√
1 − r2ω2

c2

∆x = γ(∆x′ + v∆t′)

(3.6)Sin
e we for simultaneous events in the rotating referen
e frame have ∆t′ = 0,and proper distan
e ∆x′ = γ∆x, we get in the laboratory frame
∆t = γ2 rω

c2
∆x = γ2 rω

c2
2πr

n
(3.7)
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r

t & t+n ∆ t

t+2∆ t

t+∆ t

t+(n-1) ∆ t

S

S

S

S
3

n-1

n

1

2

2

n

ω

(discontinuity)

n-1Figure 3.1: Events simultanous in the rotating referen
e frame. 1 
omes before2, before 3, et
. . . Note the dis
ontinuity at t.

0L v = rω

Figure 3.2: The distan
e between two points on the 
ir
umferen
e is L0.
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e Frames
T = t = constant

T = t = constant

θ = constant

t̂ = constant

Figure 3.3: Dis
ontinuity in simultaneity.The fa
t that ∆t′ = 0 and ∆t 6= 0 is an expression of the relativity of simul-taneity. Around the 
ir
umferen
e this is a

umulated to
n∆t = γ2 2πr2ω

c2
(3.8)and we get a dis
ontinuity in simultaneity, as shown in �gure 3.3. Let IF be aninertial frame with 
ylinder 
oordinates (T, R, Θ, Z). The line element is thengiven by

ds2 = −dT 2 + dR2 +R2dΘ2 + dZ2 (c = 1) (3.9)In a rotating referen
e frame, RF, we have 
ylinder 
oordinates (t, r, θ, z). Wethen have the following 
oordinate transformation :
t = T, r = R, θ = Θ − ωT, z = Z (3.10)The line element in the 
o-moving 
oordinate system in RF is then

ds2 = −dt2 + dr2 + r2(dθ + ωdt)2 + dz2

= −(1 − r2ω2)dt2 + dr2 + r2dθ2 + dz2 + 2r2ωdθdt (c = 1)
(3.11)The metri
 tensor have the following 
omponents:

gtt = −(1 − r2ω2), grr = 1, gθθ = r2, gzz = 1

gθt = gtθ = r2ω
(3.12)
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dt = 0 gives

ds2 = dr2 + r2dθ2 + dz2 (3.13)This represents the Eu
lidean geometry of the 3-spa
e (simultaneity spa
e, t =
T ) in IF.As applied to the rotating system the spatial line element takes the form

dl2 = (gij −
gi0gj0
g00

)dxidxj

γrr = grr = 1, γzz = gzz = 1,

γθθ = gθθ −
g2
θ0

g00

= r2 − (r2ω)2

−(1 − r2ω2)
=

r2

1 − r2ω2

⇒ dl2 = dr2 +
r2dθ2

1 − r2ω2
+ dz2 (3.14)It des
ribes the geometry of a lo
al 3-spa
e orthogonal to the world line of a ref-eren
e parti
le in RF. This 3-spa
e 
annot be extended to a �nite 3-dimensionalspa
e in RF sin
e Einstein syn
hronization is not integrable in RF. From theline element (3.14) it is seen that the geometry of this lo
al simultaneity spa
ein RF in non-Eu
lidean. The 
ir
umferen
e of a 
ir
le with radius r is

lθ =
2πr√

1 − r2ω2
> 2πr (3.15)We see that the quotient between 
ir
umferen
e and radius > 2π whi
h meansthat the spatial geometry is hyperboli
. (For spheri
al geometry we have lθ <

2πr.)3.1.2 Angular a

eleration in the rotating frameWe will now investigate what happens when we give RF an angular a

eleration.Then we 
onsider a rotating 
ir
le made of standard measuring rods, as shownin Figure 3.4. All points on a 
ir
le are a

elerated simultaneously in IF (thelaboratory system). We let the angular velo
ity in
rease from ω to ω + dω,measured in IF. Lorentz transformation to an instantaneous rest frame for apoint on the 
ir
umferen
e then gives an in
rease in velo
ity in this system:
rdω′ =

rdω

1 − r2ω2
, (3.16)where we have used that the initial velo
ity in this frame is zero.The time di�eren
e for the a

elerations of the front and ba
k ends of thepoints on the periphery of the rotating dis
 (the front end is a

elerated �rst)in the instantaneous rest frame is:

∆t′ =
rωL0√
1 − r2ω2

(3.17)
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"nail"

Standard measuring rodFigure 3.4: A non-rotating dis
 with measring rods. The standard measuringrods are fastened with nails in one end. We will see what then happens whenwe have an angular a

eleration.where L0 is the distan
e between points on the 
ir
umferen
e when at rest (= thelength of the rods when at rest), L0 = 2πr
n . In IF all points on the 
ir
umferen
eare a

elerated simultaneously. In RF, however, this is not the 
ase. Here thedistan
e between points on the 
ir
umferen
e will in
rease, see Figure 3.5. Therest distan
e in
reases by

dL′ = rdω′∆t′ =
r2ωL0dω

(1 − r2ω2)3/2
. (3.18)(It may be noted that ea
h point on an arbitrary measuring rod is a

eleratedsimultaneously in the rest frame of the rod to preserve its rest length. In thelaboratory frame the rear point of the rod is a

elerated �rst, giving the rod aLorentz 
ontra
tion.)The in
rease of the distan
e during the a

eleration (in an instantaneous

∆ t’ t’
dv’

t’+ Figure 3.5: In RF two points on the 
ir
umferen
e are a

elerated at di�erenttimes. Thus the distan
e between them is in
reased.



3.1 Rotating referen
e frames 41rest frame) is
L′ = r2L0

∫ ω

0

ωdω

(1 − r2ω2)3/2
= (

1√
1 − r2ω2

− 1)L0. (3.19)Hen
e, after the a

eleration there is a proper distan
e L′ between the rods. Inthe laboratory system (IF) the distan
e between the rods is
L =

√
1 − r2ω2L′ =

√
1 − r2ω2(

1√
1 − r2ω2

− 1)L0 = L0 − L0

√
1 − r2ω2,(3.20)where L0 is the rest length of the rods and L0

√
1 − r2ω2 is their Lorentz 
on-tra
ted length. We now have the situation shown in Figure 3.6.

Lorenz contracted
Standard measuring rod,Figure 3.6: The standard measuring rods have been Lorentz 
ontra
ted.Thus, there is room for more standard rods around the periphery the fasterthe disk rotates. This means that as measured with measuring rods at restin the rotating frame the measured length of the periphery (number of stan-dard rods) gets larger with in
reasing angular velo
ity. This is how an inertialobserver would explain the measuring result of the rotating observer. The rotat-ing observer, however, that the dis
 material has been stre
hed in the tangentialdire
tion. Note that as measured by the inertial observer the length of the pe-riphery is 2πr independently of the angular velo
ity of the dis
, sin
e the inertialobserver uses measuring rods at rest in the non-rotating referen
e frame. TheLorentz 
ontra
tion of tangential lengths on the dis
 just 
ompensates for thestre
hing of the dis
 (in
rease of the length), making the length of the peripheryindependent of the rotating velo
ity.
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e Frames3.1.3 Gravitational time dilation
ds2 = −(1 − r2ω2

c2
)c2dt2 + dr2 + r2dθ2 + dz2 + 2r2ωdθdt (3.21)We now look at standard 
lo
ks with 
onstant r and z.

ds2 = c2dt2[−(1 − r2ω2

c2
) +

r2

c2
(
dθ

dt
)2 + 2

r2ω

c2
dθ

dt
] (3.22)Let dθ

dt ≡ θ̇ be the angular velo
ity of the 
lo
k in RF. The proper time intervalmeasured by the 
lo
k is then
ds2 = −c2dτ2 (3.23)From this we see that

dτ = dt

√

1 − r2ω2

c2
− r2θ̇2

c2
− 2

r2ωθ̇

c2
(3.24)A non-moving standard 
lo
k in RF: θ̇ = 0 ⇒

dτ = dt

√
1 − r2ω2

c2
(3.25)Seen from IF, the non-rotating laboratory system, (3.25) represents the velo
itydependent time dilation from the spe
ial theory of relativity.But how is (3.25) interpreted in RF? The 
lo
k does not move relative toan observer in this system, hen
e what happens 
an not bee interpreted as avelo
ity dependent phenomenon. A

ording to Einstein, the fa
t that standard
lo
ks slow down the farther away from the axis of rotation they are, is due toa gravitational e�e
t.We will now �nd the gravitational potential at a distan
e r from the axis.The sentripetal a

eleration is v2/r, v = rω so:

Φ = −
∫ r

0
g(r)dr = −

∫ r

0
rω2dr = −1

2
r2ω2We then get:

dτ = dt

√
1 − r2ω2

c2
= dt

√
1 +

2Φ

c2
(3.26)In RF the position dependent time dilation is interpreted as a gravitationaltime dilation: Time �ows slower further down in a gravitational �eld.



3.1 Rotating referen
e frames 433.1.4 Path of photons emitted from axes in the rotating refer-en
e frame (RF)We start with des
ription in the inertial frame (IF). In IF photon paths areradial. Consider a photon path with Θ = 0, R = T with light sour
e at R = 0.Transforming to RF:
t = T, r = R, θ = Θ − ωT

⇒ r = t, θ = −ωt
(3.27)The orbit equation is thus θ = −ωr whi
h is the equation for an Ar
himedeanspiral. The time used by a photon out to distan
e r from axis is t = r

c .3.1.5 The Sagna
 e�e
tIF des
ription:Here the velo
ity of light is isotropi
, but the emitter/re
eiver moves due to thedis
's rotation as shown in Figure 3.7. Photons are emitted/re
eived in/fromopposite dire
tions. Let t1 be the travel time of photons whi
h move with therotation.
+r

ω

XEmitter/Re
eiver

Figure 3.7: The Sagna
 e�e
t demonstrates the anisotropy of the speed of lightwhen measured in a rotating referen
e frame.Then
⇒ 2πr + rωt1 = ct1

⇒ t1 =
2πr

c− rω

(3.28)Let t2 be the travel time for photons moving against the rotation of the dis
.The di�eren
e in travel time is A is the areaen
losed by thephoton path ororbit.
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∆t = t1 − t2 = 2πr

(
1

c− rω
− 1

c+ rω

)

=
2πr2rω

c2 − r2ω2

= γ2 4Aω

c2

(3.29)
RF des
ription:

ds2
= 0 along theworld line of aphoton ds2 = −

(
1 − r2ω2

c2

)
c2dt2 + r2dθ2 + 2r2ωdθdtlet θ̇ =

dθ

dt

r2θ̇2 + 2r2ωθ̇ − (c2 − r2ω2) = 0

θ̇ =
−r2ω ±

√
(r4ω2 + r2c2 − r4ω2)

r2

θ̇ = −ω ± rc

r2

= −ω ± c

r

(3.30)The speed of light: v± = rθ̇ = −rω ± c. We see that in the rotating frame RF,the measured (
oordinate) velo
ity of light is NOT isotropi
. The di�eren
e inthe travel time of the two beams is
∆t =

2πr

c− rω
− 2πr

c+ rω

= γ2 4Aω

c2

(3.31)The 
oordinate 
lo
ks are not Einstein syn
hronized in RF, but they representa globally well de�ned time. As measured with lo
ally Einstein syn
hronized
lo
ks the velo
ity of light is isotropi
. But as shown, it is not possible toEinstein syn
hronize 
lo
ks around a 
losed 
urve in RF. (See Phil. Mag. series6, vol. 8 (1904) for Mi
helson's arti
le)3.2 Hyperboli
ally a

elerated referen
e framesConsider a parti
le moving along a straight line with velo
ity u and a

eleration
a = du

dT . Rest a

eleration is â.
⇒ a =

(
1 − u2/c2

)3/2
â. (3.32)Assume that the parti
le has 
onstant rest a

eleration â = g. That is

du

dT
=
(
1 − u2/c2

)3/2
g. (3.33)



3.2 Hyperboli
ally a

elerated referen
e frames 45Whi
h on integration with u(0) = 0 gives
u =

gT
(
1 + g2T 2

c2

)1/2
=
dX

dT

⇒ X =
c2

g

(
1 +

g2T 2

c2

)1/2

+ k

⇒ c4

g2
= (X − k)2 − c2T 2 (3.34)In its �nal form the above equation des
ribes a hyperbola in the Minkowskidiagram as shown in �gure(3.8).
T

X
Figure 3.8: Hyperboli
ally a

elerated referen
e frames are so 
alled be
ausethe lo
i of parti
le traje
tories in spa
e-time are hyperbolae.The proper time interval as measured by a 
lo
k whi
h follows the parti
le:

dτ =

(
1 − u2

c2

)1/2

dT (3.35)Substitution for u(T ) and integration with τ(0) = 0 gives
τ =

c

g
ar
sinh(gT

c

)or T =
c

g
sinh

(gτ
c

)and X =
c2

g
cosh

(gτ
c

)
+ k

(3.36)We now use this parti
le as the origin of spa
e in an hyperboli
ally a

eleratedreferen
e frame.
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e FramesDe�nition 3.2.1 (Born-sti� motion)Born-sti� motion of a system is motion su
h that every element of the system has
onstant rest length. We demand that our a

elerated referen
e frame is Born-sti�.Let the inertial frame have 
oordinates (T,X, Y, Z) and the a

eleratedframe have 
oordinates (t, x, y, z). We now denote the X-
oordinate of the�origin parti
le� by X0.
1 +

gX0

c2
= cosh

gτ0
c

(3.37)where τ0 is the proper time for this parti
le and k is set to −c2
g . (These areMøller 
oordinates. Setting k = 0 gives Rindler 
oordinates).Let us denote the a

elerated frame by Σ. The 
oordinate time at an ar-bitrary point in Σ is de�ned by t = τ0. That is 
oordinate 
lo
ks in Σ runidenti
ally with the standard 
lo
k at the �origin parti
le�. Let ~X0 be the posi-tion 4-ve
tor of the �origin parti
le�. De
omposed in the laboratory frame, thisbe
omes

~X0 =

{
c2

g
sinh

gt

c
,
c2

g

(
cosh

gt

c
− 1

)
, 0, 0

} (3.38)
P is 
hosen su
h that P and P0 are simultaneous in the a

elerated frame Σ. Thedistan
e (see �gure(3.9)) ve
tor from P0 to P , de
omposed into an orthonormal
omoving basis of the �origin parti
le� is X̂ = (0, x̂, ŷ, ẑ) where x̂, ŷ and ẑ arephysi
al distan
es measured simultaneously in Σ. The spa
e 
oordinates in Σare de�ned by

x ≡ x̂, y ≡ ŷ, z ≡ ẑ. (3.39)The position ve
tor of P is ~X = ~X0+ ~̂X. The relationship between basis ve
torsin IF and the 
omoving orthonormal basis is given by a Lorentz transformationin the x-dire
tion.
~eµ̂ = ~eµ

∂xµ

∂xµ̂

= (~eT , ~eX , ~eY , ~eZ , )





cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1




(3.40)where θ is the rapidity de�ned by

tanh θ ≡ U0

c
(3.41)

U0 being the velo
ity of the �origin parti
le�.
U0 =

dX0

dT0
= c tanh

gt

c

∴ θ =
gt

c

(3.42)
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T

X
~X0

P0

~et̂

P

~eX̂

~̂X

~X

Figure 3.9: Simultaneity in hyperboli
ally a

elerated referen
e frames. Theve
tor ~̂X lies along the �simultaneity line� whi
h makes the same angle with theX-axis as does ~et̂ with the 
T-axis. (Corre
tion: The ve
tor ~e bX in the �gureshould be 
hanged to ~ebx.)So the basis ve
tors 
an be written as follows
~et̂ = ~eT cosh

gt

c
+ ~eX sinh

gt

c

~ex̂ = ~eT sinh
gt

c
+ ~eX cosh

gt

c
~eŷ = ~eY

~eẑ = ~eZ

(3.43)
The equation ~X = ~X0 + ~̂X 
an now be de
omposed in IF:
cT~eT +X~eX + Y ~eY + Z~eZ =

c

g
sinh

gt

c
~eT +

c2

g

(
cosh

gt

c
− 1

)
~eX +

x

c
sinh

gt

c
~eT + x cosh

gt

c
~eX + y~eY + z~eZ(3.44)
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elerated Referen
e FramesThis then, gives the 
oordinate transformations
T =

c

g
sinh

gt

c
+
x

c
sinh

gt

c

X =
c2

g

(
cosh

gt

c
− 1

)
+ x cosh

gt

c

Y = y

Z = z

⇒ gT

c
=
(
1 +

gx

c2

)
sinh

gt

c

1 +
gX

c2
=
(
1 +

gx

c2

)
cosh

gt

cNow dividing the last two of the above equations we get
gT

c
=

(
1 +

gX

c2

)
tanh

gt

c
(3.45)showing that the 
oordinate 
urves t = 
onstant are straight lines in the T,X-frame passing through the point T = 0, X = − c2

g . Using the identity cosh2 θ −
sinh2 θ = 1 we get

(
1 +

gX

c2

)2

−
(
gT

c

)2

=
(
1 +

gx

c2

)2 (3.46)showing that the 
oordinate 
urves x = 
onstant are hypebolae in the T,X-diagram.The line element (the metri
) gives :ds2 is aninvariantquantity ds2 = −c2dT 2 + dX2 + dY 2 + dZ2

= −(1 +
gx

c2
)2c2dt2 + dx2 + dy2 + dz2 (3.47)Note: When the metri
 is diagonal the unit ve
tors are orthogonal.Clo
ks at rest in the a

elerated system:

dx = dy = dz = 0, ds2 = −c2dτ2

⇓

−c2dτ2 = −(1 +
gx

c2
)2c2dt2

⇓

dτ = (1 +
gx

c2
)dt (3.48)Here dτ is the proper time and dt the 
oordinate time.An observer in the a

elerated system Σ experien
es a gravitational �eld inthe negative x-dire
tion. When x < 0 then dτ < dt. The 
oordinate 
lo
ks
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X
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light t=constant
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g
-c 2

horizon

Figure 3.10: The hyperboli
ally a

elerated referen
e systemti
k equally fast independently of their position. This implies that time passesslower further down in a gravitational �eld.Consider a standard 
lo
k moving in the x-dire
tion with velo
ity v = dx/dt.Then
−c2dτ2 = −

(
1 +

gx

c2

)2
c2dt2 + dx2

= −
[(

1 +
gx

c2

)2
− v2

c2

]
c2dt2 (3.49)Hen
e

dτ =

√(
1 +

gx

c2

)2
− v2

c2
dt (3.50)This expresses the 
ombined e�e
t of the gravitational- and the kinemati
 timedilation.



Chapter 4Covariant Di�erentiation4.1 Di�erentiation of formsWe must have a method of di�erentiation that maintains the anti symmetry,thus making sure that what we end up with after di�erentiation is still a form.4.1.1 Exterior di�erentiationThe exterior derivative of a 0-form, i.e. a s
alar fun
tion, f , is given by:
df =

∂f

∂xµ
ωµ = f,µω

µ (4.1)where ωµ are 
oordinate basis forms:
ωµ(

∂

∂xν
) = δµν (4.2)We then (in general) get:

ωµ = δµνω
ν =

∂xµ

∂xν
ων = dxµ (4.3)In 
oordinate basis we 
an always write the basis forms as exterior derivativesof the 
oordinates. The di�erential dxµ is given by

dxµ(d~r) = dxµ (4.4)where d~r is an in�nitesimal position ve
tor. dxµ are not in�nitesimal quantities.In 
oordinate basis the exterior derivative of a p-form
α =

1

p!
αµ1···µpdx

µ1 ∧ · · · ∧ dxµp (4.5)will have the following 
omponent form:
d α =

1

p!
αµ1···µp,µ0

dxµ0 ∧ dxµ1 ∧ · · · ∧ dxµp (4.6)50



4.1 Di�erentiation of forms 51where , µ0 ≡ ∂
∂xµ0

. The exterior derivative of a p-form is a (p+ 1)-form.Consider the exterior derivative of a p-form α.
dα =

1

p!
αµ1···µp,µ0

dxµ0 ∧ · · · ∧ dxµp . (4.7)Let (dα)µ0···µp be the form 
omponents of dα. They must, by de�nition, beantisymmetri
 under an arbitrary inter
hange of indi
es.
dα =

1

(p+ 1)!
(dα)µ0···µpdx

µ0 ∧ · · · ∧ dxµpwhi
h, by (4.7) ⇒ =
1

p!
α[αµ1···µp,µ0

]dx
µ0 ∧ · · · ∧ dxµp

∴ (dα)µ0···µp = (p + 1)α[µ1···µp,µ0] (4.8)The form equation dα = 0 in 
omponent form is
α[µ1···µp,µ0] = 0 (4.9)Example 4.1.1 (Outer produ
t of 1-forms in 3-spa
e)

α = αidx
i xi = (x, y, z)

dα = αi,jdx
j ∧ dxi

(4.10)Also, assume that dα = 0. The 
orresponding 
omponent equation is
α[i,j] = 0 ⇒ αi,j − αj,i = 0

⇒ ∂αx
∂y

− ∂αy
∂x

= 0,
∂αx
∂z

− ∂αz
∂x

= 0,
∂αy
∂z

− ∂αz
∂y

= 0
(4.11)whi
h 
orresponds to

∇×~α = 0 (4.12)The outer produ
t of an outer produ
t!
d2α ≡ d(dα)

d2α =
1

p!
αµ1···µp,ν1ν2dx

ν2 ∧ dxν1 ∧ · · · ∧ dxµp
(4.13)

,ν1ν2 ≡ ∂2

∂xν1∂xν2
(4.14)
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e
,ν1ν2 ≡ ∂2

∂xν1∂xν2
=,ν2ν1≡

∂2

∂xν2∂xν1
(4.15)summation over ν1 and ν2 whi
h are symmetri
 in αµ1···µp,ν1ν2 and antisymmetri
in the basis we get Poin
aré's lemma (valid only for s
alar �elds)

d2α = 0 (4.16)This 
orresponds to the ve
tor equation
∇ · (∇× ~A) = 0 (4.17)Let α be a p-form and β be a q-form. Then

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ (4.18)4.1.2 Covariant derivativeThe general theory of relativity 
ontains a 
ovarian
e prin
iple whi
h statesthat all equations expressing laws of nature must have the same form irrespe
tiveof the 
oordinate system in whi
h they are derived. This is a
hieved by writingall equations in terms of tensors. Let us see if the partial derivative of ve
tor
omponents transform as tensor 
omponents. Given a ve
tor ~A = Aµ~eµ =
Aµ

′

~eµ′ with the transformation of basis given by
∂

∂xν′
=
∂xν

∂xν′
∂

∂xν
(4.19)So that

Aµ
′

,ν′ ≡ ∂

∂xν′

(
Aµ

′

)

=
∂xν

∂xν′
∂

∂xν

(
Aµ

′

)

=
∂xν

∂xν′
∂

∂xν

(
∂xµ′

∂xµ
Aµ
)

=
∂xν

∂xν′
∂xµ′

∂xµ
Aµ,ν +

∂xν

∂xν′
Aµ

∂2xµ
′

∂xν∂xµ
(4.20)The �rst term 
orresponds to a tensorial transformation. The existen
e of thelast term shows that Aµ,ν does not, in general, transform as the 
omponents ofa tensor. Note that Aµ,ν will transform as a tensor under linear transformationssu
h as the Lorentz transformations.The partial derivative must be generalized su
h as to ensure that when it isapplied to tensor 
omponents it produ
es tensor 
omponents.



4.1 Di�erentiation of forms 53Example 4.1.2 (The derivative of a ve
tor �eld with rotation)We have a ve
tor �eld:
~A = kr~eθThe 
hain rule for derivation gives:

d

dτ
=

∂

∂xν
· dx

ν

dτ
= uν

∂

∂xν

d ~A

dτ
= uν (Aµ~eµ),ν

= uν
(
Aµ,ν~eµ +Aµ~eµ,ν

)The 
hange of the ve
tor �eld with a displa
ement along a 
oordinate-
urve isexpressed by:
∂ ~A

∂xν
= ~A,ν = Aµ,ν~eµ +Aµ~eµ,νThe 
hange in ~A with the displa
ement in the θ-dire
tion is:
∂ ~A

∂θ
= Aµ,θ~eµ +Aµ~eµ,θFor our ve
tor �eld, with Ar = 0, we get

∂ ~A

∂θ
= Aθ,θ︸︷︷︸

=0

~eθ +Aθ~eθ,θand sin
e Aθ,θ = 0 be
ause Aθ = kr we end up with
∂ ~A

∂θ
= Aθ~eθ,θ = kr~eθ,θ



54 Chapter 4. Covariant Di�erentiationWe now need to 
al
ulate the derivative of ~eθ. We have:
x = r cos θ y = r sin θUsing ~eµ = ∂

∂xµ we 
an write:
~eθ =

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y

= −r sin θ~ex + r cos θ~ey

~er =
∂

∂r
= cos θ~ex + sin θ~eyGives:

~eθ,θ = −r cos θ~ex − r sin θ~ey

= −r(cos θ~ex + sin θ~ey) = −r~erThis gives us �nally:
∂ ~A

∂θ
= −kr2~erThus ∂ ~A

∂θ 6= 0 even if ~A = Aθ~eθ and Aθ,θ = 0.4.2 The Christo�el SymbolsThe 
ovariant derivative was introdu
ed by Christo�el to be able to di�erenti-ate tensor �elds. It is de�ned in 
oordinate basis by generalizing the partiallyderivative Aµ,ν to a derivative written as Aµ;ν and whi
h transforms tensorially,
Aµ

′

;ν′ ≡
∂xµ

′

∂xµ
· ∂x

ν

∂xν′
Aµ;ν . (4.21)The 
ovariant derivative of the 
ontravariant ve
tor 
omponents are written as:

Aµ;ν ≡ Aµ,ν +AαΓµαν (4.22)This equation de�nes the Christo�el symbols Γµαν , whi
h are also 
alled the�
onne
tion 
oe�
ients in 
oordinate basis�. From the transformation formulaefor the two �rst terms follows that the Christo�el symbols transform as:
Γα

′

µ′ν′ =
∂xν

∂xν′
∂xµ

∂xµ′
∂xα

′

∂xα
Γαµν +

∂xα
′

∂xα
∂2xα

∂xµ′∂xν′
(4.23)The Christo�el symbols do not transform as tensor 
omponents. It is possible to
an
el all Christo�el symbols by transforming into a lo
ally Cartesian 
oordinate



4.2 The Christo�el Symbols 55system whi
h is 
o-moving in a lo
ally non-rotating referen
e frame in free fall.Su
h 
oordinates are known as Gaussian 
oordinates.In general relativity theory an inertial frame is de�ned as a non-rotatingframe in free fall. The Christo�el symbols are 0 (zero) in a lo
ally Cartesian
oordinate system whi
h is 
o-moving in a lo
al inertial frame. Lo
al Gaussian
oordinates are indi
ated with a bar over the indi
es, giving
Γᾱµ̄ν̄ = 0 (4.24)A transformation from lo
al Gaussian 
oordinates to any 
oordinates leads to:

Γα
′

µ′ν′ =
∂xα

′

∂xᾱ
∂2xᾱ

∂xµ′∂xν′
(4.25)This equation shows that the Christo�el symbols are symmetri
 in the two lowerindi
es, ie.

