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Chapter 1Newton's law of universalgravitation1.1 The fore law of gravitation
M

m
F̃

r̃

Figure 1.1: Newton's law of universal gravitation states that the fore betweentwo masses is attrative, ats along the line joining them and is inversely pro-portional to the distane separating the masses.
~F = −mGM

r3
~r = −mGM

r2
~er (1.1)Let V be the potential energy of m (see �gure 1.1). Then

~F = −∇V (~r), Fi = −∂V
∂xi

(1.2)For a spherial mass distribution: V (~r) = −mGM
r , with zero potentialin�nitely far from the enter of M . Newton's law of gravitation is valid for�small� veloities, i.e. veloities muh smaller than the veloity of light and�weak� �elds. Weak �elds are �elds in whih the gravitational potential energyof a test partile is very small ompared to its rest mass energy. (Note thathere one is interested only in the absolute values of the above quantities andnot their sign).

mG
M

r
≪ mc2 ⇒ r ≫ GM

c2
. (1.3)1



2 Chapter 1. Newton's law of universal gravitationThe Shwarzshild radius for an objet of mass M is Rs = 2GM
c2

. Faroutside the Shwarzshild radius we have a weak �eld. To get a feeling formagnitudes onsider that Rs ≅ 1 m for the Earth whih is to be omparedwith RE ≅ 6400 km. That is, the gravitational �eld at the Earth's surfae anbe said to be weak! This explains, in part, the suess of the Newtonian theory.
1.2 Newton's law of gravitation in its loal formLet P be a point in the �eld (see �gure 1.2) with position vetor ~r = xi~ei andlet the gravitating point soure be at ~r′ = xi

′

~ei′ . Newton's law of gravitationfor a ontinuous distribution of mass is
~F = −mG

∫ ∞

r
ρ(~r′)

~r − ~r′

|~r − ~r′|3
d3r′

= −∇V (~r)

(1.4)
See �gure (1.2) for symbol de�nitions.

~r′

~r

~r − ~r′
P

Figure 1.2: Newton's law of gravitation in its loal form.



1.2 Newton's law of gravitation in its loal form 3Let's onsider equation (1.4) term by term.
∇ 1

|~r − ~r′|
= ~ei

∂

∂xi

1
[
(xj − xj′)(xj − xj′)

]1/2

= ~ei
∂

∂xi

[
(xj − xj

′

)(xj − xj′)
]−1/2

= ~ei
−1

2
2(xj − xj′)

∂xj

∂xi

[
(xk − xk

′

)(xk − xk′)
]−3/2

= −~ei
(xj − xj

′

)δij

[(xk − xk′)(xk − xk′)]
3/2

= −~ei
(xi − xi

′

)
[
(xj − xj′)(xj − xj′)

]3/2

= − ~r − ~r′

|~r − ~r′|3

(1.5)
Now equations (1.4) and (1.5) together ⇒

V (~r) = −mG
∫

ρ(~r′)

|~r − ~r′|
d3r′ (1.6)Gravitational potential at point P :

φ(~r) ≡ V (~r)

m
= −G

∫
ρ(~r′)

|~r − ~r′|
d3r′

⇒ ∇φ(~r) = G

∫
ρ(~r′)

~r − ~r′

|~r − ~r′|3
d3r′

⇒ ∇2φ(~r) = G

∫
ρ(~r′)∇· ~r −

~r′

|~r − ~r′|3
d3r′

(1.7)
The above equation simpli�es onsiderably if we alulate the divergene in theintegrand. Note that �∇�operates on ~ronly!∇· ~r −

~r′

|~r − ~r′|3
=

∇·~r
|~r − ~r′|3

+ (~r − ~r′) · ∇ 1

|~r − ~r′|3

=
3

|~r − ~r′|3
− (~r − ~r′) · 3(~r − ~r′)

|~r − ~r′|5

=
3

|~r − ~r′|3
− 3

|~r − ~r′|3

= 0 ∀ ~r 6= ~r′

(1.8)
We onlude that the Newtonian gravitational potential at a point in a gravi-tational �eld outside a mass distribution satis�es Laplae's equation

∇2φ = 0 (1.9)



4 Chapter 1. Newton's law of universal gravitationDigression 1.2.1 (Dira's delta funtion)The Dira delta funtion has the following properties:1. δ(~r − ~r′) = 0 ∀ ~r 6= ~r′2. ∫ δ(~r − ~r′)d3r′ = 1 when ~r = ~r′ is ontained in the integration domain. Theintegral is identially zero otherwise.3. ∫ f(~r′)δ(~r − ~r′)d3r′ = f(~r)A alulation of the integral ∫ ∇· ~r−~r′|~r−~r′|3d
3r′ whih is valid also in the ase wherethe �eld point is inside the mass distribution is obtained through the use ofGauss' integral theorem:

∫v ∇· ~Ad3r′ =

∮s ~A · d~s, (1.10)where s is the boundary of v (s = ∂v is an area).De�nition 1.2.1 (Solid angle)
dΩ ≡ ds′⊥

|~r − ~r′|2
(1.11)where ds′⊥ is the projetion of the area ds′ normal to the line of sight. ~ds′⊥ is theomponent vetor of ~ds′ along the line of sight whih is equal to the normal vetorof ds′⊥ (see �gure (1.3)).Now, let's apply Gauss' integral theorem.

∫v ∇· ~r −
~r′

|~r − ~r′|3
d3r′ =

∮s ~r − ~r′

|~r − ~r′|3
· d~s′ =

∮s ds′⊥
|~r − ~r′|2

=

∮s dΩ (1.12)So that,
∫v ∇· ~r −

~r′

|~r − ~r′|3
d3r′ =

{
4π if P is inside the mass distribution,
0 if P is outside the mass distribution. (1.13)The above relation is written onisely in terms of the Dira delta funtion:
∇· ~r −

~r′

|~r − ~r′|3
= 4πδ(~r − ~r′) (1.14)



1.3 Tidal Fores 5

~r′

~r
~r − ~r′

P
dΩ

d~s′⊥

d~s′ normal to bounding surfae
d~s′⊥ = ~r−~r′

|~r−~r′| · d
~s′

Figure 1.3: The solid angle dΩ is de�ned suh that the surfae of a spheresubtends 4π at the enterWe now have
∇2φ(~r) = G

∫
ρ(~r′)∇· ~r −

~r′

|~r − ~r′|3
d3r′

= G

∫
ρ(~r′)4πδ(~r − ~r′)d3r′

= 4πGρ(~r)

(1.15)Newton's theory of gravitation an now be expressed very suintly indeed!1. Mass generates gravitational potential aording to
∇2φ = 4πGρ (1.16)2. Gravitational potential generates motion aording to
~g = −∇φ (1.17)where ~g is the �eld strength of the gravitational �eld.1.3 Tidal ForesTidal fore is di�erene of gravitational fore on two neighboring partiles in agravitational �eld. The tidal fore is due to the inhomogeneity of a gravitational�eld.In �gure 1.4 two points have a separation vetor ~ζ. The position vetors of 1and 2 are ~r and ~r+ ~ζ, respetively, where |~ζ| ≪ |~r|. The gravitational fores on
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F