Γα
′

µ′ν′ = Γα
′

ν′µ′ (4.26)Example 4.2.1 (The Christo�el symbols in plane polar 
oordinates)
x = r cos θ, y = r sin θ

r =
√
x2 + y2, θ = arctan

y

x

∂x

∂r
= cos θ,

∂x

∂θ
= −r sin θ

∂r

∂x
=
x

r
= cos θ,

∂r

∂y
= sin θ

∂y

∂r
= sin θ,

∂y

∂θ
= r cos θ

∂θ

∂x
= −sin θ

r
,

∂θ

∂y
=

cos θ

r

Γrθθ =
∂r

∂x

∂2x

∂θ2
+
∂r

∂y

∂2y

∂θ2

= cos θ(−r cos θ) + sin θ(−r sin θ)

= −r(cos θ2 + sin θ2) = −r

Γθrθ = Γθθr =
∂θ

∂x

∂2x

∂θ∂r
+
∂θ

∂y

∂2y

∂θ∂r

= −sin θ

r
(− sin θ) +

cos θ

r
(cos θ)

=
1

r



56 Chapter 4. Covariant Di�erentiationThe geometri
al interpretation of the 
ovariant derivative was given by Levi-Civita.Consider a 
urve S in any (eg. 
urved) spa
e. It is parameterized by λ, ie.
xµ = xµ(λ). λ is invariant and 
hosen to be the 
urve length.The tangent ve
tor �eld of the 
urve is ~u = (dxµ/dλ)~eµ. The 
urve passesthrough a ve
tor �eld ~A. The 
ovariant dire
tional derivative of the ve
tor �eldalong the 
urve is de�ned as:

∇~u
~A =

d ~A

dλ
≡ Aµ;ν

dxν

dλ
~eµ = Aµ;νu

ν~eµ (4.27)The ve
tors in the ve
tor �eld are said to be
onne
ted by parallel transport along the 
urveif
Aµ;νu

ν = 0

λ)A(

B

)∆λA +λ(

u

λ+∆λ

Q

P

A( λ+∆λ)

λFigure 4.1: Parallel transport from P to Q. The ve
tor ~B = Aµ;νuν∆λ~eµ

~u =
dxµ

dλ
~eµ (4.28)A

ording to the geometri
al interpretation of Levi-Civita, the 
ovariant dire
-tional derivative is:

∇~u
~A = Aµ;νu

ν~eµ = lim
∆λ→0

~A‖(λ+ ∆λ) − ~A(λ)

∆λ
(4.29)where ~A‖(λ+ ∆λ) means the ve
tor ~A parallel transported from Q to P .



4.3 Geodesi
 
urves 574.3 Geodesi
 
urvesDe�nition 4.3.1 (Geodesi
 
urves)A geodesi
 
urve is de�ned in su
h a way that,the ve
tors of the tangent ve
tor �eldof the 
urve is 
onne
ted by parallell transport.This de�nition says that geodesi
 
urves are 'as straight as possible'.If ve
tors in a ve
tor �eld ~A(λ) are 
onne
ted by parallell transport by a dis-pla
ement along a ve
tor ~u , we have Aµ;νuν = 0. For geodesi
 
urves, we thenhave:
uµ;νu

ν = 0 (4.30)whi
h is the geodesi
 equation.
(uµ,ν + Γµανu

α)uν = 0 (4.31)Then we are using that d
dλ ≡ dxν

dλ
∂
∂xν = uν ∂

∂xν :
duµ

dλ
= uν

∂uµ

∂xν
= uνuµ,ν (4.32)The geodesi
 equation 
an also be written as:

duµ

dλ
+ Γµανu

αuν = 0 (4.33)Usual notation: ˙ = d
dλ

uµ =
dxµ

dλ
= ẋµ (4.34)

ẍµ + Γµαν ẋ
αẋν = 0 (4.35)By 
omparing eq.4.35 with the equation of motion(4.53) for a free parti
le (whi
hwe dedu
ed from the Lagrangian equations) , we �nd the equations to be iden-ti
al. Con
lusion:Free parti
les follow geodesi
 
urves in spa
etime.Example 4.3.1 (verti
al motion of free parti
le in hyperb. a

. ref. frame)Inserting the Christo�el symbols Γxtt = (1 + gx

c2
)g from example 4.5.3 into thegeodesi
 equation for a verti
al geodesi
 
urve in a hyperboli
ally a

elerated refer-en
e frame, we get:

ẍ+ (1 +
gx

c2
)gṫ2 = 0



58 Chapter 4. Covariant Di�erentiation4.4 The 
ovariant Euler-Lagrange equationsGeodesi
 
urves 
an also be de�ned as 
urves with an extremal distan
e betweentwo points. Let a parti
le have a world-line (in spa
e-time) between two points(events) P1 and P2. Let the 
urves be des
ribed by an invariant parameter λ(proper time τ is used for parti
les with a rest mass).The Lagrange-fun
tion is a fun
tion of 
oordinates and their derivatives,
L = L(xµ, ẋµ), ẋµ ≡ dxµ

dλ
. (4.36)(Note: if λ = τ then ẋµ are the 4-velo
ity 
omponents)The a
tion-integral is S =

∫
L(xµ, ẋµ)dλ. The prin
iple of extremal a
tion(Hamiltons-prin
iple): The world-line of a parti
le is determined by the 
ondi-tion that S shall be extremal for all in�nitesimal variations of 
urves whi
h keep

P1 and P2 rigid, ie.
δ

∫ λ2

λ1

L(xµ, ẋµ)dλ = 0, (4.37)where λ1 and λ2 are the parameter-values at P1 and P2. For all the variations

P

P

1

2

ct

xFigure 4.2: Di�erent world-lines 
onne
ting P1 and P2 in a Minkowski diagramthe following 
ondition applies:
δxµ(λ1) = δxµ(λ2) = 0 (4.38)We write Eq. (4.37) as

δ

∫ λ2

λ1

Ldλ =

∫ λ2

λ1

[
∂L

∂xµ
δxµ +

∂L

∂ẋµ
δẋµ
]
dλ (4.39)



4.4 The 
ovariant Euler-Lagrange equations 59Partial integration of the last term
∫ λ2

λ1

∂L

∂ẋµ
δẋµdλ =

[
∂L

∂ẋµ
δxµ
]λ2

λ1

−
∫ λ2

λ1

d

dλ

(
∂L

∂ẋµ

)
δxµdλ (4.40)Due to the 
onditions δxµ(λ1) = δxµ(λ2) = 0 the �rst term be
omes zero. Thenwe have :

δS =

∫ λ2

λ1

[
∂L

∂xµ
− d

dλ

(
∂L

∂ẋµ

)]
δxµdλ (4.41)The world-line the parti
le follows is determined by the 
ondition δS = 0 forany variation δxµ. Hen
e, the world-line of the parti
le must be given by

∂L

∂xµ
− d

dλ

(
∂L

∂ẋµ

)
= 0 (4.42)These are the 
ovariant Euler-Lagrange equations.The 
anoni
al momentum pµ 
onjugated to a 
oordinate xµ is de�ned as

pµ ≡ ∂L

∂ẋµ
(4.43)The Lagrange-equations 
an now be written as

dpµ
dλ

=
∂L

∂xµ
or ṗµ =

∂L

∂xµ
. (4.44)A 
oordinate whi
h the Lagrange-fun
tion does not depend on is known as a
y
li
 
oordinate. Hen
e, ∂L

∂xµ = 0 for a 
y
li
 
oordinate. From this follows:The 
anoni
al momentum 
onjugated to a 
y
li

oordinate is a 
onstant of motionie. pµ = C (
onstant) if xµ is 
y
li
.A free parti
le in spa
e-time (
urved spa
e-time in
ludes gravitation) hasthe Lagrange fun
tion
L =

1

2
~u · ~u =

1

2
ẋµẋ

µ =
1

2
gµν ẋ

µẋν (4.45)An integral of the Lagrange-equations is obtained readily from the 4-velo
ityidentity: {
ẋµẋ

µ = −c2 for a parti
le with rest-mass
ẋµẋ

µ = 0 for light (4.46)The line-element is:
ds2 = gµνdx

µdxν = gµν ẋ
µẋνdλ2 = 2Ldλ2 . (4.47)Thus the Lagrange fun
tion of a free parti
le is obtained from the line-element.
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flat surface:

P

Q

Figure 4.3: On a �at surfa
e, the geodesi
 
urve is the minimal distan
e betweenP and Q
sphere:

P

Q

Figure 4.4: On a sphere, the geodesi
 
urves are great 
ir
les.4.5 Appli
ation of the Lagrangian formalism to freeparti
lesTo des
ribe the motion of a free parti
le, we start by setting up the line elementof the spa
e-time in the 
hosen 
oordinate system. There are 
oordinates onwhi
h the metri
 does not depend. For example, given axial symmetry we may
hoose the angle θ whi
h is a 
y
li
 
oordinate here and the 
onjugate (
ovariant)impulse Pθ is a 
onstant of the motion (the orbital spin of the parti
le). If, inaddition, the metri
 is time independent (stationary metri
) then t is also
y
li
 and pt is a 
onstant of the motion (the me
hani
al energy of the parti
le).A stati
 metri
 is time-independent and un
hanged under time reversal(i.e. t → −t). A stationary metri
 
hanged under time reversal. Examplesof stati
 metri
s are Minkowski and hyperboli
ally a

elerated frames. Therotating 
ylindri
al 
oordinate system is stationary.



4.5 Appli
ation of the Lagrangian formalism to free parti
les 614.5.1 Equation of motion from Lagrange's equationThe Lagrange fun
tion for a free parti
le is:
L =

1

2
g µν ẋ

µẋν (4.48)where g µν = g µν(x
λ). And the Lagrange equations are

∂L

∂xβ
− d

dτ

(
∂L

∂ẋβ

)
= 0,

∂L

∂ẋβ
= g βν ẋ

ν ,

∂L

∂xβ
=

1

2
g µν,βẋ

µẋν .

(4.49)
d

dτ

(
∂L

∂ẋβ

)
≡
(
∂L

∂ẋβ

)•
= ġ βν ẋ

ν + g βν ẍ
ν

= g βν,µẋ
µẋν + g βν ẍ

ν .

(4.50)Now, (4.50) and (4.49) together give:
1

2
g µν,β ẋ

µẋν − g βν,µẋ
µẋν − g βν ẍ

ν = 0. (4.51)The se
ond term on the left hand side of (4.51) may be rewritten making use ofthe fa
t that ẋµẋν is symmetri
 in µν, as as follows
g βν,µẋ

µẋν =
1

2
(g βµ,ν + g βν,µ)ẋ

µẋν

⇒ g βν ẍ
ν +

1

2
(g βµ,ν + g βν,µ − g µν,β)ẋ

µẋν = 0.

(4.52)Finally, sin
e we are free to multiply (4.52) through by gαβ , we 
an isolate ẍαto get the equation of motion in a parti
ularly elegant and simple form:
ẍα + Γαµν ẋ

µẋν = 0 (4.53)where the Christo�el symbols Γαµν in (4.53) are de�ned by
Γαµν ≡

1

2
gαβ(g βµ,ν + g βν,µ − g µν,β). (4.54)Equation(4.53) des
ribes a geodesi
 
urve .



62 Chapter 4. Covariant Di�erentiation4.5.2 Geodesi
 world lines in spa
etimeConsider two timelike 
urves between two events in spa
etime. In �g.4.5 theyare drawn in a Minkowski diagram whi
h refers to an inertial referen
e frame.
P

O

non-geodetic curve between O and P

X

geodetic curve

t

t

0

1

v(t)

cT

Figure 4.5: Timelike 
urves in spa
etime.The general interpretation of the line-element for a time-like interval is; Thespa
etime distan
e between O and P (See �gure 4.5) equals the proper timeinterval between two events O and P measured on a 
lo
k moving in a su
h way,that it is present both at O and P.
ds2 = −c2dτ2 (4.55)whi
h gives

τ0−1 =

∫ T1

T0

√
1 − v2(T )

c2
dT (4.56)We 
an see that τ0−1 is maximal along the geodesi
 
urve with v(T ) = 0. Time-like geodesi
 
urves in spa
etime have maximal distan
e between two points.Example 4.5.1 (How geodesi
s in spa
etime 
an give parabolas in spa
e)A geodesi
 
urve between two events O and P has maximal proper time. Considerthe last expression in Se
tion 3.2 of the propertime interval of a parti
le with position

x and velo
ity v in a gravitational �eld with a

eleration of gravity g.
dτ = dt

√
(
1 +

gx

c2
)2 − v2

c2



4.5 Appli
ation of the Lagrangian formalism to free parti
les 63This expression shows that the proper time of the parti
le pro
eeds faster the higherup in the �eld the parti
le is, and it pro
eeds slower the faster the parti
le moves.Consider �gure 4.6. The path a free parti
le follows between the events O and Pis a 
ompromize between moving as slowly as possible in spa
e, in order to keepthe velo
ity dependent time dilation small, and moving through regions high up inthe gravitational �eld, in order to prevent the slow pro
eeding of proper time fardown. However if the parti
le moves too high up, its velo
ity be
omes so large thatit pro
eeds slower again. The 
ompromise between kinemati
 and gravitational timedilation whi
h gives maximal proper time between O and P is obtained for the thi
k
urve in �g. 4.6. This is the 
urve followed by a free parti
le between the events Oand P.We shall now dedu
e the mathemati
al expression of what has been said above.Timelike geodesi
 
urves are 
urves with maximal proper time, i.e.
τ =

∫ τ1

0

√
−gµν ẋµẋνdτis maximal for a geodesi
 
urve. However the a
tion

J = −2

∫ τ1

0
Ldτ = −

∫ τ1

0
gµν ẋ

µẋνdτis maximal for the same 
urves and this gives an easier 
al
ulation.In the 
ase of a verti
al 
urve in a hyperboli
ally a

elerated referen
e frame theLagrangian is
L =

1

2

(
−
(
1 +

gx

c2

)2
ṫ2 +

ẋ2

c2

) (4.57)Using the Euler-Lagrange equations now gives
ẍ+ (1 +

gx

c2
)gṫ2 = 0whi
h is the equation of the geodesi
 
urve in example 4.3.1.Sin
e spa
etime is �at, the equation represents straight lines in spa
etime. Theproje
tion of su
h 
urves into the three spa
e of arbitrary inertial frames givesstraight paths in 3-spa
e, in a

ordan
e with Newton's 1st law. However proje
tingit into an a

elerated frame where the parti
le also has a horizontal motion, andtaking the Newtonian limit, one �nds the paraboli
 path of proje
tile motion.Example 4.5.2 (Spatial geodesi
s des
ribed in the referen
e frame of a rotating dis
.)In Figure 4.7, we see a rotating dis
. We 
an see two geodesi
 
urves between P1and P2. The dashed line is the geodesi
 for the non-rotating dis
. The other 
urveis a geodesi
 for the 3-spa
e of a rotating referen
e frame. We 
an see that thegeodesi
 is 
urved inward when the dis
 is rotating. The 
urve has to 
urve inwardsin
e the measuring rods are longer there (be
ause of Lorentz-
ontra
tion). Thus,the minimum distan
e between P1 and P2 will be a
hieved by an inwardly bent
urve.
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The path of the particle

O P

g

Figure 4.6: The parti
le moves between two events O and P at �xed points intime. The path 
hosen by the parti
le between O and P is su
h that the propertime taken by the parti
le betweem these two events is as large as possible.Thus the goal of the parti
le is to follow a path su
h that its 
omoving standard
lo
ks goes as fast as possible. If the parti
le follows the horizontal line betweenO and P it goes as slowly as possible and the kinemati
al time dilation is assmall as possible. Then the slowing down of its 
omoving standard 
lo
ks due tothe kinemati
al time dilation is as small as possible, but the parti
le is far downin the gravitational �eld and its proper time goes slowly for that reason. Pathsfurther up leads to a greater rate of proper time. But above the 
urve drawn asa thi
k line, the kinemati
al time dilation will dominate, and the proper timepro
eeds more slowly.



4.5 Appli
ation of the Lagrangian formalism to free parti
les 65We will show this mathemati
ally, using the Lagrangian equations. The lineelement for the spa
e dt̂ = dz = 0 of the rotating referen
e frame is

2

ω

P1

PFigure 4.7: Geodesi
 
urves on a non-rotating (dashed line) and rotating (solid line)dis
.
dl2 = dr2 +

r2dθ2

1 − r2ω2

c2Lagrangian fun
tion:
L =

1

2
ṙ2 +

1

2

r2θ̇2

1 − r2ω2

c2We will also use the identity:
ṙ2 +

r2θ̇2

1 − r2ω2

c2

= 1 (4.58)(We got this from using ~u · ~u = 1) We see that θ is 
y
li
 (∂L∂θ = 0), implying:
pθ =

∂L

∂θ̇
=

r2θ̇

1 − r2ω2

c2

= constantThis gives:
θ̇ =

(
1 − r2ω2

c2
)pθ
r2

=
pθ
r2

− ω2pθ
c2

(4.59)Inserting 4.59 into 4.58:
ṙ2 = 1 +

ω2p2
θ

c2
− p2

θ

r2
(4.60)This gives us the equation of the geodesi
 
urve between P1 and P2:

ṙ

θ̇
= ±dr

dθ
=
r2
√

1 +
ω2p2

θ

c2
− p2

θ

r2

pθ
(
1 − r2ω2

c2

) (4.61)
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onditions:
2

θ

r

geodesic

r
0

P1

P

Figure 4.8: Geodesi
 
urves on a rotating dis
,
oordinates
ṙ = 0, r = r0, for θ = 0Inserting this into 4.60 gives:

pθ
r0

=

√

1 +
p2
θω

2

c2
(4.62)Rearranging 4.61,using 4.62 gives:

dr

r
√
r2 − r20

− ω2

c2
rdr√
r2 − r20

=
dθ

r0Integrating this yields:
θ = ±r0ω

2

c2

√
r2 − r20 ∓ arccos

r0
rExample 4.5.3 (Christo�el symbols in a hyperboli
ally a

elerated referen
e frame)The Christo�el symbols were de�ned in Equation (4.53).

Γαµν ≡
1

2
gαβ(g βµ,ν + g βν,µ − g µν,β).In this example

gtt = −
(
1 +

gx

c2

)2
c2, gxx = gyy = gzz = 1
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x

ct

P
g

O

non-geodetic curve between O and P
geodetic curve

2

1

HIGH
LOW

Figure 4.9: Verti
al throw in the a

elerated referen
eframe.and only the term ∂gtt

∂x 
ontributes to Γαµν . Thus the only non-vanishing Christo�elsymbols are
Γtxt = Γttx =

1

2
gtt
(
∂gtt
∂x

)

=
1

2gtt

∂gtt
∂x

=
2
(
1 + gx

c2

)
g

2
(
1 + gx

c2

)2
c2

=
1(

1 + gx
c2

) g
c2

Γxtt = −1

2
gxx

(
∂gtt
∂x

)

= −1

2

{
−2
(
1 +

gx

c2

) g

c2
c2
}

=
(
1 +

gx

c2

)
g



68 Chapter 4. Covariant Di�erentiationExample 4.5.4 (Verti
al proje
tile motion in a hyperboli
ally a

elerated referen
e frame)
ds2 = −

(
1 +

gx

c2

)2
c2dt2 + dx2 + dy2 + dz2 (4.63)Verti
al motion implies that dy = dz = 0 and the Lagrange fun
tion be
omes

L =
1

2
g µν ẋ

µẋν

= −1

2

(
1 +

gx

c2

)2
c2ṫ2 +

1

2
ẋ2where the dots imply di�erentiation w.r.t the parti
le's proper time, τ . And theinitial 
onditions are:

x(0) = 0, ẋ(0) = (u0, ux, 0, 0)

= γ(c, v, 0, 0),where, γ =
(
1 − v2/c2

)−1/2
.What is the maximum height, h rea
hed by the parti
le?Newtonian des
ription: 1

2mv
2 = mgh⇒ h = v2

2g .Relativisti
 des
ription: t is a 
y
li
 
oordinate ⇒ x0 = ct is 
y
li
 and p0 =
constant.

p0 =
∂L

∂ẋ0
=

1

c

∂L

∂ṫ
= −c

(
1 +

gx

c2

)2
ṫ (4.64)Now the 4-velo
ity identity is

~u · ~u = g µν ẋ
µẋν = −c2 (4.65)so

−1

2

(
1 +

gx

c2

)2
c2ṫ2 +

1

2
ẋ2 = −1

2
c2 (4.66)and given that the maximum height h is rea
hed when ẋ = 0 we get

(
1 +

gh

c2

)2

ṫ2x=h = 1. (4.67)Now, sin
e p0 is a 
onstant of the motion, it preserves its initial value throughoutthe �ight (i.e. p0 = −cṫ(0) = −γc) and parti
ularly at x = h,
(4.64) ⇒ p0 = −γc = −c

(
1 +

gh

c2

)2

ṫx=h (4.68)Finally, dividing equation (4.67) by equation (4.68) and substituting ba
k in equation(4.67) gives
h =

c2

g
(γ − 1) (4.69)



4.5 Appli
ation of the Lagrangian formalism to free parti
les 69In the Newtonian limit (4.69) be
omes
h =

c2

g

(
1

(1 − v2/c2)1/2
− 1

)
≅
c2

g

(
1 +

1

2

v2

c2
− 1

)
⇒ h ≅

v2

2gExample 4.5.5 (The twin �paradox�)Eva travels to Alpha Centauri, 4 light years from the Earth, with a velo
ity v = 0.8c(γ = 1/0.6). The trip takes 5 years out and 5 years ba
k. This means that Eli, whoremains at Earth is 10 years older when she meets Eva at the end of her journey.Eva, on the other hand, is 10(1 − v2/c2)1/2 = 10(0.6) = 6 years older.T
EvaEli

XFigure 4.10: The twins Eli and Eva ea
h travel between two �xed events in spa
e-timeA

ording to the general prin
iple of relativity (see G2 in se
tion 1.5 ), Eva 
an
onsider herself as being stationary and Eli as the one whom undertakes the longjourney. In this pi
ture it seems that Eva and Eli must be 10 and 6 years olderrespe
tively upon their return.Let us a

ept the prin
iple of general relativity as applied to a

elerated referen
eframes and review the twin �paradox� in this light.Eva's des
ription of the trip when she sees herself as stationary is as follows.Eva per
eives a Lorentz 
ontra
ted distan
e between the Earth and Alpha Cen-tauri, namely, 4 light years ×1/γ = 2.4light years. The Earth and Eli travel with
v = 0.8c. Her travel time in one dire
tion is then 2.4light years

0.8c = 3 years. So theround trip takes 6 years a

ording to Eva. That is Eva is 6 years older when theymeet again. This is in a

ordan
e with the result arrived at by Eli. A

ording to



70 Chapter 4. Covariant Di�erentiationEva, Eli ages by only 6 years ×1/γ = 3.6 years during the round trip, not 10 yearsas Eli found.On turning about Eva experien
es a for
e whi
h redu
es her velo
ity and a

eler-ates her towards the Earth and Eli. This means that she experien
es a gravitationalfor
e dire
ted away from the Earth. Eli is higher up in this gravitational �eld andages faster than Eva, be
ause of the gravitational time dilation. We assume thatEva has 
onstant proper a

eleration and is stationary in a hyperboli
ally a

eleratedframe as she turns about.The 
anoni
al momentum pt for Eli is then(see Equation (4.64))
pt = −

(
1 +

gx

c2

)2
cṫInserting this into the 4-velo
ity identity gives

p2
t − c2

(
1 +

gx

c2

)2
=
(
1 +

gx

c2

)2
ẋ2, (4.70)or

dτ =
1 + gx

c2√
p2
t − c2

(
1 + gx

c2

)2 dxNow, sin
e ẋ = 0 for x = x2 (x2 is Eli's turning point a

ording to Eva), wehave that
pt = c

(
1 +

gx2

c2

)Let x1 be Eli's position a

ording to Eva just as Eva begins to noti
e the gravitational�eld. That is when Eli begins to slow down in Eva's frame.Integration from x1 to x2 and inserting the value of pt gives
τ1−2 =

c

g

√(
1 +

gx2

c2

)2
−
(
1 +

gx1

c2

)2

⇒ lim
g→∞

τ1−2 =
1

c

√
x2

2 − x2
1.Now setting x2 = 4 and x1 = 2.4 light years respe
tively we get

lim
g→∞

τ1−2 = 3.2 yearsEli's aging as she turns about is, a

ording to Eva,
∆τEli = 2 lim

g→∞
τ1−2 = 6.4 years.So Eli's has aged by a total of τEli = 3.6+ 6.4 = 10 years, a

ording to Eva, whi
his just what Eli herself found.