F

2

1
ζ

1

2

Figure 1.4: Tidal Foresa mass m at 1 and at 2 are ~F (~r) and ~F (~r+ ~ζ). By means of a Taylor expansionto lowest order in |~ζ| we get for the i-omponent of the tidal fore
fi = Fi(~r + ~ζ) − Fi(~r) = ζj

(
∂Fi
∂xj

)

~r

. (1.18)The orresponding vetor equation is
~f = (~ζ · ∇)~r ~F . (1.19)Using that
~F = −m∇φ, (1.20)the tidal fore may be expressed in terms of the gravitational potential aordingto

~f = −m(~ζ · ∇)∇φ. (1.21)It follows that in a loal Cartesian oordinate system, the i-oordinate of therelative aeleration of the partiles is
d2ζi
dt2

= −
(

∂2φ

∂xi∂xj

)

~r

ζj. (1.22)Let us look at a few simple examples. In the �rst one ~ζ has the same diretionas ~g. Consider a small Cartesian oordinate system at a distane R from a mass
M (see �gure 1.5). If we plae a partile of mass m at a point (0, 0,+z), it will,aording to eq. (1.1) be ated upon by a fore

Fz(+z) = −m GM

(R+ z)2
(1.23)while an idential partile at the origin will be ated upon by the fore

Fz(0) = −mGM

R2
. (1.24)
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Figure 1.5: A small Cartesian oordinate system at a distane R from a mass
M . If this little oordinate system is falling freely towards M , an observer atthe origin will say that the partile at (0, 0,+z) is ated upon by a fore

fz = Fz(z) − Fz(0) ≈ 2mz
GM

R3
(1.25)direted away from the origin, along the positive z-axis. We have assumed

z ≪ R. This is the tidal fore.In the same way partiles at the points (+x, 0, 0) and (0,+y, 0) are attratedtowards the origin by tidal fores
fx = −mxGM

R3
, (1.26)

fy = −myGM
R3

. (1.27)Eqs. (1.25)�(1.27) have among others the following onsequene: If an elasti,irular ring is falling freely in the Earth's gravitational �eld, as shown in �gure1.6, it will be strethed in the vertial diretion and ompressed in the horizontaldiretion.In general, tidal fores ause hanges of shape.The tidal fores from the Sun and the Moon ause �ood and ebb on theEarth. Let us onsider the e�et due to the Moon. We then let M be the massof the Moon, and hoose a oordinate system with origin at the Earth's enter.The tidal fore per unit mass at a point is the negative gradient of the tidalpotential
φ(~r) = −GM

R3

(
z2 − 1

2
x2 − 1

2
y2

)
= −GM

2R3
r2(3 cos2 θ − 1), (1.28)



8 Chapter 1. Newton's law of universal gravitation

Figure 1.6: An elasti, irular ring falling freely in the Earth's gravitational�eldwhere we have introdued spherial oordinates, z = r cos θ, x2 + y2 = r2 sin2 θ,
R is the distane between the Earth and the Moon, and the radius r of thespherial oordinate is equal to the radius of the Earth.The potential at a height h above the surfae of the Earth has one term,
mgh, due to the attration of the Earth and one given by eq. (1.28), due to theattration of the Moon. Thus,

Θ(r) = gh − GM

2R3
r2(3 cos2 θ − 1). (1.29)At equilibrium, the surfae of the Earth will be an equipotential surfae,given by Θ = onstant. The height of the water at �ood, θ = 0 or θ = π, istherefore

h�ood = h0 +
GM

gR

( r
R

)2
, (1.30)where h0 is an unknown onstant. The height of the water at ebb (θ = π

2 or
θ = 3π

2 ) is
hebb = h0 −

1

2

GM

gR

( r
R

)2
. (1.31)The height di�erene between �ood and ebb is therefore

∆h =
3

2

GM

gR

( r
R

)2
. (1.32)For a numerial result we need the following values:

MMoon = 7.35 · 1025g, g = 9.81m/s2, (1.33)
R = 3.85 · 105km, rEarth = 6378km. (1.34)With these values we �nd ∆h = 53cm, whih is typial of tidal height di�erenes.



1.4 The Priniple of Equivalene 91.4 The Priniple of EquivaleneGalilei investigated experimentally the motion of freely falling bodies. He foundthat they moved in the same way, regardless what sort of material they onsistedof and what mass they had.In Newton's theory of gravitation mass appears in two di�erent ways; asgravitational mass, mG, in the law of gravitation, analogously to harge inCoulomb's law, and as inertial mass, mI in Newton's 2nd law.The equation of motion of a freely falling partile in the �eld of gravity froma spherial body with mass M then takes the form
d2~r

dt2
= −GmG

mI

M

r3
~r. (1.35)The results of Galilei's measurements imply that the quotient between gravita-tional and inertial mass must be the same for all bodies. With a suitable hoieof units, we then obtain

mG = mI . (1.36)Measurements performed by the Hungarian baron Eötvös around the turnof the entury indiated that this equality holds with an auray better than
10−8. More reent experiments have given the result |mI

mG
− 1| < 9 · 10−13.Einstein assumed the exat validity of eq.(1.52). He did not onsider this asan aidental oinidene, but rather as an expression of a fundamental priniple,alled the priniple of equivalene.A onsequene of this priniple is the possibility of removing the e�et ofa gravitational fore by being in free fall. In order to larify this, Einsteinonsidered a homogeneous gravitational �eld in whih the aeleration of gravity,g, is independent of the position. In a freely falling, non-rotating referene framein this �eld, all free partiles move aording to

mI
d2~r

dt2
= (mG −mI)~g = 0, (1.37)where eq. (1.36) has been used.This means that an observer in suh a freely falling referene frame will saythat the partiles around him are not ated upon by fores. They move withonstant veloities along straight paths. In other words, suh a referene frameis inertial.Einstein's heuristi reasoning suggests equivalene between inertial frames inregions far from mass distributions, where there are no gravitational �elds, andinertial frames falling freely in a gravitational �eld. This equivalene between alltypes of inertial frames is so intimately onneted with the equivalene betweengravitational and inertial mass, that the term �priniple of equivalene� is usedwhether one talks about masses or inertial frames. The equivalene of di�erenttypes of inertial frames enompasses all types of physial phenomena, not onlypartiles in free fall.The priniple of equivalene has also been formulated in an �opposite� way.An observer at rest in a homogeneous gravitational �eld, and an observer in



10 Chapter 1. Newton's law of universal gravitationan aelerated referene frame in a region far from any mass distributions, willobtain idential results when they perform similar experiments. An inertial�eld aused by the aeleration of the referene frame, is equivalent to a �eld ofgravity aused by a mass distribution, as far is tidal e�ets an be ignored.1.5 The general priniple of relativityThe priniple of equivalene led Einstein to a generalization of the speial prini-ple of relativity. In his general theory of relativity Einstein formulated a generalpriniple of relativity, whih says that not only veloities are relative, but ael-erations, too.Consider two formulations of the speial priniple of relativity.S1 All laws of Nature are the same (may be formulated in the same way) in allinertial frames.S2 Every inertial observer an onsider himself to be at rest.These two formulations may be interpreted as di�erent formulations of asingle priniple. But the generalization of S1 and S2 to the general ase, whihenompasses aelerated motion and non-inertial frames, leads to two di�erentpriniples G1 and G2.G1 The laws of Nature are the same in all referene frames.G2 Every observer an onsider himself to he at rest.In the literature both G1 and G2 are mentioned as the general priniple ofrelativity. But G2 is a stronger priniple (i.e. stronger restrition on naturalphenomena) than G1. Generally the ourse of events of a physial proessin a ertain referene frame, depends upon the laws of physis, the boundaryonditions, the motion of the referene frame and the geometry of spae-time.The two latter properties are desribed by means of a metrial tensor. Byformulating the physial laws in a metri independent way, one obtains that G1is valid for all types of physial phenomena.Even if the laws of Nature are the same in all referene frames, the ourse ofevents of a physial proess will, as mentioned above, depend upon the motionof the referene frame. As to the spreading of light, for example, the law is thatlight follows null-geodesi urves (see h. 4). This law implies that the path ofa light partile is urved in non-inertial referene frames and straight in inertialframes.The question whether G2 is true in the general theory of relativity has beenthoroughly disussed reently, and the answer is not lear yet.



1.6 The ovariane priniple 111.6 The ovariane prinipleThe priniple of relativity is a physial priniple. It is onerned with physialphenomena. This priniple motivates the introdution of a formal priniple,alled the ovariane priniple: The equations of a physial theory shall havethe same form in every oordinate system.This priniple is not onerned diretly with physial phenomena. Thepriniple may be ful�lled for every theory by writing the equations in a form-invariant i.e. ovariant way. This may he done by using tensor (vetor) quanti-ties, only, in the mathematial formulation of the theory.The ovariane priniple and the equivalene priniple may be used to obtaina desription of what happens in the presene of gravitation. We then startwith the physial laws as formulated in the speial theory of relativity. Thenthe laws are written in a ovariant form, by writing them as tensor equations.They are then valid in an arbitrary, aelerated system. But the inertial �eld(��tive fore�) in the aelerated frame is equivalent to a gravitational �eld. So,starting with in a desription referred to an inertial frame, we have obtained adesription valid in the presene of a gravitational �eld.The tensor equations have in general a oordinate independent form. Yet,suh form-invariant, or ovariant, equations need not ful�ll the priniple of rel-ativity.This is due to the following irumstanes. A physial priniple, for examplethe priniple of relativity, is onerned with observable relationships. Therefore,when one is going to dedue the observable onsequenes of an equation, onehas to establish relations between the tensor-omponents of the equation andobservable physial quantities. Suh relations have to be de�ned; they are notdetermined by the ovariane priniple.From the tensor equations, that are ovariant, and the de�ned relationsbetween the tensor omponents and the observable physial quantities, one andedue equations between physial quantities. The speial priniple of relativity,for example, demands that the laws whih these equations express must be thesame with referene to every inertial frameThe relationships between physial quantities and tensors (vetors) are the-ory dependent. The relative veloity between two bodies, for example, is avetor within Newtonian kinematis. However, in the relativisti kinematis offour-dimensional spae-time, an ordinary veloity, whih has only three om-ponents, is not a vetor. Vetors in spae-time, so alled 4-vetors, have fouromponents. Equations between physial quantities are not ovariant in general.For example, Maxwell's equations in three-vetor-form are not invariant un-der a Galilei transformation. However, if these equations are rewritten in tensor-form, then neither a Galilei transformation nor any other transformation willhange the form of the equations.If all equations of a theory are tensor equations, the theory is said to be givena manifestly ovariant form. A theory that is written in a manifestly ovariantform, will automatially ful�ll the ovariane priniple, but it need not ful�llthe priniple of relativity.



12 Chapter 1. Newton's law of universal gravitation1.7 Mah's prinipleEinstein gave up Newton's idea of an absolute spae. Aording to Einstein allmotion is relative. This may sound simple, but it leads to some highly non-trivialand fundamental questions.Imagine that there are only two partiles onneted by a spring, in theuniverse. What will happen if the two partiles rotate about eah other? Willthe spring be strethed due to entrifugal fores? Newton would have on�rmedthat this is indeed what will happen. However, when there is no longer anyabsolute spae that the partiles an rotate relatively to, the answer is not soobvious. If we, as observers, rotate around the partiles, and they are at rest,we would not observe any strething of the spring. But this situation is nowkinematially equivalent to the one with rotating partiles and observers at rest,whih leads to strething.Suh problems led Mah to the view that all motion is relative. The motionof a partile in an empty universe is not de�ned. All motion is motion relativelyto something else, i.e. relatively to other masses. Aording to Mah this impliesthat inertial fores must be due to a partile's aeleration relatively to the greatmasses of the universe. If there were no suh osmi masses, there would notexist inertial fores, like the entrifugal fore. In our example with two partilesonneted by a string, there would not be any strething of the spring, if therewere no osmi masses that the partiles ould rotate relatively to.Another example may be illustrated by means of a turnabout. If we stayon this, while it rotates, we feel that the entrifugal fores lead us outwards.At the same time we observe that the heavenly bodies rotate. Aording toMah idential entrifugal fores should appear if the turnabout is stati andthe heavenly bodies rotate.Einstein was strongly in�uened by Mah's arguments, whih probably hadsome in�uene, at least with regards to motivation, on Einstein's onstrutionof his general theory of relativity. Yet, it is lear that general relativity does notful�ll all requirements set by Mah's priniple. For example there exist generalrelativisti, rotating osmologial models, where free partiles will tend to rotaterelative to the osmi masses of the model.However, some Mahian e�ets have been shown to follow from the equationsof the general theory of relativity. For example, inside a rotating, massiveshell the inertial frames, i.e. the free partiles, are dragged on and tend torotate in the same diretion as the shell. This was disovered by Lense andThirring in 1918 and is therefore alled the Lense-Thirring e�et. More reentinvestigations of this e�et have, among others, lead to the following result (Brilland Cohen 1966): �A massive shell with radius equal to its Shwarzshild radiushas often been used as an idealized model of our universe. Our result showsthat in suh models loal inertial frames near the enter annot rotate relativelyto the mass of the universe. In this way our result gives an explanation inaordane with Mah's priniple, of the fat that the ��xed stars� is at rest onheaven as observed from an inertial referene frame.�



Chapter 2Vetors, Tensors and Forms2.1 VetorsAn expression on the form aµ~eµ, where aµ, µ = 1, 2, ..., n are real numbers, isknown as a linear ombination of the vetors ~eµ.The vetors ~e1, ..., ~en are said to be linearly independent if there does notexist real numbers aµ 6= 0 suh that aµ~eµ = 0.

Figure 2.1: Closed polygon (linearly dependent)Geometrial interpretation: A set of vetors are linearly independent if itis not possible to onstrut a losed polygon of the vetors (even by adjustingtheir lengths).A set of vetors ~e1, . . . , ~en are said to bemaximally linearly independentif ~e1, . . . , ~en, ~v are linearly dependent for all vetors ~v 6= ~eµ. We de�ne thedimension of a vetor-spae as the number of vetors in a maximally linearlyindependent set of vetors of the spae. The vetors ~eµ in suh a set are known13



14 Chapter 2. Vetors, Tensors and Formsas the basis-vetors of the spae.
~v + aµ~eµ = 0

⇓
~v = −aµ~eµ (2.1)The omponents of ~v are the numbers vµ de�ned by vµ = −aµ ⇒ ~v = vµ~eµ.2.1.1 4-vetors4-vetors are vetors whih exist in (4-dimensional) spae-time. A 4-vetorequation represents 4 independent omponent equations.