4.5 Appli
ation of the Lagrangian formalism to free parti
les 714.5.3 Gravitational Doppler e�e
tThis 
on
erns the frequen
y shift of light traversing up or down in a gravitational�eld. The 4-momentum of a parti
le with relativisti
 energy E and spatialvelo
ity ~w (3-velo
ity) is given by:
~P = E(1, ~w) (c = 1) (4.71)Let ~U be the 4-velo
ity of an observer. In a 
o-moving orthonormal basis of theobserver we have ~U = (1, 0, 0, 0). This gives

~U · ~P = −Ê (4.72)The energy of a parti
le with 4-momentum ~P measured by an observer with4-velo
ity ~U is
Ê = −~U · ~P (4.73)Let ES = −(~U · ~P )S and Ea = −(~U · ~P )a be the energy of a photon, measuredlo
ally by observers in rest in the transmitter and re
eiver positions, respe
tively.This gives1
ES

(~U · ~P )S
=

Ea

(~U · ~P )a
(4.74)Let the angular frequen
y of the light, measured by the transmitter and re
eiver,be ws and wa, respe
tively. We then have

ws =
ES
~
, wa =

Ea
~
, (4.75)whi
h gives:

wa =
(~U · ~P )a

(~U · ~P )s
ws (4.76)For an observer at rest in a time-independent orthogonal metri
 we have

~U · ~P = U tPt =
dt

dτ
Pt (4.77)where Pt is a 
onstant of motion (sin
e t is a 
y
li
 
oordinate) for photons andhen
e has the same value in transmitter and re
eiver positions. The line-elementis

ds2 = gttdt
2 + gii(dx

i)2 (4.78)Using the physi
al interpretation (4.55) of the line-element for a time like inter-val, we obtain for the proper time of an observer at rest
dτ2 = −gttdt2 ⇒ dτ =

√−gttdt (4.79)1 ~A · ~B = A0B
0

+ A1B
1

+ ... = g00A
0B0

+ g11A
1B1

+ ..., an orthonormal basis gives
~A · ~B = −A0B0

+ A1B1
+ ...
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e
dt

dτ
=

1√−gtt
, (4.80)whi
h gives

~U · ~P =
1√−gtt

Pt. (4.81)Inserting this into the expression for angular frequen
y (4.76) gives
wa =

√
(gtt)s
(gtt)a

ws (4.82)Note: we have assumed an orthogonal and time-independent metri
, i.e. Pt1 =
Pt2 . Inserting the metri
 of a hyperboli
ally a

elerated referen
e system with

gtt = −(1 +
gx

c2
)2 (4.83)gives

wa =
1 + gxs

c2

1 + gxa

c2
ws, (4.84)or

wa −ws
ws

=
1 + gxs

c2

1 + gxa

c2
− 1 =

g
c2

(xs − xa)

1 + gxa

c2
≈ g

c2
H, (4.85)where H = xs− xa is the di�eren
e in height between transmitter and re
eiver.Example 4.5.6 (Measurements of gravitational Doppler e�e
ts (Pound and Rebka 1960))

H ≈ 20m, g = 10m/s2gives
∆w

w
=

200

9 × 1016
= 2.2 × 10−15.This e�e
t was measured by Pound and Rebka in 1960.4.6 The Koszul 
onne
tionThe 
ovariant dire
tional derivative of a s
alar �eld f in the dire
tion of a ve
tor

~u is de�ned as:
∇~uf ≡ ~u(f) (4.86)Here the ve
tor ~u should be taken as a di�erensial operator. (In 
oordinatebasis, ~u = uµ ∂

∂xµ )The dire
tional derivative along a basis ve
tor ~eν is written as:
∇ν ≡ ∇~eν

(4.87)Hen
e ∇µ( ) = ∇~eµ
( ) = ~eµ( )



4.6 The Koszul 
onne
tion 73De�nition 4.6.1 (Koszul's 
onne
tion 
oe�e
ients in an arbitrary basis)In an aribitrary basis the Koszul 
onne
tion 
oe�
ients are de�ned by
∇ν~eµ ≡ Γαµν~eα (4.88)whi
h may also be written ~eν(~eµ) = Γαµν~eα. In 
oordinate basis , Γαµν is redu
edto Christo�el symbols and one often writes ~eµ,ν = Γαµν~eα. In an arbitrary basis, Γαµν has no symmetry.Example 4.6.1 (The 
onne
tion 
oe�
ients in a rotating referen
e frame.)Coordinate transformation: (T,R,Θ are 
oordinates in the non-rotating referen
eframe, t, r, θ in the rotating.) Corresponding Cartesian 
oordinates:X,Y and x, y.

t = T, r = R, θ = Θ − ωT

X = R cos Θ, Y = R sin Θ

X = r cos(θ + ωt), Y = r sin(θ + ωt)

X

Y

t

y

xP (x,y)
(X,Y)

ωtθ+ωFigure 4.11: The non-rotating 
oordinate system (X,Y) and the rotating system(x,y),rotating with angular velo
ity ω
~et =

∂

∂t
=
∂X

∂t

∂

∂X
+
∂Y

∂t

∂

∂Y
+
∂T

∂t

∂

∂T
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~et = −rω sin(θ + ωt)~eX + rω cos(θ + ωt)~eY + ~eT

~er =
∂X

∂r

∂

∂X
+
∂Y

∂r

∂

∂Y
= cos(θ + ωt)~eX + sin(θ + ωt)~eY

~eθ =
∂X

∂θ

∂

∂X
+
∂Y

∂θ

∂

∂Y
= −r sin(θ + ωt)~eX + r cos(θ + ωt)~eYWe are going to �nd the Christo�el symbols, whi
h involves di�erentiation of ba-sis ve
tors. This 
oordinate transformation makes this easy, sin
e ~eX , ~eY , ~eT are
onstant. Di�erentiation gives

∇t~et = −rω2 cos(θ + ωt)~eX − rω2 sin(θ + ωt)~eY (4.89)The 
onne
tion 
oe�
ients are (see eq. 4.88)
∇ν~eµ ≡ Γαµν~eα (4.90)So, to 
al
ulate Γαµν , the right hand side of eq.4.89 has to by expressed by thebasis that we are di�erentiating.By inspe
tion, the right hand side is −rω2~er.That is ∇t~et = −rω2~er giving Γrtt = −rω2.The other nonzero Christo�el symbols are

Γθrt = Γθtr =
ω

r
,Γθθr = Γθrθ =

1

r
Γrθt = Γrtθ = −rω,Γrθθ = −rExample 4.6.2 (A

eleration in a non-rotating referen
e frame (Newton))
~̈r = ~̇v = (v̇i + Γiαβv

αvβ)~ei,where · ≡ d
dt . i, j, and k are spa
e indi
es. Inserting the Christo�el symbols forplane polar 
oordinates (see example 4.2.1), gives:

~ainert = (r̈ − rθ̇2)~er + (θ̈ +
2

r
ṙθ̇)~eθExample 4.6.3 (The a

eleration of a parti
le, relative to the rotating referen
e frame)Inserting the Christo�el symbols from example 4.6.1:

~arot = (r̈ − rθ̇2 − Γrttṫ
2 + Γrθtθ̇ṫ+ Γrtθ ṫθ̇)~er + (θ̈ +

2

r
ṙθ̇ + Γθrtṙṫ+ Γθtr ṫṙ)~eθ

= (r̈ − rθ̇2 − rω2 − 2rωθ̇)~er̂ + (rθ̈ + 2ṙθ̇ + 2ṙω)~eθ̂

= ~ainert − (rω2 + 2rωθ̇)~er̂ + 2ṙω~eθ̂



4.7 Conne
tion 
oe�
ients Γαµν and stru
ture 
oe�
ients cαµν in ... 75The angular velo
ity of the referen
e frame, is ~ω = ω~ez. We also introdu
e ~r = r~er.The velo
ity relative to the rotating referen
e frame is then:
~̇r = ṙ~er + r~̇erFurthermore

~̇er =
d~er
dt

=
∂~er
∂xi

dxi

dt
= vi~er,iUsing de�nition 4.6.1 in a 
oordinate basis, this may be written

~̇er = viΓjri~ejUsing the expressions of the Christo�el symbols in example 4.6.1, we get
~̇er = vθΓθrθ~eθ = θ̇

1

r
~eθ = θ̇~eθ̂Hen
e

~v = ~̇r = ṙ~er̂ + rθ̇~eθ̂Inserting this into the expression for the a

eleration, gives:
~̈rrot = ~̈rinert + ~ω × (~ω × ~r) + 2~ω × ~vWe 
an see that the 
entrifugal a

eleration (the term in the middle) and the 
oriolisa

eleration (last term) is 
ontained in the expression for the 
ovariant derivative.4.7 Conne
tion 
oe�
ients Γ

α
µν and stru
ture 
oe�-
ients c

α
µν in a Riemannian (torsion free) spa
eThe 
ommutator of two ve
tors, ~u and ~v, expressed by 
ovariant dire
tionalderivatives is given by:

[~u,~v] = ∇~u~v −∇~v~u (4.91)Let ~u = ~eµ and ~v = ~eν . We then have:
[ ~eµ, ~eν ] = ∇µ ~eν −∇ν ~eµ. (4.92)Using the de�nitions of the 
onne
tion and stru
ture 
oe�
ients we get:
cαµν ~eα = (Γανµ − Γαµν) ~eα (4.93)Thus in a torsion free spa
e

cαµν = Γανµ − Γαµν (4.94)In 
oordinate basis we have
~eµ =

∂

∂xµ
, ~eν =

∂

∂xν
(4.95)



76 Chapter 4. Covariant Di�erentiationAnd therefore:
[ ~eµ, ~eν ] = [

∂

∂xµ
,
∂

∂xν
]

=
∂

∂xµ
(
∂

∂xν
) − ∂

∂xν
(
∂

∂xµ
)

=
∂2

∂xµ∂xν
− ∂2

∂xν∂xµ
= 0

(4.96)Equation (4.96) shows that cαµν = 0, and that the 
onne
tion 
oe�
ients inEquation (4.94) therefore are symmetri
al in a 
oordinate basis:
Γανµ = Γαµν (4.97)4.8 Covariant di�erentiation of ve
tors, forms and ten-sors4.8.1 Covariant di�erentiation of a ve
tor in an arbitrary basis

∇ν ~A = ∇ν(Aµ ~eµ)
= ∇νAµ ~eµ +Aα∇ν ~eα

(4.98)
∇νAµ = ~eν(A

µ) , ~eν = Mµ
ν

∂

∂xµ
, (4.99)where Mµ

ν are the elements of a transformation matrix between a 
oordinatebasis { ∂
∂xµ } and an arbitrary basis {~eν}. ( If ~eν had been a 
oordinate basisve
tor, we would have gotten ~eν(A

µ) = ∂
∂xν (Aµ) = Aµ,ν).

∇ν ~A = [~eν(A
µ) +AαΓµαν ] ~eµ (4.100)De�nition 4.8.1 (Covariant derivative of a ve
tor)The 
ovariant derivative of a ve
tor in an arbitrary basis is de�ned by:

∇ν ~A ≡ Aµ;ν~eµ (4.101)So:
Aµ;ν = ~eν(A

µ) +AαΓµαν

where ∇ν~eα ≡ Γµαν~eµ
(4.102)

4.8.2 Covariant di�erentiation of formsDe�nition 4.8.2 (Covariant dire
tional derivative of a one-form �eld)Given a ve
tor �eld ~A and a one-form �eld α, the 
ovariant dire
tional derivative of
α in the dire
tion of the ve
tor ~u is de�ned by:

(∇~uα)( ~A ) ≡ ∇~u[α( ~A )︸ ︷︷ ︸
αµAµ

] − α(∇~u ~A) (4.103)



4.8 Covariant di�erentiation of ve
tors, forms and tensors 77Let α = ωµ (basis form), ωµ(~eν) ≡ δµν and let ~A = ~eν and ~u = ~eλ. We thenhave:
(∇λωµ)(~eν) = ∇λ[ωµ(~eν)︸ ︷︷ ︸

δµ
ν

] − ωµ(∇λ ~eν) (4.104)The 
ovariant dire
tional derivative ∇λ of a 
onstant s
alar �eld is zero, ∇λδµν =
0. We therefore get:

(∇λωµ)(~eν) = −ωµ(∇λ ~eν)
= −ωµ(Γανλ ~eα)

= −Γανλω
µ( ~eα)

= −Γανλδ
µ
α

= −Γµνλ

(4.105)The 
ontra
tion between a one-form and a basis ve
tor gives the 
omponentsof the one-form, α(~eν) = αν . Equation (4.105) tells us that the ν-
omponent of
∇λωµ is equal to −Γµνλ, and that we therefore have

∇λωµ = −Γµνλω
ν (4.106)Equation (4.106) gives the dire
tional derivatives of the basis forms. Using theprodu
t of di�erentiation gives

∇λα = ∇λ(αµωµ)
= ∇λ(αµ)ωµ + αµ∇λωµ

= ~eλ(αµ)ω
µ − αµΓ

µ
νλω

ν

(4.107)
De�nition 4.8.3 (Covariant derivative of a one-form)The 
ovariant derivative of a one-form α = αµω

µ is therefore given by Equation(4.108) below, when we let µ→ ν in the �rst term on the right hand side in (4.107):
∇λα = [ ~eλ(αν) − αµΓ

µ
νλ]ω

ν (4.108)The 
ovariant derivative of the one-form 
omponents αµ are denoted by αν;λ andare de�ned by
∇λα ≡ αν;λω

ν (4.109)It then follows that
αν;λ = ~eλ(αν) − αµΓ

µ
νλ (4.110)It is worth to note that Γµνλ in Equation (4.110) are not Christo�el symbols. In
oordinate basis we get:

αν;λ = αν,λ − ανΓ
µ
λν (4.111)where Γµλν = Γµνλ are Christo�el symbols.



78 Chapter 4. Covariant Di�erentiation4.8.3 Generalization for tensors of higher rankDe�nition 4.8.4 (Covariant derivative of a tensor)Let A and B be two tensors of arbitrary rank. The 
ovariant dire
tional derivativealong a basis ve
tor ~eλ of a tensor A⊗B of arbitrary rank is de�ned by:
∇λ(A⊗B) ≡ (∇λA) ⊗B +A⊗ (∇λB) (4.112)We will use (4.112) to �nd the formula for the 
ovariant derivative of the 
om-ponents of a tensor of rank 2:

∇αS = ∇α(Sµνω
µ ⊗ ων)

= (∇αSµν)ωµ ⊗ ων + Sµν(∇αωµ) ⊗ ων + Sµνω
µ ⊗ (∇αων)

= (Sµν,α − SβνΓ
β
µα − SµβΓ

β
να)ωµ ⊗ ων

(4.113)where Sµν,α = ~eα(Sµν). De�ning the 
ovariant derivative Sµν;α by
∇αS = Sµν;αω

µ ⊗ ων (4.114)we get
Sµν;α = Sµν,α − SβνΓ

β
µα − SµβΓ

β
να (4.115)For the metri
 tensor we get

gµν;α = gµν,α − gβνΓ
β
µα − gµβΓ

β
να (4.116)From

gµν = ~eµ · ~eν (4.117)we get:
gµν,α = (∇α ~eµ) · ~eν + ~eµ(∇α ~eν)

= Γβµα ~eβ · ~eν + ~eµ · Γβνα ~eβ
= gβνΓ

β
µα + gµβΓ

β
να

(4.118)This means that
gµν;α = 0 (4.119)So the metri
 tensor is a (
ovariant) 
onstant tensor.4.9 The Cartan 
onne
tionDe�nition 4.9.1 (Exterior derivative of a basis ve
tor)

d~eµ ≡ Γνµα~eν ⊗ ωα (4.120)



4.9 The Cartan 
onne
tion 79Exterior derivative of a ve
tor �eld:
d ~A = d(~eµA

µ) = ~eν ⊗ dAν +Aµd~eµ (4.121)In arbitrary basis:
dAν = ~eλ(A

ν)ωλ (4.122)(In 
oordinate basis, ~eλ(Aν) = ∂
∂xλ (Aν) = Aν,λ)giving:

d ~A = ~eν ⊗ [~eλ(A
ν)ωλ] +AµΓνµλ~eν ⊗ ωλ

= (~eλ(A
ν) +AµΓνµλ)~eν ⊗ ωλ

(4.123)
d ~A = Aν;λ~eν ⊗ ωλ (4.124)De�nition 4.9.2 (Conne
tion forms Ω

ν

µ
)The 
onne
tion forms Ωνµ are 1-forms, de�ned by:

d~eµ ≡ ~eν ⊗ Ων
µ

Γνµα~eν ⊗ ωα = ~eν ⊗ Γνµαω
α = ~eν ⊗ Ων

µ

(4.125)
Ωνµ = Γνµαω

α (4.126)The exterior derivatives of the 
omponents of the metri
 tensor:
dgµν = d(~eµ · ~eν) = ~eµ · d~eν + ~eν · d~eµ (4.127)where the meaning of the dot is de�ned as follows:De�nition 4.9.3 (S
alar produ
t between ve
tor and 1-form)The s
alar produ
t between a ve
tor ~u and a (ve
torial) one form A = Aµν~eµ ⊗ ωνis de�ned by:

~u · A ≡ uαAµν(~eα · ~eµ)ων (4.128)Using this de�nition, we get:
dgµν = (~eµ · ~eλ)Ωλ

ν + (~eν · ~eγ)Ωγ
µ

= gµλΩ
λ
ν + gνγΩ

γ
µ

(4.129)



80 Chapter 4. Covariant Di�erentiationLowering an index gives
dgµν = Ωµν + Ωνµ (4.130)In an orthonormal basis �eld there is Minkowski-metri
:

gµ̂ν̂ = ηµ̂ν̂ (4.131)whi
h is 
onstant. Then we have :
dgµ̂ν̂ = 0 ⇒ Ων̂µ̂ = −Ωµ̂ν̂ (4.132)where we write Ων̂µ̂ = Γν̂µ̂α̂ω

α̂. It follows that Γν̂µ̂α̂ = −Γµ̂ν̂α̂.It also follows that
Γt̂
îĵ

= −Γt̂̂iĵ = Γît̂ĵ = Γî
t̂ĵ

Γî
ĵk̂

= −Γĵ
îk̂

(4.133)Cartans 1st stru
ture equation (without proof):
dωρ = −1

2
cρµνω

µ ∧ ων

= −1

2
(Γρνµ − Γρµν)ω

µ ∧ ων

= −Γρνµω
µ ∧ ων

= −Ωρν ∧ ων

(4.134)
dωρ = −Ωρν ∧ ων and dωρ = Γρµνω

µ ∧ ων (4.135)In 
oordinate basis, we have ωρ = dxρ.Thus, dωρ = d2xρ = 0.We also have cρµν = 0 , and C1 is redu
ed to an identity.This formalism 
annot be used in 
oordinate basis!Example 4.9.1 (Cartan-
onne
tion in an orthonormal basis �eld in plane polar 
oord.)
ds2 = dr2 + r2dθ2Introdu
ing basis forms in an orthonormal basis �eld (where the metri
 is gr̂r̂ =

gθ̂θ̂ = 1):
ds2 = gr̂r̂ω

r̂ ⊗ ωr̂ + gθ̂θ̂ω
θ̂ ⊗ ωθ̂ = ωr̂ ⊗ ωr̂ + ωθ̂ ⊗ ωθ̂

⇒ ωr̂ = dr, ωθ̂ = rdθExterior di�erentiation gives:
dωr̂ = d2r = 0, dωθ̂ = dr ∧ dθ =

1

r
ωr̂ ∧ ωθ̂



4.9 The Cartan 
onne
tion 81C1:
dωµ̂ = −Ωµ̂

ν̂ ∧ ων̂

= −Ωµ̂
r̂ ∧ ωr̂ − Ωµ̂

θ̂
∧ ωθ̂We have that dωr̂ = 0 , whi
h gives:

Ωr̂
θ̂

= Γr̂
θ̂θ̂
ωθ̂ (4.136)sin
e ωθ̂ ∧ ωθ̂ = 0. (Ωr̂

r̂=0 be
ause of the antisymmetry Ων̂µ̂ = −Ωµ̂ν̂ .)We also have: dωθ̂ = −1
rω

θ̂ ∧ ωr̂. C1:
dωθ̂ = −Ωθ̂r̂ ∧ ωr̂ − Ωθ̂

θ̂︸︷︷︸
=0

∧ωθ̂

Ωθ̂
r̂ = Γθ̂

r̂θ̂
ωθ̂ + Γθ̂r̂r̂ω

r̂ (4.137)giving Γθ̂
r̂θ̂

= 1
r .We have: Ωr̂

θ̂
= −Ωθ̂r̂. Using equations 4.136 and 4.137 we get:

Γθ̂r̂r̂ = 0

⇒ Γr̂
θ̂θ̂

= −1

rgiving Ωr̂
θ̂

= −Ωθ̂
r̂ = −1

rω
θ̂.



Chapter 5Curvature5.1 The Riemann 
urvature tensor

*

M

�
1

�

P Q
λ

λ+ ∆λ

~A(λ)

~AQP (λ+ ∆λ)

∇~v
~A∆λ

~v

~A(λ+ ∆λ)

Figure 5.1: Parallel transport of ~AThe 
ovariant dire
tional derivative of a ve
tor �eld ~A along a ve
tor ~u wasde�ned and interpreted geometri
ally in se
tion 4.2, as follows
∇~v

~A =
d ~A

dλ
= Aµ;νv

ν~eµ

= lim
∆λ→0

~AQP (λ+ ∆λ) − ~A(λ)

∆λ

(5.1)Let ~AQP be the parallel transported of ~A from Q to P. Then to �rst order in
∆λ we have: ~AQP = ~AP + (∇~v

~A)P∆λ and82
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-
~A

6

~A‖

:

3

�
�

Figure 5.2: Parallel transport of a ve
tor along a triangle of angles 90◦ is rotated
90◦

~APQ = ~AQ − (∇~v
~A)Q∆λ (5.2)To se
ond order in ∆λ we have:

~APQ = (1 −∇~v∆λ+
1

2
∇~v∇~v(∆λ)2) ~AQ (5.3)If ~APQ is parallel transported further on to R we get

~APQR = (1 −∇~u∆λ+
1

2
∇~u∇~u(∆λ)2)

· (1 −∇~v∆λ+
1

2
∇~v∇~v(∆λ)2) ~AR

(5.4)where ~AQ is repla
ed by ~AR be
ause the di�erential operator always shall beapplied to the ve
tor in the �rst position. If we parallel transport ~A around thewhole polygon in �gure 5.3 we get:
~APQRSTP = (1 + ∇~u∆λ+

1

2
∇~u∇~u(∆λ)2)

· (1 + ∇~v∆λ+
1

2
∇~v∇~v(∆λ)2)

· (1 −∇[~u,~v](∆λ)2) · (1 −∇~u∆λ+
1

2
∇~u∇~u(∆λ)2)

· (1 −∇~v∆λ+
1

2
∇~v∇~v(∆λ)2) ~AP

(5.5)
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-

�

3

]
1

�
-

6

j

I I
O

1P
λ

Q
λ+ ∆λ

R
S

T (∇~u∆λ~v −∇~v∆λ~u)∆λ
= [~u,~v]∆λ2

∇~v∆λ~u∆λ

∇~u∆λ~v∆λ

~u(P )∆λ

~AP

~uPQ∆λ

~APQ

~AQ
∇~v

~A

~v(P )∆λ

~vPT∆λ

~v(T )∆λ

~u(Q)∆λ

Figure 5.3: Geometri
ally implied 
urvature from non-zero di�eren
es betweenve
tors along a 
urve (parameterized by λ) and their parallel transported equiv-alentsCal
ulating to 2. order in ∆λ gives:
~APQRSTP = ~AP + ([∇~u,∇~v] −∇[~u,~v])(∆λ)2 ~AP (5.6)There is a variation of the ve
tor under parallel transport around the 
losedpolygon:

δ ~A = ~APQRSTP − ~AP = ([∇~u,∇~v ] −∇[~u,~v]) ~AP (∆λ)2 (5.7)We now introdu
e the Riemann's 
urvature tensor as:
R( , ~A, ~u,~v) ≡ ([∇~u,∇~v] −∇[~u,~v])( ~A) (5.8)The 
omponents of the Riemann 
urvature tensor is de�ned by applying thetensor on basis ve
tors,
Rµναβ~eµ ≡ ([∇α,∇β ] −∇[~eα,~eβ ])(~eν) (5.9)Anti-symmetry follows from the de�nition:

Rµνβα = −Rµναβ (5.10)The expression for the variation of ~A under parallel transport around the poly-



5.1 The Riemann 
urvature tensor 85gon, Eq. (5.7), 
an now be written as:
δ ~A = R( , ~A, ~u,~v)(∆λ)2

= R( , Aν~eν , u
α~eα, v

β~eβ)(∆λ)2

= ~eµR
µ
ναβA

νuαvβ · (∆λ)2

=
1

2
~eµR

µ
ναβA

ν(uαvβ − uβvα)(∆λ)2

(5.11)The area of the parallellogram de�ned by the ve
tors ~u∆λ and ~v∆λ is
-

�

6

~v∆λ

~u∆λ

∆~S = ~u× ~v(∆λ)2

∆S

∆~S = ~u× ~v(∆λ)2.Using that
(~u× ~v)αβ = uαvβ − uβvα .we 
an write Eq. (5.11) as:
δ ~A =

1

2
AνRµναβ∆S

αβ~eµ . (5.12)The 
omponents of the Riemann tensor expressed by the 
onne
tion- and stru
ture-
oe�
ients are given below:
~eµR

µ
ναβ = [∇α,∇β]~eν −∇[~eα,~eβ ]~eν

= (∇α∇β −∇β∇α − cραβ∇ρ)~eν

= ∇α∇β~eν −∇β∇α~eν − cραβ∇ρ~eν(Kozul-
onne
tion) = ∇αΓ
µ
νβ~eµ −∇βΓ

µ
να~eµ − cραβΓ

µ
νρ~eµ

= (∇αΓµνβ)~eµ + Γµνβ∇α~eµ

− (∇βΓ
µ
να)~eµ − Γµνα∇β~eµ − cραβΓ

µ
νρ~eµ

= ~eα(Γµνβ)~eµ + ΓρνβΓ
µ
ρα~eµ

− ~eβ(Γ
µ
να)~eµ − ΓρναΓ

µ
ρβ~eµ − cραβΓ

µ
νρ~eµ .

(5.13)
This gives (in arbitrary basis):

Rµναβ = ~eα(Γ
µ
νβ) − ~eβ(Γ

µ
να)

+ ΓρνβΓ
µ
ρα − ΓρναΓµρβ − cραβΓ

µ
νρ .