L c

cL

v ∆ t

2

v

Figure 2.2: Carriage at rest (top) and with veloity ~v (bottom)Example 2.1.1 (Photon lok)Carriage at rest:
∆t0 =

2L

c



2.1 Vetors 15Carriage with veloity ~v:
∆t =

2
√

(v∆t
2 )2 + L2

c
⇓

c2∆t2 = v2∆t2 + 4L2

⇓

∆t =
2L√
c2 − v2

=
2L/c√

1 − v2/c2
=

∆t0√
1 − v2/c2

(2.2)The proper time-interval is denoted by dτ (above it was denoted ∆t0). Theproper time-interval for a partile is measured with a standard lok whihfollows the partile.De�nition 2.1.1 (4-veloity)
~U = c

dt

dτ
~et +

dx

dτ
~ex +

dy

dτ
~ey +

dz

dτ
~ez, (2.3)where t is the oordinate time, measured with loks at rest in the referene frame.

~U = Uµ~eµ =
dxµ

dτ
~eµ, xµ = (ct, x, y, z), x0 ≡ ct

dt

dτ
=

1√
1 − v2

c2

≡ γ (2.4)
~U = γ(c, ~v), where ~v is the ommon 3-veloity of the partile.De�nition 2.1.2 (4-momentum)

~P = m0
~U, (2.5)where m0 is the rest mass of the partile.

~P = (Ec , ~p), where ~p = γm0~v = m~v and E is the relativisti energy.The 4-fore or Minkowski-fore ~F ≡ d~P
dτ and the 'ommon fore' ~f = d~p

dt .Then
~F = γ(

1

c
~f · ~v, ~f) (2.6)
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lightcone

world line of a material particle

ct

y

x

should have v > c
tachyons, if they exist,

Figure 2.3: World-lines in a Minkowski diagramDe�nition 2.1.3 (4-aeleration)
~A =

d~U

dτ
(2.7)The 4-veloity has the salar value c so that

~U · ~U = −c2 (2.8)The 4-veloity identity eq. 2.8 gives ~U · ~A = 0, in other words ~A ⊥ ~U and ~A isspae-like.The line element for Minkowski spae-time (�at spae-time) with Cartesianoordinates is
ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.9)In general relativity theory, gravitation is not onsidered a fore. Gravitationis instead desribed as motion in a urved spae-time.A partile in free fall, is in Newtonian gravitational theory said to be onlyin�uened by the gravitational fore. Aording to general relativity theory thepartile is not in�uened by any fore.Suh a partile has no 4-aeleration. ~A 6= 0 implies that the partile is notin free fall. It is then in�uened by non-gravitational fores.One has to distinguish between observed aeleration, ie. ommon 3-aeleration,and the absolute 4-aeleration.



2.1 Vetors 172.1.2 Tangent vetor �elds and oordinate vetorsIn a urved spae position vetors with �nite length do not exist. (See �gure2.4).
P

N(North pole)

Figure 2.4: In urved spae,vetors an only exist in tangent planes.The vetorsin the tangent plane of N,do not ontain the vetor −−→NP (dashed line).Di�erent points in a urved spae have di�erent tangent planes. Finite ve-tors do only exist in these tangent planes (See �gure 2.5). However, in�nitesimalposition vetors d~r do exist.
P

tangent plane of point P:

Figure 2.5: In urved spae,vetors an only exist in tangent planes



18 Chapter 2. Vetors, Tensors and FormsDe�nition 2.1.4 (Referene frame)A referene frame is de�ned as a ontinuum of non-interseting timelike worldlines in spaetime.We an view a referene frame as a set of referene partiles with a spei�edmotion. An inertial referene frame is a non-rotating set of free partiles.De�nition 2.1.5 (Coordinate system)A oordinate system is a ontinuum of 4-tuples giving a unique set of oordinatesfor events in spaetime.De�nition 2.1.6 (Comoving oordinate system)A omoving oordinate system in a frame is a oordinate system where thepartiles in the referene frame have onstant spatial oordinates.De�nition 2.1.7 (Orthonormal basis)An orthonormal basis {~eµ̂} in spaetime is de�ned by
~et̂ · ~et̂ = −1(c = 1)

~êi · ~eĵ = δ̂iĵ
(2.10)where î and ĵ are spae indies.De�nition 2.1.8 (Coordinate basis vetors.)Temporary de�nition of oordinate basis vetor:Assume any oordinate system {xµ}.

~eµ ≡ ∂~r

∂xµ
(2.11)A vetor �eld is a ontinuum of vetors in a spae, where the omponents areontinuous and di�erentiable funtions of the oordinates. Let ~v be a tangentvetor to the urve ~r(λ):

~v =
d~r

dλ
where ~r = ~r[xµ(λ)] (2.12)



2.1 Vetors 19The hain rule for di�erentiation yields:
~v =

d~r

dλ
=

∂~r

∂xµ
dxµ

dλ
=
dxµ

dλ
~eµ = vµ~eµ (2.13)Thus, the omponents of the tangent vetor �eld along a urve, parameterisedby λ, is given by:

vµ =
dxµ

dλ
(2.14)In the theory of relativity, the invariant parameter is often hosen to be theproper time. Tangent vetor to the world line of a material partile:

uµ =
dxµ

dτ
(2.15)These are the omponents of the 4-veloity of the partile!Digression 2.1.1 (Proper time of the photon.)Minkowski-spae:

ds2 = −c2dt2 + dx2

= −c2dt2
(
1 − 1

c2
(dx
dt

)2)

= −
(
1 − v2

c2
)
c2dt2

(2.16)For a photon,v = c so:
lim
v→c

ds2 = 0 (2.17)Thus, the spaetime interval between two points on the world line of a photon, iszero! This also means that the proper time for the photon is zero!! (See example2.1.2).
Digression 2.1.2 (Relationships between spaetime intervals, time and proper time.)Physial interpretation of the spaetime interval for a timelike interval:

ds2 = −c2dτ2 (2.18)where dτ is the proper time interval between two events, measured on a lokmoving in a way, suh that it is present on both events (�gure 2.6).
−c2dτ2 = −c2

(
1 − v2

c2
)
dt2

⇒ dτ =

√
1 − v2

c2
dt (2.19)
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x

ct

d

P 1

P 2τ

Figure 2.6: P1 and P2 are two events in spaetime, separated by a proper timeinterval dτ .The time interval between to events in the laboratory, is smaller measured on amoving lok than measured on a stationary one, beause the moving lok istiking slower!2.1.3 Coordinate transformationsGiven two oordinate systems {xµ} and {xµ′}.
~eµ′ =

∂~r

∂xµ′
(2.20)Suppose there exists a oordinate transformation, suh that the primed oor-dinates are funtions of the unprimed, and vie versa. Then we an apply thehain rule:

~eµ′ =
∂~r

∂xµ
′

=
∂~r

∂xµ
∂xµ

∂xµ
′

= ~eµ
∂xµ

∂xµ
′

(2.21)This is the transformation equation for the basis vetors. ∂xµ

∂xµ′ are elementsof the transformation matrix. Indies that are not sum-indies are alled 'freeindies'.Rule: In all terms on eah side in an equation, the free indies shouldbehave identially (high or low), and there should be exatly the sameindies in all terms!



2.1 Vetors 21Applying this rule, we an now �nd the inverse transformation
~eµ = ~eµ′

∂xµ
′

∂xµ

~v = vµ
′

~eµ′ = vµ~eµ = vµ
′

~eµ
∂xµ

∂xµ′So, the transformation rules for the omponents of a vetor beomes
vµ = vµ

′ ∂xµ

∂xµ′
; vµ

′

= vµ
∂xµ

′

∂xµ
(2.22)The diretional derivative along a urve, parametrised by λ:

d

dλ
=

∂

∂xµ
dxµ

dλ
= vµ

∂

∂xµ
(2.23)where vµ = dxµ

dλ are the omponents of the tangent vetor of the urve. Dire-tional derivative along a oordinate urve:
λ = xν

∂

∂xµ
∂xµ

∂xν
= δµν

∂

∂xµ
=

∂

∂xν
(2.24)In the primed system:

∂

∂xµ′
=
∂xµ

∂xµ′
∂

∂xµ
(2.25)De�nition 2.1.9 (Coordinate basis vetors.)We de�ne the oordinate basis vetors as:

~eµ =
∂

∂xµ
(2.26)This de�nition is not based upon the existene of �nite position vetors. It appliesin urved spaes as well as in �at spaes.Example 2.1.2 (Coordinate transformation)From Figure 2.7 we see that

x = r cos θ, y = r sin θ (2.27)
Coordinate basis vetors were de�ned by

~eµ ≡ ∂

∂xµ
(2.28)
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y
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e

e

y

x

r

θ

xFigure 2.7: Coordinate transformation, �at spae.This means that we have
~ex =

∂

∂x
, ~ey =

∂

∂y
, ~er =

∂

∂r
, ~eθ =

∂

∂θ

~er =
∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y

(2.29)Using the hain rule and Equations (2.27) and (2.29) we get
~er = cos θ ~ex + sin θ ~ey

~eθ =
∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y

= −r sin θ ~ex + r cos θ ~ey

(2.30)But are the vetors in (2.30) also unit vetors?
~er · ~er = cos2θ + sin2θ = 1 (2.31)So ~er is a unit vetor, |~er| = 1.

~eθ · ~eθ = r2(cos2θ + sin2θ) = r2 (2.32)and we see that ~eθ is not a unit vetor, |~eθ| = r. But we have that ~er · ~eθ = 0 ⇒
~er⊥~eθ. Coordinate basis vetors are not generally unit vetors.



2.1 Vetors 23De�nition 2.1.10 (Orthonormal basis)An orthonormal basis is a vetor basis onsisting of unit vetors that are normal toeah other. To show that we are using an orthonormal basis we will use 'hats' overthe indies, {~eµ̂}.Orthonormal basis assoiated with planar polar oordinates:
~er̂ = ~er , ~eθ̂ =

1

r
~eθ (2.33)Example 2.1.3 (Relativisti Doppler E�et)The Lorentz transformation is known from speial relativity and relates the refereneframes of two systems where one is moving with a onstant veloity v with regardto the other,

x′ = γ(x− vt)

t′ = γ(t− vx

c2
)Aording to the vetor omponent transformation (2.22), the 4-momentum for apartile moving in the x-diretion, Pµ = (Ec , p, 0, 0) transforms as

Pµ
′

=
∂xµ

′

∂xµ
Pµ,

E′ = γ(E − vp).Using the fat that a photon has energy E = hν and momemtum p = hν
c , where

h is Plank's onstant and ν is the photon's frequeny, we get the equation for thefrequeny shift known as the relativisti Doppler e�et,
ν ′ = γ(ν − v

c
ν) =

(
1 − v

c

)
ν

√(
1 − v

c

) (
1 + v

c

)

ν ′

ν
=

√
c− v

c+ v
(2.34)

2.1.4 Struture oe�ientsDe�nition 2.1.11 (Commutators between vetors)The ommutator between two vetors, ~u and ~v, is de�ned as
[~u , ~v] ≡ ~u~v − ~v~u (2.35)



24 Chapter 2. Vetors, Tensors and Formswhere ~u~v is de�ned as
~u~v ≡ uµ ~eµ(v

ν ~eν) = uµ
∂

∂xµ
(vν

∂

∂xν
) (2.36)We an think of a vetor as a linear ombination of partial derivatives. We get:

~u~v = uµ
∂vν

∂xµ
∂

∂xν
+ uµvν

∂2

∂xµ∂xν

= uµ
∂vν

∂xµ
~eν + uµvν

∂2

∂xµ∂xν

(2.37)Due to the last term, ~u~v is not a vetor.
~v~u = vν

∂

∂xν
(uµ

∂

∂xµ
)

= vν
∂uµ

∂xν
~eµ + vνuµ

∂2

∂xν∂xµ

~u~v − ~v~u = uµ
∂vν

∂xµ
~eν − vν

∂uµ

∂xν
~eµ

︸ ︷︷ ︸
vµ ∂uν

∂xµ ~eν

= (uµ
∂vν

∂xµ
− vµ

∂uν

∂xµ
)~eν

(2.38)
Here we have used that

∂2

∂xµ∂xν
=

∂2

∂xν∂xµ
(2.39)The Einstein omma notation ⇒

~u~v − ~v~u = (uµvν,µ − vµuν,µ)~eν (2.40)As we an see, the ommutator between two vetors is itself a vetor.De�nition 2.1.12 (Struture oe�ients c
ρ

µν
)The struture oe�ients cρµν in an arbitrary basis { ~eµ} are de�ned by:

[ ~eµ , ~eν ] ≡ cρµν ~eρ (2.41)Struture oe�ients in a oordinate basis:
[ ~eµ , ~eν ] = [

∂

∂xµ
,
∂

∂xν
]

=
∂

∂xµ
(
∂

∂xν
) − ∂

∂xν
(
∂

∂xµ
)

=
∂2

∂xµ∂xν
− ∂2

∂xν∂xµ
= 0

(2.42)



2.2 Tensors 25The ommutator between two oordinate basis vetors is zero, so the strutureoe�ients are zero in oordinate basis.Example 2.1.4 (Struture oe�ients in planar polar oordinates)We will �nd the struture oe�ients of an orthonormal basis in planar polar oor-dinates. In (2.33) we found that
~er̂ = ~er , ~eθ̂ =

1

r
~eθ (2.43)We will now use this to �nd the struture oe�ients.

[~er̂ , ~eθ̂] = [
∂

∂r
,

1

r

∂

∂θ
]

=
∂

∂r
(
1

r

∂

∂θ
) − 1

r

∂

∂θ
(
∂

∂r
)

= − 1

r2
∂

∂θ
+

1

r

∂2

∂r∂θ
− 1

r

∂2

∂θ∂r

= − 1

r2
~eθ = −1

r
~eθ̂

(2.44)
To �nd the struture oe�ients in an orthonormal basis we must use [~er̂ , ~eθ̂] =
−1
r~eθ̂.