(5.14)



86 Chapter 5. CurvatureIn 
oordinate basis eq. (5.14) is redu
ed to:
Rµναβ = Γµνβ,α − Γµνα,β + ΓρνβΓ

µ
ρα − ΓρναΓ

µ
ρβ , (5.15)where Γµνβ = Γµβν are the Christo�el symbols.Due to the antisymmetry (5.10) we 
an de�ne a matrix of 
urvature-forms

Rµν =
1

2
Rµναβω

α ∧ ωβ (5.16)Inserting the 
omponents of the Riemann tensor from eq. (5.14) gives
Rµν = (~eα(Γµνβ) + ΓρνβΓ

µ
ρα − 1

2
cραβΓ

µ
νρ)ω

α ∧ ωβ (5.17)The 
onne
tion forms:
Ωµ
ν = Γµναω

α (5.18)Exterior derivatives of basis forms:
dωρ = −1

2
cραβω

α ∧ ωβ (5.19)Exterior derivatives of 
onne
tion forms (C1: dωρ = −Ωρα ∧ ωα) :
dΩµ

ν = dΓµνβ ∧ ωβ + Γµνρdω
ρ

= ~eα(Γµνβ)ω
α ∧ ωβ − 1

2
cραβΓ

µ
νρω

α ∧ ωβ
(5.20)The 
urvature forms 
an now be written as:

Rµν = dΩµν + Ωµ
λ ∧ Ωλ

ν (5.21)This is Cartans 2nd stru
ture equation.
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es 875.2 Di�erential geometry of surfa
es
λ

µe

eν

N

u

Figure 5.4: The geometry of a surfa
e. We see the normal ve
tor and the unitve
tors of the tangent plane of a point on the surfa
e.Imagine an arbitrary surfa
e embedded in an Eu
lidian 3 dimensional spa
e.(See �gure 5.4). Coordinate ve
tors on the surfa
e :
~eu =

∂

∂u
,~ev =

∂

∂v
(5.22)where u and v are 
oordinates on the surfa
e.Line element on the surfa
e:

ds2 = gµνdx
µdxν (5.23)with x1 = u and x2 = v.(1st fundamental form)The dire
tional derivatives of the basis ve
tors are written

~eµ,ν = Γαµν~eα +Kµν
~N,α = 1, 2 (5.24)Greek indi
es run through the surfa
e 
oordinates, ~N is a unit ve
tor orthogonalto the surfa
e.



88 Chapter 5. CurvatureThe equation above is 
alled Gauss' equation. We have: Kµν = ~eµ,ν · ~N . In
oordinate basis, we have ~eµ,ν = ∂2

∂xµ∂xν = ∂2

∂xν∂xµ = ~eν,µ. It follows that
Kµν = Kνµ (5.25)Let ~u be the unit tangent ve
tor to a 
urve on the surfa
e, parametrised by λ.Di�erentiating ~u along the 
urve:

d~u

dλ
= uµ;νu

ν~eµ + Kµνu
µuν︸ ︷︷ ︸2nd fundamental form ~N (5.26)We de�ne κg and κN by:

d~u

dλ
= κg~e+ κN ~N (5.27)

κg is 
alled geodesi
 
urvature. κN is 
alled normal 
urvature (external 
urva-ture). κg = 0 for geodesi
 
urves on the surfa
e.
κg~e = uµ;νu

ν~eµ = ∇~u~u

κN = Kµνu
µuνAnd :κN =

d~u

dλ
· ~N

(5.28)We also have that ~u · ~N = 0 along the whole 
urve. Di�erentiation gives:
d~u

dλ
· ~N + ~u · d

~N

dλ
= 0 (5.29)gives:

κN = −~u · d
~N

dλ
(5.30)whi
h is 
alled Weingarten's equation.

κg and κN together give a 
omplete des
ription of the geometry of a surfa
ein a �at 3 dimensional spa
e. We are now going to 
onsider geodesi
 
urvesthrough a point on the surfa
e. Tangent ve
tor ~u = uµ~eµ with ~u ·~u = gµνu
µuν =

1. Dire
tions with maximum and minimum values for the normal 
urvatures arefound, by extremalizing κN under the 
ondition gµνuµuν = 1. We then solve thevariation problem δF = 0 for arbitrary uµ, where F = Kµνu
µuν−k(gµνuµuν−1).Here k is the Lagrange multipli
ator. Variation with respe
t to uµ gives:

δF = 2(Kµν − kgµν)u
νδuµ

δF = 0 for arbitrary δuµ demands:
(Kµν − kgµν)u

ν = 0 (5.31)For this system of equations to have nonzero solutions, we must have:det(Kµν − kgµν) = 0 (5.32)
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∣∣∣∣
K11 − kg11 K12 − kg12
K21 − kg21 K22 − kg22

∣∣∣∣ = 0 (5.33)This gives the following quadrati
 equation for k:
k2det(gµν) − (g11K22 − 2g12K12 + g22K11)k + det(Kµν) = 0 (5.34)

(K symmetri
 K12 = K21)The equation has two solutions, k1 and k2. These are the extremal values of k.To �nd the meaning of k, we multiply eq.5.31 by uµ:
0 = (Kµν − kgµν)u

µuν

= Kµνu
µuν − kgµνu

µuν

= κN − k ⇒ k = κN

(5.35)The extremal values of κN are 
alled the prin
ipal 
urvatures of the surfa
e.Let the dire
tions of the geodesi
s with extreme normal 
urvature be given bythe tangent ve
tors ~u and ~v.Eq.5.31 gives:
Kµνu

ν = kgµνu
ν (5.36)We then get:

Kµνu
νvµ = k1gµνu

νvµ

= k1uµv
µ = k1(~u · ~v)

Kµνv
νuµ = k2gµνv

νuµ = k2(~u · ~v)

gives (k1 − k2)(~u · ~v) = Kµν(u
νvµ − vνuµ)

= 2Kµνu
[νvµ]

(5.37)
Kµν is symmetri
 in µ and ν. So we get:(k1 − k2)(~u · ~v) = 0. For k1 6= k2 wehave to demand ~u ·~v = 0. So the geodesi
s with extremal normal 
urvature, areorthogonal to ea
h other.The Gaussian 
urvature (at a point) is de�ned as:

K = κN1 · κN2 (5.38)Sin
e κN1 and κN2 are solutions of the quadrati
 equation above, we get:
K =

det(Kµν)det(gµν) (5.39)
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e 
urvature, using the Cartan formalismIn ea
h point on the surfa
e we have an orthonormal set of basis ve
tors. Greekindi
es run through the surfa
e 
oordinates (two dimensional) and Latin indi
esthrough the spa
e 
oordinates (three dimensional):
~ea = (~e1, ~e2, ~N) , ~eµ = {~e1, ~e2} (5.40)Using the exterior derivative and form formalism, we �nd how the unit ve
torson the surfa
e 
hange:
d~eν = ~ea ⊗ Ωa

ν

= ~eα ⊗ Ωαν + ~N ⊗ Ω3
ν ,

(5.41)where Ωµ
ν = Γµναωα are the 
onne
tion forms on the surfa
e, i.e. the intrinsi

onne
tion forms. The extrinsi
 
onne
tion forms are

Ω3
ν = Kναω

α ,Ωµ
3 = Kµ

αω
α (5.42)We let the surfa
e be embedded in an Eu
lidean (�at) 3-dimensional spa
e. Thismeans that the 
urvature forms of the 3-dimensional spa
e are zero:

Ra3b = 0 = d Ωab + Ωa
k ∧ Ωk

b (5.43)whi
h gives:
Rµ3ν = 0 = d Ωµν + Ωµ

α ∧ Ωα
ν + Ωµ3 ∧ Ω3

ν

= Rµν + Ωµ
3 ∧ Ω3

ν ,
(5.44)where Rµν are the 
urvature forms of the surfa
e. We then have:

1

2
Rµναβω

α ∧ ωβ = −Ωµ3 ∧ Ω3
ν (5.45)Inserting the 
omponents of the extrinsi
 
onne
tion forms, we get: (when weremember the anti symmetry of α and β in Rµναβ)

Rµναβ = Kµ
αKνβ −Kµ

βKνα (5.46)We now lower the �rst index:
Rµναβ = KµαKνβ −KµβKνα (5.47)

Rµναβ are the 
omponents of a 
urvature tensor whi
h only refer to the dimen-sions of the surfa
e. In parti
ular we have:
R1212 = K11K22 −K12K21 = detK (5.48)We then have the following 
onne
tion between this 
omponent of the Riemann
urvature tensor of the surfa
e and the Gaussian 
urvature of the surfa
e:
K = κN1 · κN2 =

detKµν

det gµν
=

R1212

det gµν
(5.49)Sin
e the right hand side refers to the intrinsi
 
urvature and the metri
 on thesurfa
e, we have proved that the Gaussian 
urvature of a surfa
e is an intrinsi
quantity. It 
an be measured by observers on the surfa
e without embedding thesurfa
e in a three-dimensional spa
e. This is the 
ontents of Gauss' theoremaegregium.
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i identity 915.3 The Ri

i identity
~eµR

µ
ναβA

ν = (∇α∇β −∇β∇α −∇[ ~eα, ~eβ ])(~A) (5.50)In 
oordinate basis this is redu
ed to
~eµR

µ
ναβA

ν = (Aµ;βα −Aµ;αβ) ~eµ , (5.51)where
Aµ;αβ ≡ (Aµ;β);α (5.52)The Ri

i identity on 
omponent form is:

AνRµναβ = Aµ;βα −Aµ;αβ (5.53)We 
an write this as:
d2 ~A =

1

2
RµναβA

ν ~eµ ⊗ ωα ∧ ωβ (5.54)This shows us that the 2nd exterior derivative of a ve
tor is equal to zero onlyin a �at spa
e. Equations (5.53) and (5.54) both represents the Ri

i identity.5.4 Bian
hi's 1st identityCartan's 1st stru
ture equation:
d ωµ = −Ωµν ∧ ων (5.55)Cartan's 2nd stru
ture equation:

Rµν = d Ωµν + Ωµ
λ ∧ Ωλ

ν (5.56)Exterior di�erentiation of (5.55) and use of Poincaré′s lemma (4.16) gives:(d2 ωµ = 0)
0 = d Ωµ

ν ∧ ων − Ωµλ ∧ d ωλ (5.57)Use of (5.55) gives:
d Ωµν ∧ ων + Ωµ

λ ∧ Ωλν ∧ ων = 0 (5.58)From this we see that
(d Ωµν + Ωµ

λ ∧ Ωλν) ∧ ων = 0 (5.59)We now get Bian
hi's 1st identity:
Rµν ∧ ων = 0 (5.60)



92 Chapter 5. CurvatureOn 
omponent form Bian
hi's 1st identity is
1

2
Rµναβω

α ∧ ωβ
︸ ︷︷ ︸

Rµ
ν

∧ων = 0 (5.61)The 
omponent equation is: (remember the anti symmetry in α and β)
Rµ[ναβ] = 0 (5.62)or

Rµναβ +Rµαβν +Rµβνα+ = 0 (5.63)where the anti symmetry Rµναβ = −Rµνβα has been used. Without this antisymmetry we would have gotten six, and not three, terms in this equation.5.5 Bian
hi's 2nd identityExterior di�erentiation of (5.56) ⇒
d Rµν = Rµλ ∧ Ωλ

ν − Ωµ
ρ ∧ Ωρλ ∧ Ωλ

ν − Ωµλ ∧Rλν + Ωµ
λ ∧ Ωλ

ρ ∧ Ωρ
ν

= Rµλ ∧ Ωλ
ν − Ωµ

λ ∧Rλν
(5.64)We now have Bian
hi's 2nd identity as a form equation:

d Rµν + Ωµλ ∧Rλν −Rµλ ∧ Ωλ
ν = 0 (5.65)As a 
omponent equation Bian
hi's 2nd identity is given by

Rµν[αβ;γ] = 0 (5.66)
De�nition 5.5.1 (Contra
tion)`Contra
tion' is a tensor operation de�ned by

Rνβ ≡ Rµνµβ (5.67)We must here have summation over µ. What we do, then, is 
onstru
ting a newtensor from another given tensor, with a rank 2 lower than the given one.The tensor with 
omponents Rνβ is 
alled the Ri

i 
urvature tensor.Another 
ontra
tion gives the Ri

i 
urvature s
alar, R = Rµµ.



5.5 Bian
hi's 2nd identity 93Riemann 
urvature tensor has four symmetries. The de�nition of the Rie-mann tensor implies that Rµναβ = −RµνβαBian
hi's 1st identity: Rµ[ναβ] = 0From Cartan's 2nd stru
ture equation follows
R µν = dΩ µν + Ωµλ ∧ Ωλν

⇒ R µναβ = −R νµαβ

(5.68)By 
hoosing a lo
ally Cartesian 
oordinate system in an inertial frame we getthe following expression for the 
omponents of the Riemann 
urvature tensor:
R µναβ =

1

2
(gµβ,να − gµα,νβ + gνα,µβ − gνβ,µα) (5.69)from whi
h it follows that Rµναβ = Rαβµν . Contra
tion of µ and α leads to:

Rαναβ = Rαβαν

⇒ Rνβ = Rβν
(5.70)i.e. the Ri

i tensor is symmetri
. In 4-D the Ri

i tensor has 10 independent
omponents.



Chapter 6Einstein's Field Equations6.1 Energy-momentum 
onservation6.1.1 Newtonian �uidEnergy-momentum 
onservation for a Newtonian �uid in terms of the divergen
eof the energy momentum tensor 
an be shown as follows. The total derivativeof a velo
ity �eld is
D~v

Dt
≡ ∂~v

∂t
+ (~v · ~∇)~v (6.1)

∂~v
∂t is the lo
al derivative whi
h gives the 
hange in ~v as a fun
tion of timeat a given point in spa
e. (~v · ~∇)~v is 
alled the 
onve
tive derivative of ~v. Itrepresents the 
hange of ~v for a moving �uid parti
le due to the inhomogeneityof the �uid velo
ity �eld. In 
omponent notation the above be
ome

Dvi

Dt
≡ ∂vi

∂t
+ vj

∂vi

∂xj
(6.2)The 
ontinuity equation

∂ρ

∂t
+ ∇ · (ρ~v) = 0 or ∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 (6.3)Euler's equation of motion (ignoring gravity)

ρ
D~v

Dt
= −~∇p or ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
= − ∂p

∂xi
(6.4)The energy momentum tensor is a symmetri
 tensor of rank 2 thatdes
ribes material 
hara
teristi
s.

T µν =





T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33



 (6.5)
c ≡ 1 94



6.1 Energy-momentum 
onservation 95
T 00 represents energy density.
T i0 represents momentum density.
T ii represents pressure (T ii > 0).
T ii represents stress (T ii < 0).
T ij represents shear for
es (i 6= j).Example 6.1.1 (Energy momentum tensor for a Newtonian �uid)

T 00 = ρ T i0 = ρvi

T ij = ρvivj + pδij
(6.6)where p is pressure, assumed isotropi
 here. We 
hoose a lo
ally Cartesian 
oordinatesystem in an inertial frame su
h that the 
ovariant derivatives are redu
ed to partialderivatives. The divergen
e of the momentum energy tensor, T µν;ν has 4 
omponents,one for ea
h value of µ.The zeroth 
omponent is

T 0ν
;ν = T 0ν

,ν = T 00
,0 + T 0i

,i

=
∂ρ

∂t
+
∂(ρvi)

∂xi

(6.7)whi
h by 
omparison to Newtonian hydrodynami
s implies that T 0ν
;ν = 0 is the
ontinuity equation. This equation represents the 
onservation of energy.The ith 
omponent of the divergen
e is

T iν,ν = T i0,0 + T ij,j

=
∂(ρvi)

∂t
+
∂(ρvivj + pδij)

∂xj

= ρ
∂vi

∂t
+ vi

∂ρ

∂t
+ vi

∂ρvj

∂xj
+ ρvj

∂vi

∂xj
+
∂p

∂xi

(6.8)now, a

ording to the 
ontinuity equation
∂(ρvi)

∂xi
= −∂ρ

∂t

⇒ T iν,ν = ρ
∂vi

∂t
+ vi

∂ρ

∂t
− vi

∂ρ

∂t
+ ρvj

∂vi

∂xj
+
∂p

∂xi

= ρ
Dvi

Dt
+
∂p

∂xi

∴ T iν;ν = 0 ⇒ ρ
Dvi

Dt
= − ∂p

∂xi

(6.9)
whi
h is Euler's equation of motion. It expresses the 
onservation of momentum.



96 Chapter 6. Einstein's Field EquationsThe equations T µν;ν = 0 are general expressions for energy and momentum
onservation.6.1.2 Perfe
t �uidsA perfe
t �uid is a �uid with no vis
osity and is given by the energy-momentumtensor
Tµν = (ρ+

p

c2
)uµuν + pgµν (6.10)where ρ and p are the mass density and the stress, respe
tively, measured in the�uids rest frame, uµ are the 
omponents of the 4-velo
ity of the �uid.In a 
omoving orthonormal basis the 
omponents of the 4-velo
ity are uµ̂ =

(c, 0, 0, 0). Then the energy-momentum tensor is given by
Tµ̂ν̂ =





ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p



 (6.11)where p > 0 is pressure and p < 0 is tension.There are three di�erent types of perfe
t �uids that are useful.1. dust or non-relativisti
 gas is given by p = 0 and the energy-momemtumtensor Tµν = ρuµuν .2. radiation or ultra-relativisti
 gas is given by a tra
eless energy-momemtumtensor, i.e. T µµ = 0. It follows that p = 1
3ρc

2.3. va
uum energy: If we assume that no velo
ity 
an be measured relativelyto va
uum, then all the 
omponents of the energy-momentum tensor mustbe Lorentz-invariant. It follows that Tµν ∝ gµν . If va
uum is de�ned as aperfe
t �uid we get p = −ρc2 so that Tµν = pgµν = −ρc2gµν .6.2 Einstein's 
urvature tensorThe �eld equations are assumed to have the form:spa
e-time 
urvature ∝ momentum-energy tensorAlso, it is demanded that energy and momentum 
onservation should follow asa 
onsequen
e of the �eld equation. This puts the following 
onstraints on the
urvature tensor: It must be a symmetri
, divergen
e free tensor of rank 2.Bian
hi's 2nd identity:
Rµναβ;σ +Rµνσα;β +Rµνβσ;α = 0 (6.12)
ontra
tion of µ and α ⇒
Rµνµβ;σ −Rµνµσ;β +Rµνβσ;µ = 0

R νβ;σ −R νσ;β +Rµνβσ;µ = 0
(6.13)



6.3 Einstein's �eld equations 97further 
ontra
tion of ν and σ gives
Rσβ;σ −Rσσ;β +Rσµσβ;µ = 0

Rσβ;σ −R ;β +Rσβ;σ = 0

∴ 2Rσβ;σ = R ;β

(6.14)Thus, we have 
al
ulated the divergen
e of the Ri

i tensor,
Rσβ;σ =

1

2
R ;β (6.15)Now we use this expression together with the fa
t that the metri
 tensor is 
o-variant and divergen
e free to 
onstru
t a new divergen
e free 
urvature tensor.

Rσβ;σ −
1

2
R ;β = 0 (6.16)Keeping in mind that (gσβR);σ = gσβR;σ we multiply (6.16) by gβα to get

gβαR
σ
β;σ − gβα

1

2
R ;β = 0

(
gβαR

σ
β

)

;σ
− 1

2

(
gβαR

)

;β
= 0

(6.17)inter
hanging σ and β in the �rst term of the last equation:
(
gσαR

β
σ

)

;β
− 1

2

(
gβαR

)

;β
= 0

⇒
(
Rβα − 1

2
δβαR

)

;β

= 0
(6.18)sin
e gσαRβσ=δσαRβσ=Rβα. So that Rβα − 1

2δ
β
αR is the divergen
e free 
urvaturetensor desired.This tensor is 
alled the Einstein tensor and its 
ovariant 
omponents aredenoted by Eαβ . That is

Eαβ = R αβ −
1

2
g αβR (6.19)NOTE THAT: Eµν;ν = 0 → 4 equations, giving only 6 equations from E µν ,whi
h se
ures a free 
hoi
e of 
oordinate system.6.3 Einstein's �eld equationsEinstein's �eld equations:

Eµν = κTµν (6.20)
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Rµν −

1

2
gµνR = κTµν (6.21)Contra
tion gives:

R− 1

2
4R = κT , where T ≡ T µµ

R = −κT
(6.22)

Rµν =
1

2
gµν(−κT ) + κTµν , (6.23)Thus the �eld equations may be written in the form

Rµν = κ(Tµν −
1

2
gµνT ) (6.24)In the Newtonian limit the metri
 may be written

ds2 = −
(

1 +
2φ

c2

)
c2dt2 + (1 + hii)(dx

2 + dy2 + dz2) (6.25)where the Newtonian potential |φ| ≪ c2, and hii is a perturbation of the metri
satisfying |hii| << 1. We also have T00 ≫ Tkk and T ≈ −T00. Then the
00-
omponent of the �eld equations be
omes

R00 ≈ κ

2
T00 (6.26)Furthermore we have

R00 = Rµ0µ0 = Ri0i0

= Γi00,i − Γi0i,0

=
∂Γk00
∂xk

=
1

c2
∇2φ (6.27)Sin
e T00 ≈ ρc2 eq.(6.26) 
an be written ∇2φ = 1

2κc
4ρ. Comparing this equationwith the Newtonian law of gravitation on lo
al form: ∇2φ = 4πGρ, we see that

κ = 8πG
c4

.In 
lassi
al va
uum we have : Tµν = 0, whi
h gives
Eµν = 0 or Rµν = 0 . (6.28)These are the �va
uum �eld equations�. Note that Rµν = 0 does not imply

Rµναβ = 0.



6.4 The �geodesi
 postulate� as a 
onsequen
e of the �eld equations 99Digression 6.3.1 (Lagrange (variation prin
iple))It was shown by Hilbert that the �eld equations may be dedu
ed from a variationprin
iple with a
tion ∫
R
√−gd4x , (6.29)where R√−g is the Lagrange density. One may also in
lude a so-
alled 
osmologi
al
onstant Λ: ∫

(R + 2Λ)
√−gd4x (6.30)The �eld equations with 
osmologi
al 
onstant are

Rµν −
1

2
gµνR+ Λgµν = κTµν (6.31)6.4 The �geodesi
 postulate� as a 
onsequen
e of the�eld equationsThe prin
iple that free parti
les follow geodesi
 
urves has been 
alled the�geodesi
 postulate�. We shall now show that the �geodesi
 postulate� followsas a 
onsequen
e of the �eld equations.Consider a system of free parti
les in 
urved spa
e-time. This system 
anbe regarded as a pressure-free gas. Su
h a gas is 
alled dust. It is des
ribed byan energy-momentum tensor
T µν = ρuµuν (6.32)where ρ is the rest density of the dust as measured by an observer at rest in thedust and uµ are the 
omponents of the four-velo
ity of the dust parti
les.Einstein's �eld equations as applied to spa
e-time �lled with dust, take theform

Rµν − 1

2
gµνR = κρuµuν (6.33)Be
ause the divergen
e of the left hand side is zero, the divergen
e of the righthand side must be zero, too

(ρuµuν);ν = 0 (6.34)or
(ρuνuµ);ν = 0 (6.35)we now regard the quantity in the parenthesis as a produ
t of ρuν and uµ. Bythe rule for di�erentiating a produ
t we get

(ρuν);νu
µ + ρuνuµ;ν = 0 (6.36)



100 Chapter 6. Einstein's Field EquationsSin
e the four-velo
ity of any obje
t has a magnitude equal to the velo
ity oflight we have
uµu

µ = −c2 (6.37)Di�erentiation gives
(uµu

µ);ν = 0 (6.38)Using, again, the rule for di�erentiating a produ
t, we get
uµ;νu

µ + uµu
µ
;ν = 0 (6.39)From the rule for raising an index and the freedom of 
hanging a summationindex from α to µ, say, we get

u µ;νu
µ = uµuµ;ν = gµαuαuµ;ν = uαg

µαuµ;ν = uαu
α
;ν = uµu

µ
;ν (6.40)Thus the two terms of eq.(6.39) are equal. It follows that ea
h of them are equalto zero. So we have

uµu
µ
;ν = 0 (6.41)Multiplying eq.(6.36) by uµ, we get

(ρuν);νuµu
µ + ρuνuµu

µ
;ν = 0 (6.42)Using eq.(6.37) in the �rst term, and eq.(6.41) in the last term, whi
h thenvanishes, we get

(ρuν);ν = 0 (6.43)Thus the �rst term in eq.(6.36) vanishes and we get
ρuνuµ;ν = 0 (6.44)Sin
e ρ 6= 0 we must have
uνuµ;ν = 0 (6.45)This is just the geodesi
 equation. Con
lusion: It follows from Einstein's�eld equations that free parti
les move along paths 
orresponding to geodesi

urves of spa
e-time.



Chapter 7The S
hwarzs
hild spa
etime7.1 S
hwarzs
hild's exterior solutionThis is a solution of the va
uum �eld equations Eµν = 0 for a stati
 spheri
allysymmetri
 spa
etime. One 
an then 
hoose the following form of the line element(employing units so that 
=1),
ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

dΩ2 = dθ2 + sin2 θdφ2
(7.1)These 
oordinates are 
hosen so that the area of a sphere with radius r is 4πr2.Physi
al distan
e in radial dire
tion, 
orresponding to a 
oordinate distan
e

dr, is dlr =
√
grrdr = eβ(r)dr.Here follows a stepwise algorithm to determine the 
omponents of the Ein-stein tensor by using the Cartan formalism:1. Using orthonormal basis we �nd

ωt̂ = eα(r)dt , ωr̂ = eβ(r)dr , ωθ̂ = rdθ , ωφ̂ = r sin θdφ (7.2)2. Computing the 
onne
tion forms by applying Cartan's 1. stru
ture equa-tions
dωµ̂ = −Ωµ̂ν̂ ∧ ων̂ (7.3)

dωt̂ = eαα′dr ∧ dt
= eαα′e−βωr̂ ∧ e−αωt̂

= −e−βα′ωt̂ ∧ ωr̂

= −Ωt̂
r̂ ∧ ωr̂

(7.4)
∴ Ωt̂

r̂ = e−βα′ωt̂ + f1ω
r̂ (7.5)101
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hwarzs
hild spa
etime3. To determine the f-fun
tions we apply the anti-symmetry
Ω µ̂ν̂ = −Ω ν̂µ̂ (7.6)This gives (the non-zero 
onne
tion forms):

Ωr̂
φ̂

= −Ωφ̂
r̂ = −1

r
e−βωφ̂

Ωθ̂
φ̂

= −Ωφ̂

θ̂
= −1

r
cot θωφ̂

Ωt̂
r̂ = +Ωr̂

t̂
= e−βα′ωt̂

Ωr̂
θ̂

= −Ωθ̂
r̂ = −1

r
e−βωθ̂

(7.7)
4. We then pro
eed to determine the 
urvature forms by applying Cartan's2nd stru
ture equations

Rµ̂ν̂ = dΩµ̂
ν̂ + Ωµ̂α̂ ∧ Ωα̂ν̂ (7.8)whi
h gives:

Rt̂r̂ = −e−2β(α′′ + α′2 − α′β′)ωt̂ ∧ ωr̂

Rt̂
θ̂

= −1

r
e−2βα′ωt̂ ∧ ωθ̂

Rt̂
φ̂

= −1

r
e−2βα′ωt̂ ∧ ωφ̂

Rr̂
θ̂

=
1

r
e−2ββ′ωr̂ ∧ ωθ̂

Rr̂
φ̂

=
1

r
e−2ββ′ωr̂ ∧ ωφ̂

Rθ̂
φ̂

=
1

r2
(1 − e−2β)ωθ̂ ∧ ωφ̂

(7.9)
5. By applying the following relation

Rµ̂ν̂ =
1

2
Rµ̂
ν̂α̂β̂

ωα̂ ∧ ωβ̂ (7.10)we �nd the 
omponents of Riemann's 
urvature tensor.6. Contra
tion gives the 
omponents of Ri

i's 
urvature tensor
Rµ̂ν̂ ≡ Rα̂µ̂α̂ν̂ (7.11)7. A new 
ontra
tion gives Ri

i's 
urvature s
alar
R ≡ Rµ̂µ̂ (7.12)
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hwarzs
hild's exterior solution 1038. The 
omponents of the Einstein tensor 
an then be found
Eµ̂ν̂ = Rµ̂ν̂ −

1

2
ηµ̂ν̂R , (7.13)where ηµ̂ν̂ = diag(−1, 1, 1, 1). We then have:

Et̂t̂ =
2

r
e−2ββ′ +

1

r2
(1 − e−2β)

Er̂r̂ =
2

r
e−2βα′ − 1

r2
(1 − e−2β)

Eθ̂θ̂ = Eφ̂φ̂ = e−2β(α′′ + α′2 − α′β′ +
α′

r
− β′

r
)

(7.14)We want to solve the equations Eµ̂ν̂ = 0. We get only 2 independentequations, and 
hoose to solve those:
Et̂t̂ = 0 and Er̂r̂ = 0 (7.15)By adding the 2 equations we get:

Et̂t̂ + Er̂r̂ = 0

⇒ 2

r
e−2β(β′ + α′) = 0

⇒ (α+ β)′ = 0 ⇒ α+ β = K1 (
onst) (7.16)We now have:
ds2 = −e2αdt2 + e2βdr2 + r2dΩ2 (7.17)By 
hoosing a suitable 
oordinate time, we 
an a
hieve

K1 = 0 ⇒ α = −βSin
e we have ds2 = −e2αdt2 + e−2αdr2 + r2dΩ2, this means that grr =
− 1
gtt
. We still have to solve one more equation to get the 
omplete solution,and 
hoose the equation Et̂t̂ = 0, whi
h gives

2

r
e−2ββ′ +

1

r2
(1 − e−2β) = 0This equation 
an be written:

1

r2
d

dr
[r(1 − e−2β)] = 0

∴ r(1 − e−2β) = K2 (
onst) (7.18)If we 
hoose K2 = 0 we get β = 0 giving α = 0 and
ds2 = −dt2 + dr2 + r2dΩ2 , (7.19)
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hwarzs
hild spa
etimewhi
h is the Minkowski spa
e-time des
ribed in spheri
al 
oordinates. Ingeneral, K2 6= 0 and 1 − e−2β = K2

r ≡ K
r , giving

e2α = e−2β = 1 − K

rand
ds2 = −(1 − K

r
)dt2 +

dr2

1 − K
r

+ r2dΩ2 (7.20)We 
an �nd K by going to the Newtonian limit. We 
al
ulate the gravita-tional a

eleration ( that is, the a

eleration of a free parti
le instantanously atrest ) in the limit of a weak �eld of a parti
le at a distan
e r from a spheri
almass M . Newtonian:
g =

d2r

dt2
= −GM

r2
(7.21)We anti
ipate that r >> K. Then the proper time τ of a parti
le will beapproximately equal to the 
oordinate time, sin
e dτ =

√
1 − K

r dtThe a

eleration of a parti
le in 3-spa
e, is given by the geodesi
 equation:
d2xµ

dτ2
+ Γµαβu

αuβ = 0

uα =
dxα

dτ

(7.22)For a parti
le instantanously at rest in a weak �eld, we have dτ ≈ dt. Using
uµ = (1, 0, 0, 0), we get:

g =
d2r

dt2
= −Γrtt (7.23)This equation gives a physi
al interpretation of Γrtt as the gravitational a

eler-ation. This is a mathemati
al way to express the prin
iple of equivalen
e: Thegravitational a

eleration 
an be transformed to 0, sin
e the Christo�el symbolsalways 
an be transformed to 0 lo
ally, in a freely falling non-rotating frame,i.e. a lo
al inertial frame.

Γrtt =
1

2
grα︸︷︷︸

1
grα

(∂gαt
∂t︸ ︷︷ ︸
=0

+
∂gαt
∂t︸ ︷︷ ︸
=0

−∂gtt
∂xα

)

= − 1

2grr

∂gtt
∂r

gtt = −(1 − K

r
) , ∂gtt

∂r
= −K

r2

g = −Γrtt = − K

2r2
= −GM

r2gives K = 2GMor with 
: K =
2GM

c2

(7.24)
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hwarzs
hild spa
etime 105Then we have the line element of the exterior S
hwarzs
hild metri
:
ds2 = −(1 − 2GM

c2r
)c2dt2 +

dr2

1 − 2GM
c2r

+ r2dΩ2 (7.25)
RS ≡ 2GM

c2
is the S
hwarzs
hild radius of a mass M.Weak �eld: r >> RS .For the earth: RS ∼ 0.9cmFor the sun: RS ∼ 3kmA standard 
lo
k at rest in the S
hwarzs
hild spa
etime shows a proper time τ :

dτ =

√
1 − RS

r
dt (7.26)So the 
oordinate 
lo
ks showing t, are ti
king with the same rate as the stan-dard 
lo
ks far from M. Coordinate 
lo
ks are running equally fast no matterwhere they are. If they hadn't, the spatial distan
e between simultanous eventswith given spatial 
oordinates, would depend on the time of the measuring ofthe distan
e. Then the metri
 would be time dependent. Time is not runningat the S
hwarzs
hild radius.De�nition 7.1.1 (Physi
al singularity)A physi
al singularity is a point where the 
urvature is in�nitely large.De�nition 7.1.2 (Coordinate singularity)A 
oordinate singularity is a point (or a surfa
e) where at least one of the 
omponentsof the metri
 tensor is in�nitely large, but where the 
urvature of spa
etime is �nite.Krets
hmann's 
urvature s
alar is RµναβRµναβ . From the S
hwarzs
hild metri
,we get:

RµναβR
µναβ =

48G2M2

r8
(7.27)whi
h diverges only at the origin. Sin
e there is no physi
al singularity at

r = RS , the singularity here is just a 
oordinate singularity, and 
an be re-moved by a transformation to a 
oordinate system falling inward. (Eddington -Finkelstein 
oordinates, Kruskal - Szekers analyti
al extension of the des
riptionof S
hwarzs
hild spa
etime to in
lude the area inside RS).7.2 Radial free fall in S
hwarzs
hild spa
etimeThe Lagrangian fun
tion of a parti
le moving radially in S
hwarzs
hild spa
e-time
L = −1

2
(1 − RS

r
)c2 ṫ2 +

1

2

ṙ2

(1 − RS

r )
, · ≡ d

dτ
(7.28)
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hild spa
etimewhere τ is the time measured on a standard 
lo
k whi
h the parti
le is 
arrying.The momentum 
onjugate pt of the 
y
li
 
oordinate t, is a 
onstant of motion.
pt =

∂L

∂ṫ
= −(1 − RS

r
)c2ṫ (7.29)4-velo
ity identity: uµuµ = −c2:

−(1 − RS
r

)c2ṫ2 +
ṙ2

1 − RS

r

= −c2 (7.30)Inserting the expression for ṫ gives:
ṙ2 − p2

t

c2
= −(1 − RS

r
)c2 (7.31)Boundary 
onditions: the parti
le is falling from rest at r = r0.

pt = −(1 − RS
r0

)
c2√

1 − RS

r0︸ ︷︷ ︸
ṫ(r=r0)

= −
√

1 − RS
r0
c2 (7.32)

giving
ṙ =

dr

dτ
= −c

√
RS
r0

√
r0 − r

r
(7.33)

∫
dr√
r0−r
r

= −c
√
RS
r0
τ (7.34)Integration with τ = 0 for r = 0 gives:

τ = −r0
c

√
r0
RS

(arcsin

√
r

r0
−
√

r

r0

√
1 − r

r0
) (7.35)

τ is the proper time that the parti
le spends on the part of the fall whi
h isfrom r to r=0. The proper travelling time from the initial point r = r0 to r = 0is
|τ(r0)| = −π

2

√
r0
RS

r0
c

(7.36)If the parti
le falls from r0 = RS the travelling time is
|τ | =

π

2

RS
c

=
πGm

c3
(7.37)



7.3 Light 
ones in S
hwarzs
hild spa
etime 1077.3 Light 
ones in S
hwarzs
hild spa
etimeThe S
hwarzs
hild line-element (with c = 1) is
ds2 = −(1 − RS

r
)dt2 +

dr2

(1 − RS

r )
+ r2dΩ2 (7.38)We will look at radially moving photons (ds2 = dΩ2 = 0). We then get

dr√
1 − RS

r

= ±
√

1 − RS
r
dt⇔ r

1
2 dr√
r −RS

= ±
√
r −RS

r
1

2

dt

rdr

r −RS
= ±dt

(7.39)with + for outward motion and − for inward motion. For inwardly movingphotons, integration yields
r + t+RS ln | r

RS
− 1| = k = constant (7.40)We now introdu
e a new time 
oordinate t′ su
h that the equation of motionfor photons moving inwards takes the following form

r + t′ = k ⇒ dr

dt′
= −1

∴ t′ = t+RS ln | r
RS

− 1|
(7.41)The 
oordinate t′ is 
alled an ingoing Eddington-Finkelstein 
oordinate. Thephotons here always move with the lo
al velo
ity of light, c. For photons movingoutwards we have

r +RS ln | r
RS

− 1| = t+ k (7.42)Making use of t = t′ −RS ln | rRS
− 1| we get

r + 2RS ln | r
RS

− 1| = t′ + k

⇒ dr

dt′
+

2RS
r −RS

dr

dt′
= 1 ⇔ r +RS

r −RS

dr

dt′
= 1

⇔ dr

dt′
=
r −RS
r +RS

(7.43)Making use of ordinary S
hwarzs
hild 
oordinates we would have gotten thefollowing 
oordinate velo
ities for inn- and outwardly moving photons:
dr

dt
= ±(1 − RS

r
) (7.44)whi
h shows us how light is de
elerated in a gravitational �eld. Figure 7.1 showshow this is viewed by a non-moving observer lo
ated far away from the mass. InFigure 7.2 we have instead used the alternative time 
oordinate t′. The spe
ialtheory of relativity is valid lo
ally, and all material parti
les thus have to remaininside the light 
one.
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S

ho
ri

zo
n

RS

r

Trajectory of transmitter

t

?

Light cone

Collaps of light cone

at the horizon, r = R

Figure 7.1: At a radius r = RS the light 
ones 
ollapse, and nothing 
an anylonger es
ape, when we use the S
hwarzs
hild 
oordinate time.
t’

ho
ri

zo
n

RS

r

Trajectory of transmitter

Figure 7.2: Using the ingoing Eddingto n-Finkelstein time 
oordinate there is no
ollapse of the light 
one at r = RS . Instead we get a 
ollapse at the singularityat r = 0. The angle between the left part of the light 
one and the t′-axis isalways 45 degrees. We also see that on
e the transmitter gets inside the horizonat r = RS , no parti
les 
an es
ape.
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al extension of the S
hwarzs
hild spa
etime 1097.4 Analyti
al extension of the S
hwarzs
hild spa
e-timeThe S
hwarzs
hild 
oordinates are 
omoving with a stati
 referen
e frame out-side a spheri
al mass distribution. If the mass has 
ollapsed to a bla
k holethere exist a horizon at the S
hwarzs
hild radius. As we have seen in se
tion7.3 there do not exist stati
 observers at �nite radii inside the horizon. Hen
e,the S
hwarzs
hild 
oordinates are well de�ned only outside the horizon.Also the rr-
omponent of the metri
 tensor has a 
oordinate singularity atthe S
hwarzs
hild radius. The 
urvature of spa
etime is �nite here.Kruskal and Szekeres have introdu
ed new 
oordinates that are well de�nedinside as well as outside the S
hwarzs
hild radius, and with the property thatthe metri
 tensor is non-singular for all r > 0.In order to arrive at these 
oordinates we start by 
onsidering a photonmoving radially inwards. From eq. (7.40) we then have
t = −r −RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣+ v (7.45)where v is a 
onstant along the world line of the photon. We introdu
e a newradial 
oordinate
r∗ ≡ r +RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣ (7.46)Then the equation of the worldline of the photon takes the form
t+ r∗ = v (7.47)The value of the 
onstant v does only depend upon the point of time when thephoton was emitted. We may therefore use v as a new time 
oordinate.For an outgoing photon we get in the same way
t− r∗ = u (7.48)where u is a 
onstant of integration, whi
h may be used as a new time 
oordinatefor outgoing photons. The 
oordinates u and v are the generalization of the light
one 
oordinates of Minkowski spa
etime to the S
hwarz
hild spa
etime.From eqs. (7.47) and (7.48) we get

dt =
1

2
(dv + du) (7.49)

dr∗ =
1

2
(dv − du) (7.50)and from eq. (7.46)

dr =

(
1 − Rs

r

)
dr∗ (7.51)Inserting these di�erentials into eq. (7.38) we arrive at a new form of theS
hwarzs
hild line-element,

ds2 = −
(

1 − Rs
r

)
du dv + r2dΩ2 (7.52)
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hild spa
etimeThe metri
 is still not well behaved at the horizon. Introdu
ing the 
oordinates
U = −e−

u
2Rs (7.53)

V = e
v

2Rs (7.54)gives
UV = −e

v−u
2Rs = −e

r∗

Rs = −
∣∣∣∣
Rs
r

− 1

∣∣∣∣ e
r

Rs (7.55)and
du dv = −4R 2

s

dUdV

UV
(7.56)The line-element (7.52) then takes the form

ds2 = −4R 3
s

r
e−

r
Rs dUdV + r2dΩ2 (7.57)This is the �rst form of the Kruskal-Szekeres line-element. Here is no 
oordinatesingularity, only a physi
al singularity at r = 0.We may furthermore introdu
e two new 
oordinates

T =
1

2
(V + U) =

∣∣∣∣
r

Rs
− 1

∣∣∣∣

1
2

e
r

2Rs sinh
t

2Rs
(7.58)

Z =
1

2
(V − U) =

∣∣∣∣
r

Rs
− 1

∣∣∣∣

1
2

e
r

2Rs cosh
t

2Rs
(7.59)Hen
e

V = T + Z (7.60)
U = T − Z (7.61)giving

dUdV = dT 2 − dZ2 (7.62)Inserting this into eq. (7.57) we arrive at the se
ond form of the Kruskal-Szekeresline-element
ds2 = −4R 3

s

r
e−

r
Rs

(
dT 2 − dZ2

)
+ r2dΩ2 (7.63)The inverse transformations of eqs. (7.58) and (7.59) is

∣∣∣∣
r

Rs
− 1

∣∣∣∣ e
r

Rs = Z2 − T 2 (7.64)
tanh

t

2Rs
=
T

Z
(7.65)Note from eq. (7.63) that with the Kruskal-Szekeres 
oordinates T and Zthe equation of the radial null geodesi
s has the same form as in �at spa
etime

Z = ±T + 
onstant (7.66)
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hwarzs
hild metri
We will now look at a stati
, spheri
ally symmetri
 spa
e. A 
urved simultaneityplane (dt = 0) through the equatorial plane (dθ = 0) has the line element
ds2 = grrdr

2 + r2dφ2 (7.67)with a radial 
oordinate su
h that a 
ir
le with radius r has a 
ir
umferen
e oflength 2πr.We now embed this surfa
e in a �at 3-dimensional spa
e with 
ylinder 
o-ordinates (z, r, φ) and line element
ds2 = dz2 + dr2 + r2dφ2 (7.68)The surfa
e des
ribed by the line element in (7.67) has the equation z = z(r).The line element in (7.68) is therefore written as

ds2 = [1 + (
dz

dr
)2]dr2 + r2dφ2 (7.69)Demanding that (7.69) is in agreement with (7.67) we get

grr = 1 + (
dz

dr
)2 ⇔ dz

dr
= ±

√
grr − 1 (7.70)Choosing the positive solution gives

dz =
√
grr − 1dr (7.71)In the S
hwarzs
hild spa
etime we have

grr =
1

1 − RS

r

(7.72)Making use of this we �nd z:
z =

∫ r

RS

dr√
r
RS

− 1
=
√

4RS(r −RS) (7.73)This is shown in Figure 7.3.7.6 De
eleration of lightThe radial speed of light in S
hwarzs
hild 
oordinates found by putting ds2 =
dΩ2 = 0 in eq. (7.38) is

c̄ = 1 − RS
r

(7.74)To measure this e�e
t one 
an look at how long it takes for light to get fromMer
ury to the Earth. This is illustrated in Figure 7.4. The travel time from
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Figure 7.3: Embedding of the S
hwarzs
hild metri
.
z

Sun
x

b

Mercury

z1 <0

z2 >0
r2

r1

EarthFigure 7.4: General relativity predi
ts that light traveling from Mer
ury to theEarth will be delayed due to the e�e
t of the Suns gravity �eld on the speed oflight. This e�e
t has been measured.
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z1 to z2 is

∆t =

∫ z2

z1

dz

1 − RS

r

≈
∫ z2

z1

(1 +
RS
r

)dz =

∫ z2

z1

(1 +
RS√
b2 + z2

)dz

= z2 + |z1| +RS ln

√
z22 + b2 + z2√
z12 + b2 − |z1|

(7.75)where RS is the S
hwarzs
hild radius of the Sun.The de
eleration is greatest when Earth and Mer
ury (where the light isre�e
ted) are on nearly opposite sides of the Sun. The impa
t parameter b isthen small. A series expansion to the lowest order of b/z gives
∆t = z2 + |z1| +RS ln

4|z1|z2
b2

(7.76)The last term represents the extra traveling time due to the e�e
t of the Sunsgravity �eld on the speed of light. The journey takes longer time:
RS = the S
hwarzs
hild radius of the Sun ∼ 3km
|z1|= the radius of Earth's orbit = 15 × 1010m
z2 = the radius of Mer
ury's orbit = 5.8 × 1010m
b = R⊙ = 7 × 108mgive a delay of 1.1 × 10−4s. In addition to this one must also, of 
ourse, takeinto a

ount among other things the e�e
ts of the 
urvature of spa
etime nearthe Sun and atmospheri
 e�e
ts on Earth.7.7 Parti
le traje
tories in S
hwarzs
hild 3-spa
e

L =
1

2
g µνẊ

µẊν

= −1

2

(
1 − Rs

r

)
ṫ2 +

1
2 ṙ

2

1 − Rs

r

+
1

2
r2θ̇2 +

1

2
r2 sin2 θφ̇2

(7.77)Sin
e t is a 
y
li
 
oordinate
−pt = −∂L

∂ṫ
=

(
1 − Rs

r

)
ṫ = constant = E (7.78)where E is the parti
le's energy as measured by an observer "far away" (r ≫ Rs).Also φ is a 
y
li
 
oordinate so that

pφ =
∂L

∂φ̇
= r2 sin2 θφ̇ = constant (7.79)where pφ is the parti
le's orbital angular momentum.
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hwarzs
hild spa
etimeMaking use of the 4-velo
ity identity ~U2 = g µνẊ
µẊν = −1 we transformthe above to get

−
(

1 − Rs
r

)
ṫ2 +

ṙ2

1 − Rs

r

+ r2θ̇2 + r2 sin2 θφ̇2 = −1 (7.80)whi
h on substitution for ṫ = E
1−Rs

r

and φ̇ =
pφ

r2 sin2 θ
be
omes

− E2

1 − Rs

r

+
ṙ2

1 − Rs

r

+ r2θ̇2 +
p2
φ

r2 sin2 θ
= −1 (7.81)Now, refering ba
k to the Lagrange equation

d

dτ

(
∂L

∂Ẋµ

)
− ∂L

∂Xµ
= 0 (7.82)we get, for θ

(r2θ̇)• = r2 sin θ cos θφ̇2

=
p2
φ cos θ

r2 sin3 θ

(7.83)Multiplying this by r2θ̇ we get
(r2θ̇)(r2θ̇)• =

cos θθ̇

sin3 θ
p2
φ (7.84)whi
h, on integration, gives

(r2θ̇)2 = k −
( pφ

sin θ

)2 (7.85)where k is the 
onstant of integration.Be
ause of the spheri
al geometry we are free to 
hoose a 
oordinate systemsu
h that the parti
le moves in the equatorial plane and along the equator at agiven time t = 0. That is θ = π
2 and θ̇ = 0 at time t = 0. This determines the
onstant of integration and k = p2

φ su
h that
(r2θ̇)2 = p2

φ

(
1 − 1

sin2 θ

) (7.86)The RHS is negative for all θ 6= π
2 . It follows that the parti
le 
annot deviatefrom its original (equatorial) traje
tory. Also, sin
e this parti
ular 
hoi
e oftraje
tory was arbitrary we 
an 
on
lude, quite generally, that any motion offree parti
les in a spheri
ally symmetri
 gravitational �eld is planar motion.
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− E2

1 − Rs

r

+
ṙ2

1 − Rs

r

+
p2
φ

r2
= −1 (7.87)that is

ṙ2 = E2 −
(

1 − Rs
r

)(
1 +

p2
φ

r2

) (7.88)This 
orresponds to an energy equation with an e�e
tive potential V (r) givenby
V 2(r) =

(
1 − Rs

r

)(

1 +
p2
φ

r2

)

ṙ2 + V 2(r) = E2

⇒ V =

√

1 − rs
r

+
p2
φ

r2
−
Rsp

2
φ

r3

≅ 1 − 1

2

Rs
r

+
1

2

p2
φ

r2

(7.89)
Newtonian potential VN is de�ned by using the last expression in

VN = V − 1 ⇒ VN = −GM
r

+
p2
φ

2r2
(7.90)The possible traje
tories of parti
les in the S
hwarzs
hild 3-spa
e are showns
hemati
ally in Figure 7.5 as fun
tions of position and energy of the parti
lein the Newtonian limit.To take into a

ount the relativisti
 e�e
ts the above pi
ture must be mod-i�ed. We introdu
e dimensionless variables

X =
r

GM
and k =

pφ
GMm

(7.91)The potential V 2(r) now take the form
V =

(
1 − 2

X
+
k2

X2
− 2k2

X3

)1/2 (7.92)For r equal to the S
hwarzs
hild radius (X = 2) we have
V (2) =

√
1 − 1 +

k2

4
− 2k2

8
= 0 (7.93)For k2 < 12 parti
les will fall in towards r = 0.
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Figure 7.5: Newtonian parti
le traje
tories are fun
tions of the position andenergy of the parti
le. Note the 
entrifugal barrier. Due to this parti
leswith pφ 6= 0 
annot arrive at r = 0.An orbit equation is one whi
h 
onne
ts r and φ. So for motion in theequatorial plane for weaks �elds we have
dφ

dt
=

pφ
mr2

• ≡ d

dt
=

pφ
mr2

d

dφ
(7.94)Introdu
ing the new radial 
oordinate u ≡ 1

r our equations transform to
du

dφ
= − 1

r2
dr

dφ
= − 1

r2
mr2

pφ

dr

dt
= −m

pφ
ṙ

⇒ ṙ = −pφ
m

du

dφ

(7.95)Substitution from above for ṙ in the energy equation yields the orbit equation,
(
du

dφ

)2

+ (1 − 2GMu)

(
u2 +

m2

p2
φ

)
=
E2

p2
φ

. (7.96)Di�erentiating this, we �nd
d2u

dφ2
+ u =

GMm2

p2
φ

+ 3GMu2 (7.97)The last term on the RHS is a relativisti
 
orre
tion term.
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20 40 60 80 100

0.9

0.95

1.05

Figure 7.6: When relativisti
 e�e
ts are in
luded there is no longer a limit tothe values that r 
an take and 
ollapse to a singularity is "possible". Note that
V 2 is plotted here.7.8 Classi
al tests of Einstein's general theory of rel-ativity7.8.1 The Hafele-Keating experimentHafele and Keating measured the di�eren
e in time shown on moving and sta-tionary atomi
 
lo
ks. This was done by �ying around the Earth in the East-West dire
tion 
omparing the time on the 
lo
k in the plane with the time on a
lo
k on the ground.The proper time interval measured on a 
lo
k moving with a velo
ity vi = dxi

dtin an arbitrary 
oordinate system with metri
 tensor gµν is given by
dτ = (−gµν

c2
dxµdxν)

1
2 , dx0 = cdt

= (−g00 − 2gi0
vi

c
− v2

c2
)

1
2 dt

v2 ≡ gijv
ivj

(7.98)
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hwarzs
hild spa
etimeFor a diagonal metri
 tensor (gi0 = 0) we get
dτ = (−g00 −

v2

c2
)

1
2dt , v2 = gii(v

i)2 (7.99)We now look at an idealized situation where a plane �ies at 
onstant altitudeand with 
onstant speed along the equator.
dτ = (1 − RS

r
− v2

c2
)

1
2 dt , r = R+ h (7.100)To the lowest order in RS

r and v2

c2
we get

dτ = (1 − RS
2r

− 1

2

v2

c2
)dt (7.101)The speed of the moving 
lo
k is

v = (R+ h)Ω + u (7.102)where Ω is the angular velo
ity of the Earth and u is the speed of the plane. Aseries expansion and use of this value for v gives
∆τ = (1 − GM

Rc2
− 1

2

R2Ω2

c2
+
gh

c2
− 2RΩu+ u2

2c2
)∆t , g =

GM

R2
−RΩ2(7.103)

u > 0 when �ying in the dire
tion of the Earth's rotation, i.e. eastwards. For a
lo
k that is left on the airport (stationary, h = u = 0) we get
∆τ0 = (1 − GM

Rc2
− 1

2

R2Ω2

c2
)∆t (7.104)To the lowest order the relative di�eren
e in travel time is

k =
∆τ − ∆τ0

∆τ0
∼= gh

c2
− 2RΩu+ u2

2c2
(7.105)Measurements:Travel time: ∆τ0 = 1.2 × 105s (a little over 24h)Traveling eastwards: ke = −1.0 × 10−12Traveling westwards: kw = 2.1 × 10−12

(∆τ − ∆τ0)e = −1.2 × 10−7s ≈ −120ns
(∆τ − ∆τ0)w = 2.5 × 10−7s ≈ 250ns
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al tests of Einstein's general theory of relativity 1197.8.2 Mer
ury's perihelion pre
essionThe orbit equation for a planet orbiting a star of mass M is given by equation(7.97),
d2u

dφ2
+ u =

GMm2

pφ2
+ ku2 (7.106)where k = 3GM . We will be slightly more general, and allow k to be a theory-or situation dependent term. This equation has a 
ir
ular solution, su
h that

u0 =
GMm2

pφ2
+ ku0

2 (7.107)With a small perturbation from the 
ir
ular motion u is 
hanged by u1, where
u1 ≪ u0. To lowest order in u1 we have

d2u1

dφ2
+ u0 + u1 =

GMm2

pφ2
+ ku0

2 + 2ku0u1 (7.108)or
d2u1

dφ2
+ u1 = 2ku0u1 ⇔ d2u1

dφ2
+ (1 − 2ku0)u1 = 0 (7.109)For ku0 ≪ 1 the equilibrium orbit is stable and we get a periodi
 solution:

u1 = ǫu0 cos[
√

1 − 2ku0(φ− φ0)] (7.110)where ǫ and φ0 are integration 
onstants. ǫ is the e

entri
ity of the orbit. We
an 
hoose φ0 = 0 and then have
1

r
= u = u0 + u1 = u0[1 + ǫ cos(

√
1 − 2ku0φ) (7.111)Let f ≡

√
1 − 2ku0 ⇒

1

r
=

1

r0
(1 + ǫ cos fφ) (7.112)For f = 1 (k = 0, no relativisti
 term) this expression des
ribes a non-pre
essingellipti
 orbit (a Kepler-orbit).For f < 1 (k > 0) the ellipse is not 
losed. To give the same value for r ason a given starting point, φ has to in
rease by 2π

f > 2π. The extra angle perrotation is 2π( 1
f − 1) = ∆φ1.