[~eµ̂ , ~eν̂ ] = cρ̂µ̂ν̂~eρ̂ (2.45)Using (2.44) and (2.45) we get
cθ̂
r̂θ̂

= −1

r
(2.46)From the de�nition of cρµν ([~u , ~v] = −[~v , ~u]) we see that the struture oe�ientsare anti symmetri in their lower indies:

cρµν = −cρνµ (2.47)
cθ̂
θ̂r̂

=
1

r
= −cθ̂

r̂θ̂
(2.48)2.2 TensorsA 1-form-basis ω1, . . ., ωn is de�ned by:

ωµ(~eν) = δµν (2.49)



26 Chapter 2. Vetors, Tensors and FormsAn arbitrary 1-form an be expressed, in terms of its omponents, as a linearombination of the basis forms:
α = αµω

µ (2.50)where αµ are the omponents of α in the given basis.Using eqs.(2.49) and (2.50), we �nd:
α(~eν) = αµω

µ(~eν) = αµδ
µ
ν = αν

α(~v) = α(vµ~eµ) = vµα(~eµ) = vµαµ = v1α1 + v2α2 + . . .
(2.51)We will now look at funtions of multiple variables.De�nition 2.2.1 (Multilinear funtion, tensors)A multilinear funtion is a funtion that is linear in all its arguments and maps one-forms and vetors into real numbers. A tensor is a multilinear funtion that mapsone-forms and vetors into real numbers.

• A ovariant tensor only maps vetors.
• A ontravariant tensor only maps forms.
• A mixed tensor maps both vetors and forms into R.A tensor of rank (NN ′

) maps N one-forms and N ′ vetors into R. It is usual tosay that a tensor is of rank (N +N ′). A one-form, for example, is a ovarianttensor of rank 1:
α(~v) = vµαµ (2.52)De�nition 2.2.2 (Tensor produt)The basis of a tensor R of rank q ontains a tensor produt, ⊗. If T and S aretwo tensors of rank m and n, the tensor produt is de�ned by:

T ⊗ S( ~u1,..., ~um, ~v1,..., ~vn) ≡ T ( ~u1,..., ~um)S(~v1,..., ~vn) (2.53)where T and S are tensors of rank m and n, respetively. T ⊗S is a tensor of rank
(m+ n).Let R = T ⊗ S. We then have

R = Rµ1,...,µqω
µ1 ⊗ ωµ2 ⊗ · · · ⊗ ωµq (2.54)



2.2 Tensors 27Notie that S ⊗ T 6= T ⊗ S. We get the omponents of a tensor (R) by usingthe tensor on the basis vetors:
Rµ1,...,µq = R( ~eµ1

,..., ~eµq ) (2.55)The indies of the omponents of a ontravariant tensor are written as upperindies, and the indies of a ovariant tensor as lower indies.Example 2.2.1 (Example of a tensor)Let ~u and ~v be two vetors and α and β two 1-forms.
~u = uµ~eµ; ~v = vµ~eµ; α = αµω

µ; β = βµω
µ (2.56)From these we an onstrut tensors of rank 2 through the relation R = ~u ⊗ ~v asfollows: The omponents of R are

Rµ1µ2 = R(ωµ1 , ωµ2)

= ~u⊗ ~v(ωµ1 , ωµ2)

= ~u(ωµ1)~v(ωµ2)

= uµ~eµ(ω
µ1)vν~eν(ω

µ2)

= uµδµ1
µ v

νδµ2
ν

= uµ1vµ2

(2.57)
2.2.1 Transformation of tensor omponentsWe shall not limit our disussion to oordinate transformations. Instead, wewill onsider arbitrary transformations between bases, {~eµ} −→

{
~eµ′
}. Theelements of transformation matries are denoted by Mµ

µ′ suh that
~eµ′ = ~eµM

µ
µ′ and ~eµ = ~eµ′M

µ′
µ (2.58)where Mµ′

µ are elements of the inverse transformation matrix. Thus, it followsthat
Mµ

µ′M
µ′

ν = δµν (2.59)If the transformation is a oordinate transformation, the elements of the matrixbeome
Mµ′

µ =
∂xµ

′

∂xµ
(2.60)



28 Chapter 2. Vetors, Tensors and Forms2.2.2 Transformation of basis 1-forms
ωµ

′

= Mµ′
µω

µ

ωµ = Mµ
µ′ω

µ′
(2.61)The omponents of a tensor of higher rank transform suh that every on-travariant index (upper) transforms as a basis 1-form and every ovariant index(lower) as a basis vetor. Also, all elements of the transformation matrix aremultiplied with one another.Example 2.2.2 (A mixed tensor of rank 3)

Tα
′

µ′ν′ = Mα′

αM
µ
µ′M

ν
ν′T

α
µν (2.62)The omponents in the primed basis are linear ombinations of the omponentsin the unprimed basis.Tensor transformation of omponents means that tensors have a basis in-dependent existene. That is, if a tensor has non-vanishing omponents in agiven basis then it has non-vanishing omponents in all bases. This meansthat tensor equations have a basis independent form. Tensor equations areinvariant. A basis transformation might result in the vanishing of one or moretensor omponents. Equations in omponent form may di�er from one basis toanother. But an equation expressed in tensor omponents an be transformedfrom one basis to another using the tensor omponent transformation rules. Anequation that is expressed only in terms of tensor omponents is said to beovariant.2.2.3 The metri tensorDe�nition 2.2.3 (The metri tensor)The salar produt of two vetors ~u and ~v is denoted by g(~u,~v) and is de�ned asa symmetri linear mapping whih for eah pair of vetors gives a salar g(~v,~u) =g(~u,~v).The value of the salar produt g(~u,~v) is given by speifying the salarproduts of eah pair of basis-vetors in a basis.g is a symmetri ovariant tensor of rank 2. This tensor is known as the



2.2 Tensors 29metri tensor. The omponents of this tensor are
g(~eµ, ~eν) = g µν (2.63)

~u · ~v = g(~u,~v) = g(uµ~eµ, v
ν~eν) = uµvνg(~eµ, ~eν) = uµuνg µν (2.64)Usual notation:

~u · ~v = g µνu
µvν (2.65)The absolute value of a vetor:

|~v| =
√
g(~v,~v) =

√
|g µνvµvν | (2.66)Example 2.2.3 (Cartesian oordinates in a plane)

~ex · ~ex = 1, ~ey · ~ey = 1, ~ex · ~ey = ~ey · ~ex = 0

g xx = g yy = 1, g xy = g yx = 0 (2.67)
g µν =

(
1 0
0 1

)

Example 2.2.4 (Basis-vetors in plane polar-oordinates)
~er · ~er = 1, ~eθ · ~eθ = r2, ~er · ~eθ = 0, (2.68)The metri tensor in plane polar-oordinates:

g µν =

(
1 0
0 r2

) (2.69)Example 2.2.5 (Non-diagonal basis-vetors)
~e1 · ~e1 = 1, ~e2 · ~e2 = 1, ~e1 · ~e2 = cos θ = ~e2 · ~e1

g µν =

(
1 cos θ

cos θ 1

)
=

(
g 11 g 12

g 21 g 22

) (2.70)



30 Chapter 2. Vetors, Tensors and Forms
e 1

2e

ΘFigure 2.8: Basis-vetors ~e1 and ~e2De�nition 2.2.4 (Contravariant omponents)The ontravariant omponents gµα of the metri tensor are de�ned as:
gµαg αν ≡ δµν gµν = ~wµ · ~wν , (2.71)where ~wµ is de�ned by