∆φ1 = 2π(
1√

1 − 2ku0
− 1) ≈ 2πku0 (7.113)Using general relativity we get for Mer
ury

k = 3GM ⇒ ∆φ = 6πGMu0 ≈ 6πGM
GMm2

pφ2
(7.114)

∆φ = 6π(
GMm

pφ
)2per orbit. (7.115)whi
h in Mer
ury's 
ase amounts to (∆φ)
entury = 43′′
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hwarzs
hild spa
etime7.8.3 De�e
tion of lightThe orbit equation for a free parti
le with mass m = 0 is
d2u

dφ2
+ u = ku2 (7.116)If light is not de�e
ted it will follow the straight line

cosφ =
b

r
= b u0 (7.117)where b is the impa
t parameter of the path. This is the horizontal dashed linein Figure 7.7. The 0'th order solution (7.117) full�lls

d2u0

dφ2
+ u0 = 0 (7.118)Hen
e it is a solution of (7.116) with k = 0.

photon

φ

2

Sun
M, GM<<b

b
r

∆θ

Figure 7.7: Light traveling 
lose to a massive obje
t is de�e
ted.The perturbed solution is
u = u0 + u1 , |u1| ≪ u0 (7.119)Inserting this into the orbit equation gives

d2u0

dφ2
+
d2u1

dφ2
+ u0 + u1 = ku 2

0 + 2ku0u1 + ku 2
1 (7.120)The �rst and third term at the left hand side 
an
el ea
h other due to eq. (7.118℄and the last term at the right hand side is small to se
ond order in u1 and willbe negle
ted. Hen
e we get

d2u1

dφ2
+ u1 = ku 2

0 + 2ku0u1 (7.121)



7.8 Classi
al tests of Einstein's general theory of relativity 121The last term at the right hand side is mu
h smaller then the �rst, and will alsobe negle
ted. Inserting for u0 from (7.117) we then get
d2u1

dφ2
+ u1 =

k

b2
cos2 φ (7.122)This equation has a parti
ular solution of the form

u1p = A+B cos2 φ (7.123)Inserting this into (7.122) we �nd
A =

2k

3b2
, B = − k

3b2
(7.124)Hen
e

u1p =
k

3b2
(
2 − cos2 φ

) (7.125)giving
1

r
= u = u0 + u1 =

cosφ

b
+

k

3b2
(
2 − cos2 φ

) (7.126)The de�e
tion of the light ∆θ is assumed to be small. We therefore put φ =
π
2 + ∆θ

2 where ∆θ ≪ π, (see Figure 7.7). Hen
e
cosφ = cos

(
π

2
+

∆θ

2

)
= − sin

∆θ

2
≈ ∆θ

2
(7.127)Thus, the term cos2 φ in (7.126) 
an be negle
ted. Furthermore, the de�e
tionof the light is found by letting r → ∞, i. e. u→ 0. Then we get

∆θ =
4k

3b
(7.128)For motion in the S
hwarzs
hild spa
etime outside the Sun, k = 3

2RS where RSis the S
hwarzs
hild radius of the Sun. And for light passing the surfa
e of theSun b = R⊙ where R⊙ is the a
tual radius of the Sun. The de�e
tion is then
∆θ = 2

RS
R⊙

= 1.75′′ (7.129)



Chapter 8Bla
k Holes8.1 'Surfa
e gravity':gravitational a

eleration on thehorizon of a bla
k holeSurfa
e gravity is denoted by κ1 and is de�ned by
κ = lim

r→r+

a

ut
a =

√
aµaµ (8.1)where r+ is the horizon radius, r+ = RS for the S
hwarzs
hild spa
etime, ut isthe time 
omponent of the 4-velo
ity.The 4-velo
ity of a free parti
le instantanously at rest in the S
hwarzs
hildspa
etime:

~u = ut~et =
dt

dτ
~et =

1√−gtt
~et =

~et√
1 − RS

r

(8.2)The only 
omponent of the 4-a

eleration di�erent from zero, is ar. The4-a

eleration:~a = ∇~u~u = uµ;νuν~eµ = (uµ,ν + Γµανuα)uν~eµ.
ar = (ur,ν + Γrανu

α)uν

= ur,νu
ν

︸ ︷︷ ︸
=0

+Γrtt(u
t)2

=
Γrtt

1 − RS

r

Γrtt = −1

2

∂gtt
∂r

= −RS
2r2

ar =
RS

2r2

1 − RS

r

ar = grrar =
ar
grr

= (1 − RS
r

)ar =
RS
2r2

(8.3)
The a

eleration s
alar: a =

√
arar =

RS
2r2q
1−RS

r

(measured with standard instru-122



8.2 Hawking radiation:radiation from a bla
k hole (1973) 123ments: at the horizon, time is not running).
a

ut
=
RS
2r2

(8.4)With 
:
a

ut
=
c2RS
2r2

=
GM

r2
(8.5)

κ = lim
r→RS

a

ut
=

1

2RS
=

1

4GM
(8.6)In
luding c the expression is κ = c2

4GM . On the horizon of a bla
k hole with onesolar mass, we get κ⊙ = 2 × 1013 m
s2 .8.2 Hawking radiation:radiation from a bla
k hole (1973)The radiation from a bla
k hole has a thermal spe
trum. We are going to '�nd'the temperature of a S
hwarzs
hild bla
k hole of mass M. The Plan
k spe
trumhas an intensity maximum at a wavelength given by Wien's displa
ement law.

Λ =
N~c

kT
where k is the Boltzmann 
onstant, and N=0.2014For radiation emitted from a bla
k hole, Hawking derived the following expres-sion for the wavelength at a maximum intensity

Λ = 4πNRS =
8πNGM

c2
(8.7)Inserting Λ from Wien's displa
ement law, gives:

T =
~c3

8πGkM
=

~c

2πk
κ (8.8)Inserting values for ~, c and k gives:

T ≈ 2 × 10−4m

RS
K (8.9)For a bla
k hole with one solar mass,we have T⊙ ≈ 10−7. When the mass isde
reasing be
ause of the radiation, the temperature is in
reasing.So a bla
khole has a negative heat 
apa
ity. The energy loss of a bla
k hole be
ause ofradiation, is given by the Stefan-Boltzmann law:

−dM
dt

= σT 4A

c2
(8.10)where A is the surfa
e of the horizon.

A = 4πR2
S =

16πG2M2

c4
(8.11)
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k Holesgives:
−dM
dt

=
1

15360π

~c6

G2M2
≡ Q

M2

M(t) = (M3
0 − 3Qt)1/3, M0 = M(0)

(8.12)A bla
k hole with mass M0 early in the history of the universe whi
h is aboutto explode now, had to have a starting mass
M0 = (3Qt0)

1/3 ≈ 1012kg (8.13)about the mass of a mountain. They are 
alled 'mini bla
k holes'.8.3 Rotating Bla
k Holes: The Kerr metri
This solution was found by Roy Kerr in 1963.A time-independent, time-orthogonal metri
 is known as a stati
 metri
. Atime-independent metri
 is known as a stationary metri
. A stationary metri
allows rotation.Consider a stationary metri
 whi
h des
ribes a axial-symmetri
 spa
e
ds2 = −e2νdt2 + e2µdr2 + e2ψ(dφ− ωdt)2 + e2λdθ2 , (8.14)where ν, µ, ψ, λ and ω are fun
tions of r and θ.By solving the va
uum �eld equations for this line-element, Kerr found thesolution:

e2ν =
ρ2∆

Σ2
, e2µ =

ρ2

∆
, e2ψ =

Σ2

ρ2
sin2 θ , e2λ = ρ2 ,

ω =
2Mar

Σ2
, where ρ2 = r2 + a2 cos2 θ

∆ = r2 + a2 − 2Mr

Σ2 = (r2 + a2)2 − a2∆ sin2 θ(8.15)This is the Kerr solution expressed in Boyer-Lindquist 
oordinates. The fun
tion
ω is the angular-velo
ity. The Kerr-solution is the metri
 for spa
e-time outsidea rotating mass-distribution. The 
onstant a is spin per mass-unit for the mass-distribution and M is its mass.Line-element:

ds2 = −(1 − 2Mr

ρ2
)dt2 +

ρ2

∆
dr2 − 4Mar

ρ2
sin2 θdtdφ+ ρ2dθ2

+ (r2 + a2 +
2Ma2r

ρ2
sin2 θ) sin2 θdφ2

(8.16)(Here M is a measure of the mass so that M = G · mass, ie. G = 1)
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k Holes: The Kerr metri
 125Light emitted from the surfa
e, r = r0, where g tt = 0 is in�nitely redshiftedfurther out. Observed from the outside time stands still.
ρ2 = 2Mr0 ⇒ r20 + a2 cos2 θ = 2Mr0

r0 = M ±
√
M2 − a2 cos2 θ

(8.17)This is the equation for the surfa
e whi
h represents in�nite redshift.8.3.1 Zero-angular-momentum-observers (ZAMO's)The Lagrange fun
tion of a free parti
le in the equator plane, θ = π
2

L = −1

2
(e2ν − ω2e2ψ)ṫ2 +

1

2
e2µṙ2 +

1

2
e2ψφ̇2 +

1

2
e2λθ̇2 − ωe2ψ ṫφ̇ (8.18)Here θ̇ = 0. The momentum pφ of the 
y
li
 
oordinates φ:

pφ ≡ ∂L

∂φ̇
= e2ψ(φ̇− ωṫ) , ṫ =

dt

dτ
, φ̇ =

dφ

dτ
(8.19)The angular speed of the parti
le relative to the 
oordinate system:

Ω =
dφ

dt
=
φ̇

ṫ
, φ̇ = Ωṫ

⇒ pφ = e2ψ ṫ(Ω − ω)

(8.20)
pφ is 
onserved during the movement.

ω = − gtφ
gφφ

=
2Mar

(r2 + a2)2 − a2(r2 + a2 − 2Mr)
,

ω → 0 when r → ∞
(8.21)When studying the Kerr metri
 one �nds that Kerr → Minkowski for large

r. The 
oordinate 
lo
ks in the Kerr spa
e-time show the same time as thestandard-
lo
ks at rest in the asymptoti
 Minkowski spa
e-time.A ZAMO is per de�nition a parti
le or observer with pφ = 0. Consider afar away observer who let a stone fall with vanishing initial velo
ity. pφ is a
onstant of motion, so the stone remains a ZAMO during the movement. Alo
al referen
e frame whi
h 
oin
ides with the stone is a member of the 
lassof inertial frames that are at rest in the asymptoti
 Minkowski region. TheseZAMO nertial frames may be used to de�ne �the state of motion of the spa
e�.They have .
pφ = 0 ⇒ Ω =

dφ

dt
= ω (8.22)That is, the lo
al inertial frame obtains an angular speed relative to the BL-system (Boyer-Lindquist system).Sin
e the Kerr metri
 is time independent, the BL-system is sti�. Thedistant observer has no motion relative to the BL-system. To this observer the



126 Chapter 8. Bla
k HolesBL-system will appear sti� and non-rotating. The observer will observe thatthe lo
al inertial system of the stone obtains an angular speed a is spinper massunity and
Ma is spindφ

dt
= ω =

2Mar

(r2 + a2)2 − a2(r2 + a2 − 2Mr)
(8.23)In other words, inertial systems at �nite distan
es from the rotating mass Mare dragged with it in the same dire
tion. This is known as inertial draggingor the Lense-Thirring e�e
t (about 1920).8.3.2 Does the Kerr spa
e have a horizon?De�nition 8.3.1 (Horizon)a surfa
e one 
an enter, but not exit.Consider a parti
le in an orbit with 
onstant r and θ. It's 4-velo
ity is:

~u =
d~x

dτ
=
dt

dτ

d~x

dt

= (−g tt − 2g tφΩ − g φφΩ
2)−

1
2 (1,Ω) , where Ω =

dφ

dt

(8.24)To have stationary orbits the following must be true
g φφΩ

2 + 2g tφΩ + g tt < 0 (8.25)This implies that Ω must be in the interval
Ωmin < Ω < Ωmax , (8.26)where Ωmin = ω −

√
ω2 − g tt

g
φφ
, Ωmax = ω +

√
ω2 − g tt

g
φφ

sin
e g tφ = −ωg φφ.Outside the surfa
e with in�nite redshift g tt < 0. That is Ω 
an be negative,zero and positive. Inside the surfa
e r = r0 with in�nite redshift g tt > 0. Here
Ωmin > 0 and stati
 parti
les, Ω = 0, 
annot exist. This is due to the inertialdragging e�e
t. The surfa
e r = r0 is therefore known as �the stati
 border�.The interval of Ω, where stationary orbits are allowed, is redu
ed to zerowhen Ωmin = Ωmax, that is ω2 =

g tt

g
φφ

⇒ g tt = ω2g φφ (equation for the horizon).For the Kerr metri
 we have:
g tt = ω2g φφ − e2ν (8.27)Therefore the horizon equation be
omes

e2ν = 0 ⇒ ∆ = 0 ∴ r2 − 2Mr + a2 = 0 (8.28)The largest solution is r+ = M +
√
M2 − a2 and this is the equation for aspheri
al surfa
e. The stati
 border is r0 = M +

√
M2 − a2 cos θ.
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�ergo-sphere Kstationary pathsMstati
 border




horizon
r+

r0

θ = 0

θ = π
2Ω > 0

Ω = 0

2M

Figure 8.1: Stati
 border and horizon of a Kerr bla
k hole



Chapter 9S
hwarzs
hild's Interior Solution9.1 Newtonian in
ompressible star
∇2φ = 4πGρ, φ = φ(r)

1

r2
d

dr
(r2

dφ

dr
) = 4πGρ

(9.1)Assuming ρ = constant.
d(r2

dφ

dr
) = 4πGρr2dr

r2
dφ

dr
=

4π

3
Gρr3 +K

= M(r) +K

(9.2)Gravitational a

eleration: ~g = −∇φ = −dφ
dr~er

g =
M(r)

r2
+
K1

r2
=

4π

3
Gρr +

K1

r2
(9.3)Finite g in r = 0 demands K1 = 0.

g =
4π

3
Gρr,

dφ

dr
=

4π

3
Gρr (9.4)Assume that the massdistribution has a radius R.

φ =
2π

3
Gρr2 +K2 (9.5)Demands 
ontinuous potensial at r = R.

2π

3
GρR2 +K2 =

M(R)

R
= −4π

3
GρR2

⇒ K2 = −2πGρR2
(9.6)(with zero level at in�nite distan
e). Gives the potensial inside the mass distri-bution:

φ =
2π

3
Gρ(r2 − 3R2) (9.7)128



9.1 Newtonian in
ompressible star 129The star is in hydrostati
 equilibrium, that is, the pressure for
es are in equi-librium with the gravitational for
es.
4π
3

ρ

r ρ3

dm= drdA

Figure 9.1: The shell with thi
kness dr, is a�e
ted by both gravitational andpressure for
es.Consider a mass element, dm = ρdV = ρdAdr, in the shell depi
ted in �gure9.1. The pressure for
e on the mass element is dF = dAdp, and the gravitationalfor
e is
dG = gdm =

Gm(r)

r2
dm (9.8)wherem(r) is the mass inside the shell. With 
onstant densitym(r) = (4π/3)ρr3.Hen
e

dG = gdm =
4π

3
Gρ2rdAdr (9.9)Equilibrium, dF = −dG, demands that

dp = −4π

3
Gρ2rdr (9.10)Integrating this gives

p = K3 −
2πG

3
ρ2r2 (9.11)

p(R) = 0 gives the value of the 
onstant of integration K3

K3 =
2πG

3
ρ2R2 (9.12)and we �nd

p(r) =
2πG

3
ρ2(R2 − r2) (9.13)No matter how massive the star is, it is possible for the pressure for
es to keepthe equilibrium with gravity. In Newtonian theory, gravitational 
ollapse is nota ne
essity.



130 Chapter 9. S
hwarzs
hild's Interior Solution9.2 The pressure 
ontribution to the gravitational massof a stati
, spheri
al symmetri
 systemWe now give a new de�nition of the gravitational a

eleration (not equivalentto (7.23))
g = − a

ut
, a =

√
aµaµ (9.14)We have the line element:

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

gtt = −e2α , grr = e2β
(9.15)gives (be
ause of the gravitational a

eleration)

g = −eα−βα′ (9.16)From the expressions for E
t̂t̂
, E r̂r̂, E θ̂θ̂

, E
φ̂φ̂

follow (see Se
tion 7.1)
E t̂
t̂
− E r̂r̂ − Eθ̂

θ̂
− Eφ̂

φ̂
= −2e−2β(

2α′

r
+ α′′ + α′2 − α′β′) . (9.17)We also have

(r2eα−βα′)
′
= r2eα−β(

2α′

r
+ α′′ + α′2 − α′β′) , (9.18)whi
h gives

g = +
1

2r2

∫
(E t̂

t̂
− E r̂r̂ − Eθ̂

θ̂
−Eφ̂

φ̂
)r2eα+βdr . (9.19)By applying Einstein's �eld equations

Eµ̂ν̂ = 8πGT µ̂ν̂ (9.20)we get
g = +

4πG

r2

∫
(T t̂
t̂
− T r̂r̂ − T θ̂

θ̂
− T φ̂

φ̂
)r2eα+βdr . (9.21)This is the Tolman-Whittaker expression for gravitational a

eleration.The 
orresponding Newtonian expression is :

gN = −4πG

r2

∫
ρr2dr (9.22)The relativisti
 gravitational mass density is therefore de�ned as

ρG = −T t̂
t̂
+ T r̂r̂ + T θ̂

θ̂
+ T φ̂

φ̂
(9.23)



9.3 The Tolman-Oppenheimer-Volkov equation 131For an isotropi
 �uid with
T t̂
t̂
= −ρ , T r̂r̂ = T θ̂

θ̂
= T φ̂

φ̂
= p (9.24)we get ρG = ρ+ 3p (with c = 1), whi
h be
omes

ρG = ρ+
3p

c2
(9.25)It follows that in relativity, pressure has a gravitational e�e
t. Greater pressuregives in
reasing gravitational attra
tion. Strain (p < 0) de
reases the gravita-tional attra
tion.In the Newtonian limit, c→ ∞, pressure has no gravitational e�e
t.9.3 The Tolman-Oppenheimer-Volkov equationWith spheri
al symmetry the spa
etime line-element may be written

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

E
t̂t̂

= 8πGT
t̂t̂
, T µ̂ν̂ = diag(−ρ, p, p, p)

(9.26)From E
t̂t̂
we get

1

r2
d

dr
[r(1 − e−2β)] = 8πGρ

r(1 − e−2β) = 2G

∫ r

0
4πρr2dr ,

(9.27)where m(r) =
∫ r
0 4πρr2dr giving

e−2β = 1 − 2Gm(r)

r
=

1

g rr
(9.28)From E r̂r̂ we have

E r̂r̂ = 8πGT r̂r̂

2

r

dα

dr
e−2β − 1

r2
(1 − e−2β) = 8πGp

(9.29)We get
2

r

dα

dr
(1 − 2Gm(r)

r
) − 2Gm(r)

r3
= 8πGp

dα

dr
= G

m(r) + 4πr3p(r)

r(r − 2Gm(r))
(9.30)
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hwarzs
hild's Interior SolutionThe relativisti
 generalized equation for hydrostati
 equilibrium is T r̂ν̂;ν̂ = 0,giving
T r̂ν̂,ν̂ + Γν̂α̂ν̂T

r̂α̂ + Γr̂α̂ν̂T
α̂ν̂ = 0

T r̂ν̂,ν̂ = T r̂r̂,r̂ = p ,r̂ =
1

√
g rr

∂p

∂r

T r̂ν̂,ν̂ = e−β
dp

dr

Γν̂α̂ν̂T
r̂α̂ = Γν̂r̂ν̂p = Γt̂

r̂t̂
p+ Γα̂r̂α̂p

Γr̂α̂ν̂T
α̂ν̂ = Γr̂ν̂ν̂T

ν̂ν̂ = Γr̂
t̂t̂
ρ+ Γr̂α̂α̂p

(9.31)
In orthonormal basis we have

Ω ν̂µ̂ = −Ω µ̂ν̂ ⇒ Γ µ̂ν̂α̂ = −Γ ν̂µ̂α̂

Γα̂r̂α̂ = Γ α̂r̂α̂ = −Γ r̂α̂α̂ = −Γr̂α̂α̂
(9.32)

T r̂ν̂;ν̂ = 0 now takes the form:
e−β

dp

dr
+ Γt̂

r̂t̂
p+ Γr̂

t̂t̂
ρ = 0 (9.33)We have

Γt̂
r̂t̂

= −Γ
t̂r̂t̂

= Γ
r̂t̂t̂

= Γr̂
t̂t̂

(9.34)and we also have Γr̂
t̂t̂

= e−β dαdr , giving:
dp

dr
+ (p+ ρ)

dα

dr
= 0 (9.35)Inserting Equation 9.30 into Equation 9.35 gives

dp

dr
= −G(ρ+ p)

m(r) + 4πr3p(r)

r(r − 2Gm(r))
(9.36)This is the Tolman-Oppenheimer-Volkov (TOV) equation. The 
omponent gtt =

−e2α(r) may now be 
al
ulated as follows
dp

ρ+ p
= −dα , ρ = 
onstant

ln(ρ+ p) = K − α

ρ+ p = K1e
−α , p = K1e

−α − ρ

(9.37)Hen
e
eα = eα(R)(1 +

p

ρ
)−1 (9.38)where R is the radius of the mass distribution.



9.4 An exa
t solution for in
ompressible stars - S
hwarzs
hild's interior solution1339.4 An exa
t solution for in
ompressible stars - S
hwarzs
hild'sinterior solutionThe mass inside a radius r for an in
ompressiable star is
m(r) =

4

3
πρr3 (9.39)

e−2β = 1 − 2Gm(r)

r
≡ 1 − r2

a2
(9.40)where

a2 =
3

8πGρ
, m(r) =

r3

2Ga2
, rs = 2Gm =

r2

a2
r (9.41)TOV equation:

dp

dr
= −G

4
3πρr

3 + 4πr3p(r)

r(r − 2G4
3πρr

3)
(ρ+ p(r))

= −G4

3
π
ρ+ 3p(r)

1 −G8
3πρr

2
r(ρ+ p(r))

= − 1

2a2ρ

ρ+ 3p(r)

1 − r2

a2

r(ρ+ p(r))

⇒
∫ p

0

dp

(ρ+ 3p)(ρ+ p
= − 1

2a2ρ

∫ r

R

r

1 − r2

a2

dr

p+ ρ

3p + ρ
=

√
a2 −R2

a2 − r2

(9.42)
So the relativisti
 pressure distribution is

p(r) =

√
a2 − r2 −

√
a2 −R2

3
√
a2 −R2 −

√
a2 − r2

ρ, ∀r ≤ R (9.43)also
a2 =

3

8πGρ
,
a2

r2
=

r

rs
> 1 ⇒ a > r (9.44)To satisfy the 
ondition for hydrostati
 equilibrium we must have p > 0 or

p(0) > 0 whi
h gives
p(0) ≡ pc =

a−
√
a2 −R2

3
√
a2 −R2 − a

> 0 (9.45)in whi
h the numerator is positive so that
3
√
a2 −R2 > a

9a2 − 9R2 > a2

R <

√
8

9
a

R2 <
8

9
a =

8

9

3

8πGρ
=

1

3πGρ

(9.46)
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hwarzs
hild's Interior SolutionStellar mass:
M =

4

3
πρR3 <

4

3
πρR

1

3πGρ
=

4R

9G

M <
4

9G

1√
3πGρ

(9.47)For a neutron star we 
an use ρ ≈ 1017 g /cm3. An upper limit on the mass isthen M < 2.5 M⊙ Substitution for p in the expression for eα gives
eα =

3

2

√
1 − Rs

R
− 1

2

√
1 − Rs

R3
r2 (9.48)The line element for the interior S
hwarzs
hild solution is

ds2 = −
(

3

2

√
1 − Rs

R
− 1

2

√
1 − Rs

R3
r2

)2

dt2 +
dr2

1 − Rs

R3 r2
+ r2dΩ, r ≤ R(9.49)



Chapter 10Cosmology10.1 Comoving 
oordinate systemWe will 
onsider expanding homogenous and isotropi
 models of the universe.We introdu
e an expanding frame of referen
e with the gala
ti
 
lusters asreferen
e parti
les. Then we introdu
e a '
omoving 
oordinate system' in thisframe of referen
e with spatial 
oordinates χ, θ, φ. We use time measured onstandard 
lo
ks 
arried by the gala
ti
 
lusters as 
oordinate time (
osmi
 time).The line element 
an then be written in the form:
ds2 = −dt2 + a(t)2[dχ2 + r(χ)2dΩ2] (10.1)(For standard 
lo
ks at rest in the expanding system, dχ = dΩ = 0 and ds2 =

−dτ2 = −dt2). The fun
tion a(t) is 
alled the expansion fa
tor, and t is 
alled
osmi
 time.The physi
al distan
e to a galaxy with 
oordinate distan
e dχ from an ob-server at the origin, is:
dlx =

√
gχχdχ = a(t)dχ (10.2)Even if the gala
ti
 
lusters have no 
oordinate velo
ity, they do have a radialvelo
ity expressed by the expansion fa
tor.The value χ determines whi
h 
luster we are observing and a(t) how it ismoving. 4-velo
ity of a referen
e parti
le (gala
ti
 
luster):

uµ =
dxµ

dτ
=
dxµ

dt
= (1, 0, 0, 0) (10.3)This applies at an abritrary time, that is duµ

dt = 0. Geodesi
 equation: duµ

dt +
Γµαβu

αuβ = 0 whi
h is redu
es to: Γµtt = 0

Γµtt =
1

2
gµν(

0︷︸︸︷
gνt,t +

0︷︸︸︷
gtν,t +

0︷︸︸︷
gtt,ν ) = 0 (10.4)We have that gtt = −1. This shows that the referen
e parti
les are freely falling.135



136 Chapter 10. Cosmology10.2 Curvature isotropy - the Robertson-Walker met-ri
Introdu
e orthonormal form-basis:
ωt̂ = dt ωχ̂ = a(t)dχ ωθ̂ = a(t)r(χ)dθ

ωφ̂ = a(t)r(χ) sin θdφ
(10.5)Using Cartans 1st equation:

dωµ̂ = −Ωµ̂ν̂ ∧ ων̂ (10.6)to �nd the 
onne
tion forms. Then using Cartans 2nd stru
ture equation to
al
ulate the 
urvature forms:
Rµ̂ν̂ = dΩµ̂ν̂ + Ωµ̂

λ̂
∧ Ωλ̂

ν̂ (10.7)Cal
ulations give: (notation: · = d
dt , ′ = d

dχ )
Rt̂
î
=
ä

a
ωt̂ ∧ ωî, ωî = ωχ̂, ωθ, ωφ

Rχ̂
ĵ

=
( ȧ2

a2
− r′′

ra2

)
ωχ̂ ∧ ωĵ , ωĵ = ωθ̂, ωφ̂

Rθ̂
φ̂

=
( ȧ2

a2
+

1

r2a2
− r′2

r2a2

)
ωθ̂ ∧ ωφ̂

(10.8)The 
urvature of 3-spa
e (dt = 0) 
an be found by putting a = 1. That is:
3R

χ̂

ĵ
= −r

′′

r
ωχ̂ ∧ ωĵ

3R
θ̂
φ̂

=
( 1

r2
− r′2

r2
)
ωθ̂ ∧ ωφ̂

(10.9)The 3-spa
e is assumed to be isotropi
 and homogenous. This demands
−r

′′

r
=

1 − r′2

r2
= k , (10.10)where k represents the 
onstant 
urvature of the 3-spa
e.

∴ r′′ + kr = 0 and r′ =
√

1 − kr2 (10.11)Solutions with r(0) = 0, r′(0) = 1 :
√
−kr = sinh(

√
−kχ) (k < 0)

r = χ (k = 0) (10.12)√
kr = sin(

√
kχ) (k > 0)



10.3 Cosmi
 dynami
s 137The solutions 
an be 
hara
terized by the following 3 
ases:
r = sinhχ, dr =

√
1 + r2dχ, (k = −1)

r = χ, dr = dχ, (k = 0) (10.13)
r = sinχ, dr =

√
1 − r2dχ, (k = 1)In all three 
ases one may write dr =

√
1 − kr2dχ, whi
h is just the last equationabove.We now set dχ2 = dr2

1−kr2 into the line-element :
ds2 = −dt2 + a2(t)

(
dχ2 + r2(χ)dΩ2

)

= −dt2 + a2(t)

(
dr2

1 − kr2
+ r2dΩ2

) (10.14)The �rst expression is known as the standard form of the line-element, these
ond is 
alled the Robertson-Walker line-element.The 3-spa
e has 
onstant 
urvature. 3-spa
e is spheri
al for k = 1, Eu
lideanfor k = 0 and hyperboli
 for k = −1.Universe models with k = 1 are known as '
losed' and models with k = −1are known as 'open'. Models with k = 0 are 
alled '�at' even though thesemodels also have 
urved spa
e-time.10.3 Cosmi
 dynami
s10.3.1 Hubbles lawThe observer is pla
ed in origo of the 
oordinate-system; χ0 = 0. The properdistan
e to a galaxy with radial 
oordinate χe is D = a(t)χe. The galaxy has aradial velo
ity:
v =

dD

dt
= ȧχe =

ȧ

a
D = HD whereH =

ȧ

a
(10.15)The expansion velo
ity v is proportional to the distan
e D. This is Hubbleslaw.10.3.2 Cosmologi
al redshift of light

∆te : the time interval in transmitter-position at transmission-time
∆t0 : the time interval in re
eiver-position at re
eiving-timeLight follows 
urves with ds2 = 0, with dθ = dφ = 0 we have :

dt = −a(t)dχ (10.16)
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-

6
t

χ

t0 + ∆t0

t0

χ0 = 0 χe

te + ∆te

teFigure 10.1: S
hemati
 representation of 
osmologi
al redshiftIntegration from transmitter-event to re
eiver-event :
∫ t0

te

dt

a(t)
= −

∫ χ0

χe

dχ = χe

∫ t0+∆t0

te+∆te

dt

a(t)
= −

∫ χ0

χe

dχ = χe ,whi
h gives ∫ t0+∆t0

te+∆te

dt

a
−
∫ t0

te

dt

a
= 0 (10.17)or

∫ t0+∆t0

t0

dt

a
−
∫ te+∆te

te

dt

a
= 0 (10.18)Under the integration from te to te + ∆te the expansion fa
tor a(t) 
an be
onsidered a 
onstant with value a(te) and under the integration from t0 to

t0 + ∆t0 with value a(t0), giving:
∆te
a(te)

=
∆t0
a(t0)

(10.19)
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s 139
∆t0 and ∆te are intervals of the light at the re
eiving and transmitting time.Sin
e the wavelength of the light is λ = c∆t we have:

λ0

a(t0)
=

λe
a(te)

(10.20)This 
an be interpreted as a �stret
hing� of the ele
tromagneti
 waves due tothe expansion of spa
e. The 
osmologi
al redshift is denoted by z and is givenby:
z =

λ0 − λe
λe

=
a(t0)

a(te)
− 1 (10.21)Using a0 ≡ a(t0) we 
an write this as:

1 + z(t) =
a0

a
(10.22)10.3.3 Cosmi
 �uidsThe energy-momentum tensor for a perfe
t �uid (no vis
osity and no thermal
ondu
tivity) is

Tµν = (ρ+ p)uµuν + pgµν (10.23)In an orthonormal basis
Tµ̂ν̂ = (ρ+ p)uµ̂uν̂ + pηµ̂ν̂ (10.24)where ηµ̂ν̂ is the Minkowski metri
. We 
onsider 3 types of 
osmi
 �uid:1. dust: p = 0,

T µ̂ν̂ = ρuµ̂uν̂ (10.25)2. radiation: p = 1
3ρ,

T µ̂ν̂ =
4

3
ρuµ̂uν̂ + pη µ̂ν̂

=
ρ

3
(4uµ̂uν̂ + η µ̂ν̂)

(10.26)The tra
e
T = T µ̂µ̂ =

ρ

3
(4uµ̂uµ̂ + δµµ) = 0 (10.27)3. va
uum: p = −ρ,

T µ̂ν̂ = −ρη µ̂ν̂ (10.28)If va
uum 
an be des
ribed as a perfe
t �uid we have pv = −ρv, where
ρ is the energy density. It 
an be related to Einstein's 
osmologi
al 
onstant,
Λ = 8πGρv .One has also introdu
ed a more general type of va
uum energy given bythe equation of state pφ = wρφ, where φ denotes that the va
uum energy is
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onne
ted to a s
alar �eld φ. In a homogeneous universe the pressure and thedensity are given by
pφ =

1

2
φ̇2 − V (φ), ρφ =

1

2
φ̇2 + V (φ) (10.29)where V (φ) is the potential for the s
alar �eld. Then we have

w =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
(10.30)The spe
ial 
ase φ̇ = 0 gives the Lorentz invariant va
uum with w = −1. Themore general va
uum is 
alled �quintessen
e�.10.3.4 Isotropi
 and homogeneous universe modelsWe will dis
uss isotropi
 and homogenous universe models with perfe
t �uidand a non-vanishing 
osmologi
al 
onstant Λ. Cal
ulating the 
omponents ofthe Einstein tensor from the line-ement (10.14) we �nd in an orthonormal basis

Et̂t̂ =
3ȧ2

a2
+

3k

a2
(10.31)

Em̂m̂ = −2ä

a
− ȧ2

a2
− k

a2
. (10.32)The 
omponents of the energy-momentum tensor of a perfe
t �uid in a 
omovingorthonormal basis are

Tt̂t̂ = ρ, Tm̂m̂ = p. (10.33)Hen
e the t̂t̂ 
omponent of Einstein's �eld equations is
3
ȧ2 + k

a2
= 8πGρ+ Λ (10.34)

m̂m̂ 
omponents:
−2

ä

a
− ȧ2

a2
− k

a2
= 8πGp − Λ (10.35)where ρ is the energy density and p is the pressure. The equations with vanishing
osmologi
al 
onstant are 
alled the Friedmann equations. Inserting eq. (10.34)into eq. (10.35) gives:

ä = −4πG

3
a(ρ+ 3p) (10.36)If we interpret ρ as the mass density and use the speed of light c, we get

ä = −4πG

3
a(ρ+ 3p/c2) (10.37)Inserting the gravitational mass density ρG from eq.(9.25) this equation takesthe form

ä = −4πG

3
aρG (10.38)
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 dynami
s 141Inserting p = wρc2 into (9.25) gives
ρG = (1 + 3w)ρ (10.39)whi
h is negative for w < −1/3, i.e. for φ̇2 < V (φ). Spe
ial 
ases:

• dust: w = 0, ρG = ρ

• radiation: w = 1
3 , ρG = 2ρ

• Lorentz-invariant va
uum: w = −1, ρG = −2ρIn a universe dominated by a Lorentz-invariant va
uum the a

eleration of the
osmi
 expansion is
äv =

8πG

3
aρv > 0, (10.40)i.e. a

elerated expansion. This means that va
uum a
ts upon itself with repul-sive gravitation.The �eld equations 
an be 
ombined into

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρm +

Λ

3
− k

a2
(10.41)where ρm is the density of matter, Λ = 8πGρΛ where ρΛ is the va
uum energywith 
onstant density. ρ = ρm + ρΛ is the total mass density. Then we maywrite

H2 =
8πG

3
ρ− k

a2
(10.42)The 
riti
al density ρcr is the density in a universe with eu
lidean spa
elikegeometry, k = 0, whi
h gives

ρcr =
3H2

8πG
(10.43)We introdu
e the relative densities

Ωm =
ρm
ρcr

, ΩΛ =
ρΛ

ρcr
(10.44)Furthermore we introdu
e a dimensionless parameter that des
ribes the 
urva-ture of 3-spa
e

Ωk = − k

a2H2
(10.45)Eq. (10.42) 
an now be written

Ωm + ΩΛ + Ωk = 1 (10.46)From the Bian
hi identity and Einstein's �eld equations follow that the energy-momentum density tensor is 
ovariant divergen
e free. The time-
omponentexpresses the equation of 
ontinuity and takes the form
[(ρ+ p)ut̂uν̂ ];ν̂ + (pηt̂ν̂);ν̂ = 0 (10.47)
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e ut̂ = 1, um̂ = 0 and ηt̂t̂ = −1, ηt̂m̂ = 0, we get
(ρ+ p). + (ρ+ p)uν̂;ν̂ − ṗ = 0 (10.48)or
ρ̇+ (ρ+ p)(uν̂,ν̂ + Γν̂

t̂ν̂
) = 0 (10.49)Here uν,ν = 0 and Γt̂

t̂t̂
= 0. Cal
ulating Γm̂

t̂m̂
for dωµ̂ = Γµ̂

α̂β̂
ωα̂ ∧ ωβ̂ we get

Γm̂
t̂m̂

= Γr̂
t̂r̂

+ Γθ̂
t̂θ̂

+ Γφ̂
t̂φ̂

= 3
ȧ

a
(10.50)Hen
e

ρ̇+ 3(ρ+ p)
ȧ

a
= 0 (10.51)whi
h may be written

(ρa3). + p(a3). = 0 (10.52)Let V = a3 be a 
omoving volume in the universe and U = ρV be the energyin the 
omoving volume. Then we may write
dU + pdV = 0 (10.53)This is the �rst law of thermodynami
s for an adiabati
 expansion. It followsthat the universe expands adiabati
ally. The adiabati
 equation 
an be written
ρ̇

ρ+ p
= −3

ȧ

a
(10.54)Assuming p = wρ we get

dρ

ρ
= −3(1 + w)

da

a

ln
ρ

ρ0
= ln

(
a

a0

)−3(1+w)It follows that
ρ = ρ0

(
a

a0

)−3(1+w) (10.55)This equation tells how the density of di�erent types of matter depends on theexpansion fa
tor
ρa3(1+w) = constant (10.56)Spe
ial 
ases:

• dust: w = 0 gives ρda3 = constantThus, the mass in a 
omoving volume is 
onstant.
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• radiation: w = 1

3 gives ρra4 = constantThus, the radiation energy density de
reases faster than the
ase with dust when the universe is expanding. The energyin a 
omoving volume is de
reasing be
ause of the thermo-dynami
 work on the surfa
e. In a remote past, the densityof radiation must have ex
eeded the density of dust:
ρd0a

3
0 =ρda

3

ρr0a
4
0 =ρra

4

ρra
4

ρda3
=
ρr0a

4
0

ρd0a
3
0The expansion fa
tor when ρr = ρd:

a(t1) =
ρr0
ρd0

a0

• Lorentz-invariant va
uum: w = −1 gives ρΛ = constant.The va
uum energy in a 
omoving volume is in
reasing ∝ a3.10.4 Some 
osmologi
al models10.4.1 Radiation dominated modelThe energy-momentum tensor for radiation is tra
e free. A

ording to the Ein-stein �eld equations the Einstein tensor must then be tra
e free:
aä+ ȧ2 + k = 0

(aȧ+ kt)· = 0
(10.57)Integration gives

aȧ+ kt = B (10.58)Another integration gives
1

2
a2 +

1

2
kt2 = Bt+C (10.59)The initial 
ondition a(0) = 0 gives C = 0. Hen
e

a =
√

2Bt− kt2 (10.60)For k = 0 we have
a =

√
2Bt , ȧ =

√
B

2t
(10.61)The expansion velo
ity rea
hes in�nity at t = 0, (limt→0 ȧ = ∞)
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Figure 10.2: In a radiation dominated universe the expansion velo
ity rea
hesin�nity at t = 0.
ρRa

4 = K , a =
√

2Bt

4ρRB
2t2 = K

(10.62)A

ording to the Stefan-Boltzmann law we then have
ρR = σT 4 → 4B2σT 4t2 = K ⇒

t =
K1

T 2
⇔ T =

√
K1

t

(10.63)where T is the temperature of the ba
kground radiation.10.4.2 Dust dominated modelFrom the �rst of the Friedmann equations we have
ȧ2 + k =

8πG

3
ρa2 (10.64)We now introdu
e a time parameter η given by

dt

dη
= a(η) ⇒ d

dt
=

1

a

d

dηSo: ȧ =
da

dt
=

1

a

da

dη

(10.65)We also introdu
e A ≡ 8πG
3 ρ0a0

3. The �rst Friedmann equation then gives
aȧ2 + ka =

8πG

3
ρa3 =

8πG

3
ρ0a0

3 = A (10.66)
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al models 145Using η we get
1

a
(
da

dη
)2 = A− ka

1

a2
(
da

dη
)2 =

A

a
− k

1

a

da

dη
=

√
A

a
− k =

√
A

a

√
1 − a

A
k

(10.67)
where we 
hose the positive root. We now introdu
e u, given by a = Au2, u =√

a
A . We then get

da

dη
= 2Au

du

dη
(10.68)whi
h together with the equation above give

1

Au2
2Au

du

dη
=

1

u

√
1 − ku2

⇓
du√

1 − ku2
=

1

2
dη

(10.69)This equation will �rst be integrated for k < 0. Then k = −|k|, so that
∫

du√
1 + |k|u2

=
η

2
+K (10.70)or ar
sinh(√−ku) = η

2 +K. The 
ondition u(0) = 0 gives K = 0. Hen
e
− k

A
a = sinh2 η

2
=

1

2
(cosh η − 1) (10.71)or

a = − A

2k
(cosh η − 1) (10.72)From eqs. (10.43), (10.44) and (10.66) we have

A =
8πG

3
ρm0 = H2

0

ρm0

ρcr0
= H2

0Ωm0 (10.73)From egs. (10.45) and (10.46) we get
k = H2

0 (Ωm0 − 1) (10.74)Hen
e, the s
ale fa
tor of the negatively 
urved, dust dominated universe modelis
a(η) =

1

2

Ωm0

1 − Ωm0
(cosh η − 1) (10.75)



146 Chapter 10. CosmologyInserting this into eq. (10.65) and integrating with t(0) = η(0) leads to
t(η) =

Ωm0

2H0(1 − Ωm0)3/2
(sinh η − η) (10.76)Integrating eg. (10.69) for k = 0 leads to an Einstein-deSitter universe

a(t) = (
t

t0
)

2
3 (10.77)Finally integrating eg. (10.69) for k > 0 gives, in a similar way as for k < 0

a(η) =
1

2

Ωm0

Ωm0 − 1
(1 − cos η) (10.78)

t(η) =
Ωm0

2H0(Ωm0 − 1)3/2
(η − sin η) (10.79)We see that this is a parametri
 representation of a 
y
loid.In the Einstein-deSitter model the Hubble fa
tor is

H =
ȧ

a
=

2

3

1

t
, t =

2

3

1

H
=

2

3
tH (10.80)The 
riti
al density in the Einstein-deSitter model is given by the �rst Fried-mann equation:

H2 =
8πG

3
ρ
r , k = 0

⇓

ρ
r =
3H2

8πG
, Ω =

ρ

ρ
r (10.81)
Example 10.4.1 (Age-redshift relation for dust dominated universe with k = 0)

1 + z =
a0

a
⇒ a =

a0

1 + z

da = − a0

(1 + z)2
dz = − a

1 + z
dz

(10.82)Eq. (10.34) gives
( ȧ
a

)2
=

8πG

3
ρ =

8πG

3

ρ0a
3
0

a3

=
8πG

3
ρ0(1 + z)3

(10.83)
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Figure 10.3: For k = 1 the density is larger than the 
riti
al density, and theuniverse is 
losed. For k = 0 we have ρ = ρ
r and the expansion velo
ity ofthe universe will approa
h zero as t → ∞. For k = −1 we have ρ < ρ
r. Theuniverse is then open, and will 
ontinue expanding forever.Using H2
0 = 8πG

3 ρ0 gives ȧ
a = H0(1 + z)

3
2 . From ȧ = da

dt we get:
dt =

da

ȧ
=
da

a ȧa
= − dz

H0(1 + z)
5
2

(10.84)Integration gives the age of the universe:
t0 = − 1

H0

∫ 0

∞

dz

(1 + z)
5
2

=
2

3

1

H0

[ 1

(1 + z)
3
2

]0
∞ =

2

3
tH (10.85)where the Hubble-time tH ≡ 1

H0
is the age of the universe if the expansion rate hadbeen 
onstant. The 'Look-ba
k-time' to a sour
e with redshift z is:

∆t = tH

∫ z

0

dz

(1 + z)
5

2

=
2

3
tH
[
1 − 1

(1 + z)
3

2

] (10.86)
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tangent

time t

exp.factor a

t
0

t
H

today

Figure 10.4: tH is the age of the universe if the expansion had been 
onstant,BUT:The exp.rate was faster 
loser to the Big Bang, so the age is lower.
∆t = t0[1 − 1

(1 + z)3/2
] (10.87)Hen
e, the redshift of an obje
t with lookba
k time ∆t is

z =
1

(1 − ∆t
t0

)2/3
− 1 (10.88)

10.4.3 Transition from radiation- to matter dominated universeWe 
onsider the early universe �lled with radiation and matter, but where va
-uum energy 
am be negle
ted. The universe is assumed to be �at. Then Fried-mann's 1. equation takes the form
ȧ2 =

8πG

3
(ρM + ρR) a2 (10.89)For matter,

ρMa
3 = ρM0 (10.90)
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al models 149For radiation,
ρRa

4 = ρR0 (10.91)Hen
e
a2ȧ2 =

8πG

3
(ρM0 a+ ρR0) (10.92)The present values of the 
riti
al density and the density parameters are

ρcr0 =
3H2

0

8πG
(10.93)

ΩM0 =
ρM0

ρcr0
(10.94)

ΩR0 =
ρR0

ρcr0
(10.95)giving

aȧ = H0 (ΩM0 a+ ΩR0)
1/2 (10.96)Integration with a(0) = 0 leads to

H0t =
4

3

Ω
3/2
R0

Ω2
M0

+
2

3

(ΩM0 a− 2ΩR0) (ΩM0 a+ ΩR0)
1/2

Ω2
M0

(10.97)From eqs. (10.90) and (10.91) follows that at the transition time teq when
ρM = ρR, the s
ale fa
tor has the value

aeq =
ρR0

ρM0
=

ΩR0

ΩM0
(10.98)Inserting this into eq. (10.97) gives

teq =
2

3

(
2 −

√
2
) Ω

3/2
R0

Ω2
M0

tH (10.99)The mi
rowave ba
kground radiation has a temperature 2,73 K 
orrespondingto a density parameter ΩR0 = 8, 4 · 10−5. In a �at universe without va
uumenergy ΩM0 = 1 − ΩR0. From the value of H0 as determined by measurementswe have tH ≈ 14 · 109 years. This leads to teq = 47 · 103 years.10.4.4 Friedmann-Lemaître modelThe dynami
s of galaxies and 
lusters of galaxies has made it 
lear that farstronger gravitational �elds are needed to explain the observed motions thanthose produ
ed by visible matter (M
Gaugh 2001). At the same time it hasbe
ome 
lear that the density of this dark matter is only about 30% of the 
riti
aldensity, although it is a predi
tion by the usual versions of the in�ationaryuniverse models that the density ought to be equal to the 
riti
al density (Linde2001). Also the re
ent observations of the temperature �u
tuations of the 
osmi
mi
rowave radiation have shown that spa
e is either �at or very 
lose to �at(Bernadis et.al 2001, Stompor et al. 2001, Pryke et al. 2001). The energy that
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riti
al density must be evenly distributed in order not to a�e
tthe dynami
s of the galaxies and the 
lusters.Furthermore, about two years ago observations of supernovae of type Ia withhigh 
osmi
 red shifts indi
ated that the expansion of the universe is a

elerating(Riess et al. 1998, Perlmutter et al. 1999). This was explained as a result ofrepulsive gravitation due to some sort of va
uum energy. Thereby the missingenergy needed to make spa
e �at, was identi�ed as va
uum energy. Hen
e, itseems that we live in a �at universe with va
uum energy having a density around70% of the 
riti
al density and with matter having a density around 30% of the
riti
al density.Until the dis
overy of the a

elerated expansion of the universe the standardmodel of the universe was assumed to be the Einstein-DeSitter model, whi
h isa �at universe model dominated by 
old matter. This universe model is thor-oughly presented in nearly every text book on general relativity and 
osmology.Now it seems that we must repla
e this model with a new "standard model"
ontaining both dark matter and va
uum energy.Re
ently several types of va
uum energy or so 
alled quintessen
e energyhave been dis
ussed (Zlatev, Wang and Steinhardt 1999, Carroll 1998). How-ever, the most simple type of va
uum energy is the Lorentz invariant va
uumenergy (LIVE), whi
h has 
onstant energy density during the expansion of theuniverse (Zeldovi
h 1968, Grøn 1986). This type of energy 
an be mathemati-
ally represented by in
luding a 
osmologi
al 
onstant in Einstein's gravitational�eld equations. The �at universe model with 
old dark matter and this type ofva
uum energy is the Friedmann-Lemaître model.The �eld equations for the �at Friedmann-Lemaître is found by putting
k = p = 0 in equation (10.35). This gives