~wµ · ~wν ≡ δµν . (2.72)
gµν is the inverse matrix of g µν .It is possible to de�ne a mapping between tensors of di�erent type (eg.ovariant on ontravariant) using the metri tensor.We an for instane map a vetor on a 1-form:

vµ = g(~v,~eµ) = g(vα~eα, ~eµ) = vαg(~eα, ~eµ) = vαg αµ (2.73)This is known as lowering of an index. Raising of an index beomes :
vµ = gµαvα (2.74)The mixed omponents of the metri tensor beomes:

gµν = gµαg αν = δµν (2.75)We now de�ne distane along a urve. Let the urve be parameterized by λ(proper-time τ for time-like urves). Let ~v be the tangent vetor-�eld of theurve.The squared distane ds2 between the points along the urve is de�ned as:
ds2 ≡ g(~v,~v)dλ2 (2.76)gives
ds2 = g µνv

µvνdλ2. (2.77)The tangent vetor has omponents vµ = dxµ

dλ , whih gives:
ds2 = g µνdx

µdxν (2.78)The expression ds2 is known as the line-element.
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1 ω 1Figure 2.9: The ovariant- and ontravariant omponents of a vetorExample 2.2.6 (Cartesian oordinates in a plane)

g xx = g yy = 1, gxy = gyx = 0

ds2 = dx2 + dy2
(2.79)

Example 2.2.7 (Plane polar oordinates)
g rr = 1, g θθ = r2

ds2 = dr2 + r2dθ2
(2.80)

Cartesian oordinates in the (�at) Minkowski spae-time :
ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.81)In an arbitrary urved spae, an orthonormal basis an be adopted in anypoint. If ~et̂ is tangent vetor to the world line of an observer, then ~et̂ = ~u



32 Chapter 2. Vetors, Tensors and Formswhere ~u is the 4-veloity of the observer. In this ase, we are using what we allthe omoving orthonormal basis of the observer. In a suh basis, we have theMinkowski-metri:
ds2 = ηµ̂ν̂dx

µ̂dxν̂ (2.82)2.3 FormsAn antisymmetri tensor is a tensor whose sign hanges under an arbitraryexhange of two arguments.
A(· · · , ~u, · · · , ~v, · · · ) = −A(· · · , ~v, · · · , ~u, · · · ) (2.83)The omponents of an antisymmetri tensor hange sign under exhange oftwo indies.

A···µ···ν··· = −A···ν···µ··· (2.84)De�nition 2.3.1 (p-form)A p-form is de�ned to be an antisymmetri, ovariant tensor of rank p.An antisymmetri tensor produt ∧ is de�ned by:
ω[µ1 ⊗ · · · ⊗ ωµp] ∧ ω[ν1 ⊗ · · · ⊗ ωνq] ≡ (p+ q)!

p!q!
ω[µ1 ⊗ · · · ⊗ ωνq] (2.85)where [ ℄ denotes antisymmetri ombinations de�ned by:

ω[µ1 ⊗ · · · ⊗ ωµp] ≡ 1

p!
· (the sum of terms withall possible permutationsof indies with, �+� for evenand �-� for odd permutations) (2.86)

Example 2.3.1 (antisymmetri ombinations)
ω[µ1 ⊗ ωµ2] =

1

2
(ωµ1 ⊗ ωµ2 − ωµ2 ⊗ ωµ1) (2.87)



2.3 Forms 33Example 2.3.2 (antisymmetri ombinations)
ω[µ1 ⊗ ωµ2 ⊗ ωµ3] =

1

3!
(ωµ1 ⊗ ωµ2 ⊗ ωµ3 + ωµ3 ⊗ ωµ1 ⊗ ωµ2 + ωµ2 ⊗ ωµ3 ⊗ ωµ1

− ωµ2 ⊗ ωµ1 ⊗ ωµ3 − ωµ3 ⊗ ωµ2 ⊗ ωµ1 − ωµ1 ⊗ ωµ3 ⊗ ωµ2)

=
1

3!
ǫijk(ω

µi ⊗ ωµj ⊗ ωµk) (2.88)Example 2.3.3 (A 2-form in 3-spae)
α = α12ω

1⊗ω2+α21ω
2⊗ω1+α13ω

1⊗ω3+α31ω
3⊗ω1+α23ω

2⊗ω3+α32ω
3⊗ω2(2.89)Now the antisymmetry of α means that

+α21 = −α12; +α31 = −α13; +α32 = −α23 (2.90)
α =α12(ω

1 ⊗ ω2 − ω2 ⊗ ω1)

+ α13(ω
1 ⊗ ω3 − ω3 ⊗ ω1)

+ α23(ω
2 ⊗ ω3 − ω3 ⊗ ω2)

= α|µν|2ω
[µ ⊗ ων]

(2.91)where |µν| means summation only for µ < ν (see (Misner, Thorne and Wheeler1973)). We now use the de�nition of ∧ with p = q = 1. This gives
α = α|µν|ω

µ ∧ ων

ωµ
∧ ων is theform basis.We an also write

α =
1

2
αµνω

µ ∧ ων

A tensor of rank 2 an always be split up into a symmetri and an anti-symmetri part. (Note that tensors of higher rank an not be split up in thisway.)
Tµν =

1

2
(Tµν − Tνµ) +

1

2
(Tµν + Tνµ)

= Aµν + Sµν

(2.92)
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SµνA

µν =
1

4
(Tµν + Tνµ)(T

µν − T νµ)

=
1

4
(TµνT

µν − TµνT
νµ + TνµT

µν − TνµT
νµ)

= 0

(2.93)In general, summation over indies of a symmetri and an antisymmetri quan-tity vanishes. In a summation TµνAµν where Aµν is antisymmetri and Tµν hasno symmetry, only the antisymmetri part of Tµν ontributes. So that, in
α =

1

2
αµνω

µ ∧ ων (2.94)only the antisymmetri elements ανµ = −αµν , ontribute to the summation.These antisymmetri elements are the form omponentsForms are antisymmetri ovariant tensors. Beause of this antisymmetrya form with two idential omponents must be a null form (= zero). e.g.
α131 = −α131 ⇒ α131 = 0In an n-dimensional spae all p-forms with p > n are null forms.



Chapter 3Aelerated Referene Frames3.1 Rotating referene frames3.1.1 The spatial metri tensorLet ~e0̂ be the 4-veloity �eld (x0 = ct, c = 1, x0 = t) of the referene partilesin a referene frame R. We are going to �nd the metri tensor γij in a tangentspae orthogonal to ~e0̂, expressed by the metri tensor gµν of spaetime.In an arbitrary oordinate basis {~eµ}, {~ei} is not neessarily orthogonal to
~e0. We hoose ~e0‖~e0̂. Let ~e⊥i be the omponent of ~ei orthogonal to ~e0, thatis:~e⊥i · ~e0 = 0. The metri tensor of spae is de�ned by:

γij = ~e⊥i · ~e⊥j , γi0 = 0, γ00 = 0

~e⊥i = ~ei − ~e‖i

~e‖i =
~ei · ~e0
~e0 · ~e0

~e0 =
gi0
g00

~e0

γij = (~ei − ~e‖i) · (~ej − ~e‖j)

= (~ei −
gi0
g00

~e0) · (~ej −
gj0
g00

~e0)