2
ä

a
+
ȧ2

a2
= Λ (10.100)Integration leads to

aȧ2 =
Λ

3
a3 +K (10.101)where K is a 
onstant of integration. Sin
e the amount of matter in a volume
omoving with the 
osmi
 expansion is 
onstant, ρMa3 = ρM0a

3
0, where theindex 0 refers to measured values at the present time. Normalizing the expansionfa
tor so that a0 = 1 and 
omparing eqs.(10.42) and(10.101) then gives K =

(8πG/3)ρM0. Introdu
ing a new variable x by a3 = x2 and integrating on
emore with the initial 
ondition a(0) = 0 we obtain
a3 =

3K

Λ
sinh2

(
t

tΛ

)
, tΛ =

2√
3Λ

(10.102)The va
uum energy has a 
onstant density ρΛ given by
Λ = 8πGρΛ (10.103)The 
riti
al density, whi
h is the density making the 3-spa
e of the universe �at,is
ρcr =

3H2

8πG
(10.104)
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osmologi
al models 151The relative density, i.e. the density measured in units of the 
riti
al density, ofthe matter and the va
uum energy, are respe
tively
ΩM =

ρ

ρcr
=

8πGρM
3H2

(10.105)
ΩΛ =

ρΛ

ρcr
=

Λ

3H2
(10.106)Sin
e the present universe model has �at spa
e, the total density is equal tothe 
riti
al density, i.e. ΩM + ΩΛ = 1. Eq. (10.101) with the normalization

a(t0) = 1, where t0 is the present age of the universe, gives 3H2
0 = 3K + Λ.Eq. (10.34) with k = 0 gives 8πGρ0 = 3H2

0 − Λ. Hen
e K = 8πGρ0/3 and
3K
Λ = 8πGρ0

Λ = ρ0
ρΛ

= ΩM0

ΩΛ0
. In terms of the values of the relative densities at thepresent time the expression for the expansion fa
tor then takes the form

a = A1/3 sinh2/3

(
t

tΛ

)
, A =

ΩM0

ΩΛ0
=

1 − ΩΛ0

ΩΛ0
(10.107)Using the identity sinh(x/2) =

√
(coshx− 1)/2 this expression may be written

a3 =
A

2

[
cosh

(
2t

tΛ

)
− 1

] (10.108)The age t0 of the universe is found from a(t0) = 1, whi
h by use of the formula
arc tanhx = arc sinh(x/

√
1 − x2), leads to the expression
t0 = tΛarc tanh

√
ΩΛ0 (10.109)Inserting typi
al values t0 = 15 · 109years, ΩΛ0 = 0.7 we get A = 0.43, tΛ =

12·109years. With these values the expansion fa
tor is a = 0.75 sinh2/3(1.2t/t0).This fun
tion is plotted in �g. 10.5. The Hubble parameter as a fun
tion oftime is
H = (2/3tΛ) coth(t/tΛ) (10.110)Inserting t0 = 1.2tΛ we get Ht0 = 0.8 coth(1.2t/t0), whi
h is plotted in �g. 10.6The Hubble parameter de
reases all the time and approa
hes a 
onstant value

H∞ = 2/3tΛ in the in�nite future. The present value of the Hubble parameteris
H0 =

2

3tΛ
√

ΩΛ0
(10.111)The 
orresponding Hubble age is tH0 = (3/2)tΛ

√
ΩΛ0. Inserting our numeri
alvalues gives H0 = 64km/se
Mp
−1 and tH0 = 15.7 · 109years. In this universemodel the age of the universe is nearly as large as the Hubble age, while inthe Einstein-DeSitter model the 
orresponding age is t0ED = (2/3)tH0 = 10.5 ·

109years. The reason for this di�eren
e is that in the Einstein-DeSitter modelthe expansion is de
elerated all the time, while in the Friedmann-Lemaître modelthe repulsive gravitation due to the va
uum energy have made the expansiona

elerate lately (see below). Hen
e, for a given value of the Hubble parameter
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Figure 10.5: The expansion fa
tor as fun
tion of 
osmi
 time in units of the ageof the universe.

Figure 10.6: The Hubble parameter as fun
tion of 
osmi
 time.
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osmologi
al models 153the previous velo
ity was larger in the Einstein-DeSitter model than in theFriedmann-Lemaître model.The ratio of the age of the universe and its Hubble age depends upon thepresent relative density of the va
uum energy as follows,
t0
tH0

= H0t0 =
2

3

arc tanh
√

ΩΛ0√
ΩΛ0

(10.112)This fun
tion is depi
ted graphi
ally in �g. 10.7. The age of the universe

Figure 10.7: The ratio of the age of the universe and the Hubble age as fun
tionof the present relative density of the va
uum energy.in
reases with in
reasing density of va
uum energy. In the limit that the densityof the va
uum approa
hes the 
riti
al density, there is no dark matter, andthe universe model approa
hes the DeSitter model with exponential expansionand no Big Bang. This model behaves in the same way as the Steady State
osmologi
al model and is in�nitely old.A dimensioness quantity representing the rate of 
hange of the 
osmi
 ex-pansion velo
ity is the de
eleration parameter, whi
h is de�ned as q = −ä/aH2.For the present universe model the de
eleration parameter as a fun
tion of timeis
q =

1

2
[1 − 3 tanh2(t/tΛ)] (10.113)whi
h is shown graphi
ally in �g. 10.8 The in�e
tion point of time t1 whende
eleration turned into a

eleration is given by q = 0. This leads to

t1 = tΛarc tanh(1/
√

3) (10.114)
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Figure 10.8: The de
eleration parameter as fun
tion of 
osmi
 time.or expressed in terms of the age of the universe
t1 =

arc tanh(1/
√

3)

arc tanh
√

ΩΛ0
t0 (10.115)The 
orresponding 
osmi
 red shift is

z(t1) =
a0

a(t1)
− 1 =

(
2ΩΛ0

1 − ΩΛ0

)1/3

− 1 (10.116)Inserting ΩΛ0 = 0.7 gives t1 = 0.54t0 and z(t1 = 0.67.The results of analysing the observations of supernova SN 1997 at z = 1.7,
orresponding to an emission time te = 0.30t0 = 4.5 · 109years, have providedeviden
e that the universe was de
elerated at that time (Riess n.d.). M.Turnerand A.G.Riess (Turner and Riess 2001) have re
ently argued that the othersupernova data favour a transition from de
eleration to a

eleration for a redshift around z = 0.5.Note that the expansion velo
ity given by Hubble's law, v = Hd, alwaysde
reases as seen from �g. 10.6. This is the velo
ity away from the Earth of the
osmi
 �uid at a �xed physi
al distan
e d from the Earth. The quantity ȧ on theother hand, is the velo
ity of a �xed �uid parti
le 
omoving with the expansionof the universe. If su
h a parti
le a

elerates, the expansion of the universe issaid to a

elerate. While Ḣ tells how fast the expansion velo
ity 
hanges at a�xed distan
e from the Earth, the quantity ä represents the a

eleration of afree parti
le 
omoving with the expanding universe. The 
onne
tion betweenthese two quantities are ä = a(Ḣ +H2).
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osmologi
al models 155The ratio of the in�e
tion point of time and the age of the universe, as givenin eq.(10.115), is depi
ted graphi
ally as fun
tion of the present relative densityof va
uum energy in �g. 10.9 The turnover point of time happens earlier the

Figure 10.9: The ratio of the point of time when 
osmi
 de
elerations turn overto a

eleration to the age of the universe.greater the va
uum density is. The 
hange from de
eleration to a

elerationwould happen at the present time if ΩΛ0 = 1/3.The red shift of the in�e
tion point given in eq.(10.116) as a fun
tion ofva
uum energy density, is plotted in �g. 10.10 Note that the red shift of futurepoints of time is negative, sin
e then a > a0. If ΩΛ0 < 1/3 the transition toa

eleration will happen in the future.The 
riti
al density is
ρcr = ρΛ tanh−2(t/tΛ) (10.117)This is plotted in �g. 10.11. The 
riti
al density de
reases with time.Eq. (10.116) shows that the relative density of the va
uum energy is

ΩΛ = tanh2(t/tΛ) (10.118)whi
h is plotted in �g. 10.12. The density of the va
uum energy approa
hesthe 
riti
al density. Sin
e the density of the va
uum energy is 
onstant, this isbetter expressed by saying that the 
riti
al density approa
hes the density ofthe va
uum energy. Furthermore, sin
e the total energy density is equal to the
riti
al density all the time, this also means that the density of matter de
reasesfaster than the 
riti
al density. The density of matter as fun
tion of time is
ρM = ρΛ sinh−2(t/tΛ) (10.119)
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Figure 10.10: The 
osmi
 red shift of light emitted at the turnover time fromde
eleration to a

eleration as fun
tion of the present relative density of va
uumenergy.

Figure 10.11: The 
riti
al density in units of the 
onstant density of the va
uumenergy as fun
tion of time.
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Figure 10.12: The relative density of the va
uum energy density as fun
tion oftime.

Figure 10.13: The density of matter in units of the density of va
uum energy asfun
tion of time.
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h is shown graphi
ally in �g. 10.13 The relative density of matter as fun
-tion of time is
ΩM = cosh−2(t/tΛ) (10.120)whi
h is depi
ted in �g. 10.14 Adding the relative densities of �g. 10.13 and

Figure 10.14: The relative density of matter as fun
tion of time.�g. 10.14 or the expressions (10.117) and (10.119) we get the total relativedensity ΩTOT = ΩM + ΩΛ = 1.The universe be
ame va
uum dominated at a point of time t2 when ρΛ(t2) =
ρM (t2). From eq.(10.119) follows that this point of time is given by sinh(t2/tΛ) =
1. A

ording to eq.(10.109) we get

t2 =
arc sinh(1)

arc tanh(
√

ΩΛ0)
t0 (10.121)From eq.(10.107) follows that the 
orresponding red shift is

z(t2) = A−1/3 − 1 (10.122)Inserting ΩΛ0 = 0.7 gives t2 = 0.73t0 and z(t2) = 0.32. The transition toa

elerated expansion happens before the universe be
omes va
uum dominated.Note from eqs.(10.113) and (10.118) that in the 
ase of the �at Friedmann-Lemaître universe model, the de
eleration parameter may be expressed in termsof the relative density of va
uum only, q = (1/2)(1 − 3ΩΛ). The supernova Iaobservations have shown that the expansion is now a

elerating. Hen
e if theuniverse is �at, this alone means that ΩΛ0 > 1/3.As mentioned above, many di�erent observations indi
ate that we live in auniverse with 
riti
al density, where 
old matter 
ontributes with about 30%
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osmologi
al models 159of the density and va
uum energy with about 70%. Su
h a universe is welldes
ribed by the Friedmann-Lemaître universe model that have been presentedabove.However, this model is not quite without problems in explaining the observedproperties of the universe. In parti
ular there is now mu
h resear
h dire
ted atsolving the so 
alled 
oin
iden
e problem. As we have seen, the density of theva
uum energy is 
onstant during the expansion, while the density of the mat-ter de
reases inversely proportional to a volume 
omoving with the expandingmatter. Yet, one observes that the density of matter and the density of theva
uum energy are of the same order of magnitude at the present time. Thisseems to be a strange and unexplained 
oin
iden
e in the model. Also just atthe present time the 
riti
al density is approa
hing the density of the va
uumenergy. At earlier times the relative density was 
lose to zero, and now it 
hangesapproa
hing the 
onstant value 1 in the future. S. M. Carroll (Carroll 2001) hasillustrated this aspe
t of the 
oin
iden
e problem by plotting Ω̇Λ as a fun
tionof ln(t/t0). Di�erentiating the expression (10.118) we get
tΛ
2

dΩΛ

dt
=

sinh(t/tΛ)

cosh3(t/tΛ)
(10.123)whi
h is plotted in �g. 10.15

Figure 10.15: Rate of 
hange of ΩΛ as fun
tion of ln( tt0 ). The value ln( tt0 ) = −40
orresponds to the 
osmi
 point of time t0 ∼ 1s.Putting Ω̈Λ = 0 we �nd that the rate of 
hange of ΩΛ was maximal atthe point of time t1 when the de
eleration of the 
osmi
 expansion turned intoa

eleration. There is now a great a
tivity in order to try to explain these 
oin
i-den
es by introdu
ing more general forms of va
uum energy 
alled quintessen
e,
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ally by the evolution of a s
alar �eld(Turner 2001).However, the simplest type of va
uum energy is the LIVE. One may hopethat a future theory of quantum gravity may settle the matter and let us un-derstand the va
uum energy. In the meantime we 
an learn mu
h about thedynami
s of a va
uum dominated universe by studying simple and beautifuluniverse models su
h as the Friedmann-Lemaître model.10.5 In�ationary Cosmology10.5.1 Problems with the Big Bang ModelsThe Horizon ProblemThe Cosmi
 Mi
rowave Ba
kground (CMB) radiation from two points A and Bin opposite dire
tions has the same temperature. This means that it has beenradiated by sour
es of the same temperature in these points. Thus, the universemust have been in thermi
 equilibrium at the de
oupling time, td = 3 ·105years.This implies that points A and B, �at opposite sides of the universe�, had beenin 
ausal 
onta
t already at that time. I.e., a light signal must have had time tomove from A to B during the time from t = 0 to t = 3 · 105 years. The points
A and B must have been within ea
h other's horizons at the de
oupling.Consider a photon moving radially in spa
e des
ibed by the Robertson-Walker metri
 (10.14) with k = 0. Light follows a null geodesi
 
urve, i.e. the
urve is de�ned by ds2 = 0. We get

dr =
dt

a(t)
. (10.124)The 
oordinate distan
e the photon has moved during the time t is

∆r =

∫ t

0

dt

a(t)
. (10.125)The physi
al distan
e the light has moved at the time t is 
alled the horizondistan
e, and is

lh = a(t)∆r = a(t)

∫ t

0

dt

a(t)
. (10.126)To �nd a quantitative expression for the �horizon problem�, we may 
onsidera model with 
riti
al mass density (Eu
lidian spa
elike geometry.) Using p = wρand Ω = 1, integration of equation (10.36) gives

a ∝ t
2

3+3w . (10.127)Inserting this into the expression for lh and integrating gives
lh =

3w + 3

3w + 1
t. (10.128)



10.5 In�ationary Cosmology 161Let us 
all the volume inside the horizon the �horizon volume� and denote it by
VH . From equation (10.128) follows that VH ∝ t3. At the de
oupling time, thehorizon volume may therefore be written

(VH)d =

(
td
t0

)3

V0, (10.129)where V0 is the size of the present horizon volume. Events within this volumeare 
ausally 
onne
ted, and a volume of this size may be in thermal equilibriumat the de
oupling time.Let (V0)d be the size, at the de
oupling, of the part of the universe that
orresponds to the present horizon volume, i.e. the observable universe. For ourEu
lidean universe, the equation (10.127) holds, giving
(V0)d =

a3(td)

a3(t0)
V0 =

(
td
t0

) 2

w+1

V0. (10.130)From equations (10.129) and (10.130), we get
(V0)d
(VH)d

=

(
td
t0

) 3w+1

w+1

. (10.131)Using that td = 10−4t0 and inserting w = 0 for dust, we �nd V0)d

(VH)d
= 104.Thus, there was room for 104 
ausally 
onne
ted areas at the de
oupling timewithin what presently represents our observable universe. Points at oppositesides of our observable universe were therefore not 
ausally 
onne
ted at thede
oupling, a

ording to the Friedmann models of the universe. These models
an therefore not explain that the temperature of the radiation from su
h pointsis the same.The Flatness ProblemA

ording to eq. (10.42), the total mass parameter Ω = ρ

ρcr
is given by

Ω − 1 =
k

ȧ2
. (10.132)By using the expansion fa
tor (10.127) for a universe near 
riti
al massdensity, we get

Ω − 1

Ω0 − 1
=

(
t

t0

)2( 3w+1

3w+3)
. (10.133)For a radiation dominated universe, we get

Ω − 1

Ω0 − 1
=

t

t0
. (10.134)Measurements indi
ate that Ω0 − 1 is of order of magnitude 1. The age ofthe universe is about t0 = 1017s. When we stipulate initial 
onditions for the



162 Chapter 10. Cosmologyuniverse, it is natural to 
onsider the Plan
k time, tP = 10−43s, sin
e this isthe limit to the validity of general relativity. At earlier time, quantum e�e
tswill be important, and one 
an not give a reliable des
ription without usingquantum gravitation. The stipulated initial 
ondition for the mass parameterthen be
omes that Ω− 1 is of order 10−60 at the Plan
k time. Su
h an extreme�ne tuning of the initial value of the universe's mass density 
an not be explainedwithin standard Big Bang 
osmology.Other ProblemsThe Friedman models 
an not explain questions about why the universe is nearlyhomogeneous and has an isotropi
 expansion, nor say anything about why theuniverse is expanding.10.5.2 Cosmi
 In�ationSpontaneous Symmetry Breaking and the Higgs Me
hanismThe parti
les responsible for the ele
troweak for
e, W± and Z0 are massive(
ausing the weak for
e to only have short distan
e e�e
ts). This was originallya problem for the quantum �eld theory des
ribing this for
e, sin
e it made itdi�
ult to 
reate a renormalisable theory1. This was solved by Higgs and Kibblein 1964 by introdu
ing the so-
alled Higgs me
hanism.The main idea is that the massive bosons W± and Z0 are given a mass byintera
ting with a Higgs �eld φ. The e�e
t 
auses the mass of the parti
les to beproportional to the value of the Higgs �eld in va
uum. It is therefore ne
essaryfor the me
hanism that the Higgs �eld has a value di�erent from zero in theva
uum (the va
uum expe
tation value must be non-zero).Let us see how the Higgs �eld 
an get a non-zero va
uum expe
tation value.The important thing for our purpose is that the potential for the Higgs �eldmay be temperature dependent. Let us assume that the potential for the Higgs�eld is des
ribed by the fun
tion
V (φ) =

1

2
µ2φ2 +

1

4
λφ4, (10.135)where the sign of µ2 depends on whether the temperature is above or below a
riti
al temperature Tc. This sign has an important 
onsequen
e for the shapeof the potential V . The potential is shown in �gure 10.16 for two di�erenttemperatures. For T > Tc, µ2 > 0, and the shape is like in �g. 10.16(a), andthere is a stable minimum for φ = 0. However, for T < Tc, µ2 < 0, and theshape is like in �g. 10.16(b). In this 
ase the potential has stable minima for

φ = ±φ0 = ± |µ|√
λ
and an unstable maximum at φ = 0. For both 
ases, thepotential V (φ) is invariant under the symmetry transformation φ 7→ −φ (i.e.

V (φ) = V (−φ)).1The problem is that the Lagrangian for the gauge bosons 
an not in
lude terms like m2W 2
µ ,whi
h are not gauge invariant



10.5 In�ationary Cosmology 163The �real� va
uum state of the system is at a stable minimum of the poten-tial. For T > Tc, the minimum is in the �symmetri
� state φ = 0. On the otherhand, for T < Tc this state is unstable. It is therefore 
alled a �false va
uum�.The system will move into one of the stable minimas at φ = ±φ0. When thesystem is in one of these states, it is no longer symmetri
 under the 
hange ofsign of φ. Su
h a symmetry, whi
h is not re�e
ted in the va
uum state, is 
alledspontaneously broken. Note that from �gure 10.16(b) we see that the energy ofthe false va
uum is larger than for the real va
uum.

Figure 10.16: The shape of the potential depends on the sign of µ2.(a): Higher temperature than the 
riti
al, with µ2 > 0.(b): Lower temperature than the 
riti
al, with µ2 < 0.The 
entral idea, whi
h originated the �in�ationary 
osmology�, was to takeinto 
onsideration the 
onsequen
es of the uni�ed quantum �eld theories, thegauge theories, at the 
onstru
tion of relativisti
 models for the early universe.A

ording to the Friedmann models, the temperature was extremely high in theearly history of the universe. If one 
onsiders Higgs �elds asso
iated with GUTmodels (grand uni�ed theories), one �nds a 
riti
al temperature Tc 
orrespond-ing to the energy kTc = 1014GeV , where k is Boltzmann's 
onstant. Beforethe universe was about t1 = 10−35s old, the temperature was larger than this.Thus, the Higgs �eld was in the symmetri
 ground state. A

ording to most ofthe in�ation models, the universe was dominated by radiation at this time.When the temperature de
reases, the Higgs potential 
hanges. This 
ouldhappen as shown in �gure 10.17. Here, there is a potential barrier at the 
rit
altemperature, whi
h means that there 
an not be a 
lassi
al phase transition.The transition to the stable minimum must happen by quantum tunneling.This is 
alled a �rst order phase transition.Guth's In�ation ModelAlan Guth's original in�ation model (Guth 1981) was based on a �rst orderphase transition.A

ording to most of the in�ationary models, the universe was dominated
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Figure 10.17: The temperature dependen
e of a Higgs potential with a �rstorder phase transition.by radiation during the time before 10−35s. The universe was then expanding sofast that there was no 
ausal 
onta
t between the di�erent parts of the universethat be
ame our observable universe. Probably, the universe was rather homo-geneous, with 
onsiderable spa
elike variations in temperature. There was alsoareas of false va
uum, with energy densities 
hara
teristi
 of the GUT energys
ale, whi
h also 
ontrols it's 
riti
al temperature. While the energy densityof the radiation de
reased qui
kly, as a−4, the energy density of va
uum was
onstant. At the time t = 10−35s, the energy density of the radiation be
ameless than that of the va
uum.At the same time, the potential started to 
hange, su
h that the va
uum wentfrom being stable to being an unstable false va
uum. Thus, there was a �rstorder phase transition to the real va
uum. Be
ause of the inhomogeneouty ofthe universe's initial 
ondition, this happened with di�erent speed at di�eringpla
es. The potential barrier slowed down the pro
ess, whi
h happened bytunneling, and the universe was at several pla
es 
onsiderably under
ooled, andthere appeared �bubbles� dominated by the energy of the false va
uum. Theseareas a
ted on themselves with repulsive gravity.By integrating the equation of motion for the expansion fa
tor in su
h ava
uum dominated bubble, one gets
a = eHt, H =

√
8πGρc

3
. (10.136)By inserting the GUT value above, we get H = 6.6 · 1034s−1, i.e. H−1 =

1.5 · 10−35s. With referen
e to �eld theoreti
al works by Sindney Coleman andothers, Guth argumented that a realisti
 duration of the nu
leation pro
ess hap-pening during the phase transition is 10−33s. During this time, the expansion
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tor in
reases by a fa
tor of 1028. This va
uum dominated epo
h is 
alled thein�ation era.Let us look 
loser at what happens with the energy of the universe in the
ourse of it's development, a

ording to the in�ationary models. To understandthis we �rst have to 
onsider what happens at the end of the in�ationary era.When the Higgs �eld rea
hes the minimum 
orresponding to the real va
uum,it starts to os
illate. A

ording to the quantum des
ription of the os
illating�eld, the energy of the false va
uum is 
onverted into radiation and parti
les. Inthis way the equation of state for the energy dominating the development of theexpansion fa
tor 
hanges from p = −ρ, 
hara
teristi
 for va
uum, to p = 1
3ρ,
hara
teristi
 of radiation.The energy density and the temperature of the radiation is then in
reasedenourmously. Before and after this short period around the time t = 10−33s theradiation energy in
reases adiabati
ally, su
h that ρa4 = 
onstant. A

ording toStefan-Boltzmanns law of radiadion, ρ ∝ T 4. Therefore, aT = 
onstant duringadiabati
 expansion. This means that during the in�ationary era, while theexpansion fa
tor in
reases exponentially, the energy density and temperatureof radiation de
reases exponentially. At the end of the in�ationary era, theradiation is reheated so that it returns to the energy it had when the in�ationaryera started.It may be interesting to note that the Newtonian theory of gravitation doesnot allow an in�ationary era, sin
e stress has no gravitational e�e
t a

ordingto it.The In�ation Models' Answers to the Problems of the FriedmannModelsThe horizon problem will here be investigated in the light of this model. Theproblem was that there was room for about 10000 
ausally 
onne
ted areasinside the area spanned by our presently observable universe at the time. Let us
al
ulate the horizon radius lh and the radius a of the region presently withinthe horizon, lh = 15 · 109ly = 1.5 · 1026cm, at the time t1 = 10−35s when thein�ation started. From equation (10.128) for the radiation dominated periodbefore the in�atinary era, one gets

lh = 2t1 = 6 · 10−25cm. (10.137)The radius, at time t1, of the region 
orresponding to our observable universe,is found by using that a ∝ eHt during the in�ation era from t1 = 10−35s to
t2 = 10−33s, a ∝ t

1
2 in the radiation dominated period from t2 to t3 = 1011s,and a ∝ t

2
3 in the matter dominated period from t3 until now, t0 = 1017s. Thisgives
a1 =

eHt1

eHt2

(
t2
t3

) 1

2
(
t3
t0

) 2

3

lh(t0) = 1.5 · 10−28cm. (10.138)We see that at the beginning of the in�ationary era the horizon radius,
lh, was larger than the radius a of the region 
orresponding to our observable



166 Chapter 10. Cosmologyuniverse. The whole of this region was then 
ausally 
onne
ted, and thermi
equilibrium was established. This equilibrium has been kept sin
e then, andexplains the observed isotropy of the 
osmi
 ba
kground radiation.We will now 
onsider the �atness problem. This problem was the ne
essity,in the Friedmann models, of �ne tuning the initial density in order to obtainthe 
loseness of the observed mass density to the 
riti
al density. Again, thein�ationary models give another result. Inserting the expansion fa
tor (10.136)into equation (10.132), we get
Ω − 1 =

k

H2
e−2Ht, (10.139)where H is 
onstant and given in eq. (10.136). The ratio between Ω − 1 at theend of and the beginning of the in�ationary era be
omes

Ω2 − 1

Ω1 − 1
= e−2H(t2−t1) = 10−56. (10.140)Contrary to in the Friedmann models, where the mass density moves awayfrom the 
riti
al density as time is in
reasing, the density approa
hes the 
riti
aldensity exponentially during the in�ationary era. Within a large range of initial
onditions, this means that a

ording to the in�ation models the universe shouldstill have almost 
riti
al mass density.
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