= ~ei · ~ej −
gj0
g00

~e0 · ~ei −
gi0
g00

~e0 · ~ej +
gi0gj0
g2
00

~e0 · ~e0

= gij −
gi0gj0
g00

− gi0gj0
g00

+
gi0gj0
g00

⇒ γij = gij −
gi0gj0
g00

(3.1)(Note:gij = gji ⇒ γij = γji)The line element in spae:
dl2 = γijdx

idxj =
(
gij −

gi0gj0
g00

)
dxidxj (3.2)gives the distane between simultaneous events in a referene frame where themetri tensor of spaetime in a omoving oordinate system is gµν .35



36 Chapter 3. Aelerated Referene FramesThe line element for spaetime an be expressed as:
ds2 = −dt̂2 + dl2 (3.3)It follows that dt̂ = 0 represents the simultaneity de�ning the spatial line ele-ment. The temporal part of the spaetime line element may be expressed as

dt̂2 = dl2 − ds2 = (γµν − gµν)dx
µdxν

= (γij − gij)dx
idxj + 2(γi0 − gi0)dx

idx0 + (γ00 − g00)dx
0dx0

= (gij −
gi0gj0
g00

− gij)dx
idxj − 2gi0dx

idx0 − g00(dx
0)2

= −g00
[
(dx0)2 + 2

gi0
g00

dx0dxi +
gi0gj0
g2
00

dxidxj
]

=

[
(−g00)1/2(dx0 +

gi0
g00

dxi)

]2So �nally we get
dt̂ = (−g00)1/2(dx0 +

gi0
g00

dxi) (3.4)The 3-spae orthogonal to the world lines of the referene partiles in R, dt̂ =
0, orresponds to a oordinate time interval dt = − gi0

g00
dxi. This is not anexat di�erential, that is, dt is not integrable, whih means that one annot ingeneral de�ne a 3-spae orthogonal to the world lines of the world lines of thereferene partiles, i.e. a �simultaneity spae�, in an arbitrary referene frame.We must also onlude that unless gi0/g00 is onstant, it is not possible toEinstein synhronize loks around losed urves.In partiular, it is not possible to Einstein-synhronize loks around a losedurve in a rotating referene frame. If this is attempted, ontraditory bound-ary onditions in the non-rotating lab frame will arise, due to the relativity ofsimultaneity. (See �gure 3.1)The distane in the laboratory frame between two points is:

∆x =
2πr

n
(3.5)Lorentz transformation from the instantaneous rest frame (x′, t′) to the labo-ratory system (x, t):

∆t = γ(∆t′ +
v

c2
∆x′), γ =

1√
1 − r2ω2

c2

∆x = γ(∆x′ + v∆t′)

(3.6)Sine we for simultaneous events in the rotating referene frame have ∆t′ = 0,and proper distane ∆x′ = γ∆x, we get in the laboratory frame
∆t = γ2 rω

c2
∆x = γ2 rω

c2
2πr

n
(3.7)
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t+∆ t

t+(n-1) ∆ t
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3

n-1

n

1

2

2

n

ω

(discontinuity)

n-1Figure 3.1: Events simultanous in the rotating referene frame. 1 omes before2, before 3, et. . . Note the disontinuity at t.

0L v = rω

Figure 3.2: The distane between two points on the irumferene is L0.
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T = t = constant

T = t = constant

θ = constant

t̂ = constant

Figure 3.3: Disontinuity in simultaneity.The fat that ∆t′ = 0 and ∆t 6= 0 is an expression of the relativity of simul-taneity. Around the irumferene this is aumulated to
n∆t = γ2 2πr2ω

c2
(3.8)and we get a disontinuity in simultaneity, as shown in �gure 3.3. Let IF be aninertial frame with ylinder oordinates (T, R, Θ, Z). The line element is thengiven by

ds2 = −dT 2 + dR2 +R2dΘ2 + dZ2 (c = 1) (3.9)In a rotating referene frame, RF, we have ylinder oordinates (t, r, θ, z). Wethen have the following oordinate transformation :
t = T, r = R, θ = Θ − ωT, z = Z (3.10)The line element in the o-moving oordinate system in RF is then

ds2 = −dt2 + dr2 + r2(dθ + ωdt)2 + dz2

= −(1 − r2ω2)dt2 + dr2 + r2dθ2 + dz2 + 2r2ωdθdt (c = 1)
(3.11)The metri tensor have the following omponents:

gtt = −(1 − r2ω2), grr = 1, gθθ = r2, gzz = 1

gθt = gtθ = r2ω
(3.12)
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dt = 0 gives

ds2 = dr2 + r2dθ2 + dz2 (3.13)This represents the Eulidean geometry of the 3-spae (simultaneity spae, t =
T ) in IF.As applied to the rotating system the spatial line element takes the form

dl2 = (gij −
gi0gj0
g00

)dxidxj

γrr = grr = 1, γzz = gzz = 1,

γθθ = gθθ −
g2
θ0

g00

= r2 − (r2ω)2

−(1 − r2ω2)
=

r2

1 − r2ω2

⇒ dl2 = dr2 +
r2dθ2

1 − r2ω2
+ dz2 (3.14)It desribes the geometry of a loal 3-spae orthogonal to the world line of a ref-erene partile in RF. This 3-spae annot be extended to a �nite 3-dimensionalspae in RF sine Einstein synhronization is not integrable in RF. From theline element (3.14) it is seen that the geometry of this loal simultaneity spaein RF in non-Eulidean. The irumferene of a irle with radius r is

lθ =
2πr√

1 − r2ω2
> 2πr (3.15)We see that the quotient between irumferene and radius > 2π whih meansthat the spatial geometry is hyperboli. (For spherial geometry we have lθ <

2πr.)3.1.2 Angular aeleration in the rotating frameWe will now investigate what happens when we give RF an angular aeleration.Then we onsider a rotating irle made of standard measuring rods, as shownin Figure 3.4. All points on a irle are aelerated simultaneously in IF (thelaboratory system). We let the angular veloity inrease from ω to ω + dω,measured in IF. Lorentz transformation to an instantaneous rest frame for apoint on the irumferene then gives an inrease in veloity in this system:
rdω′ =

rdω

1 − r2ω2
, (3.16)where we have used that the initial veloity in this frame is zero.The time di�erene for the aelerations of the front and bak ends of thepoints on the periphery of the rotating dis (the front end is aelerated �rst)in the instantaneous rest frame is:

∆t′ =
rωL0√
1 − r2ω2

(3.17)
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"nail"

Standard measuring rodFigure 3.4: A non-rotating dis with measring rods. The standard measuringrods are fastened with nails in one end. We will see what then happens whenwe have an angular aeleration.where L0 is the distane between points on the irumferene when at rest (= thelength of the rods when at rest), L0 = 2πr
n . In IF all points on the irumfereneare aelerated simultaneously. In RF, however, this is not the ase. Here thedistane between points on the irumferene will inrease, see Figure 3.5. Therest distane inreases by

dL′ = rdω′∆t′ =
r2ωL0dω

(1 − r2ω2)3/2
. (3.18)(It may be noted that eah point on an arbitrary measuring rod is aeleratedsimultaneously in the rest frame of the rod to preserve its rest length. In thelaboratory frame the rear point of the rod is aelerated �rst, giving the rod aLorentz ontration.)The inrease of the distane during the aeleration (in an instantaneous

∆ t’ t’
dv’

t’+ Figure 3.5: In RF two points on the irumferene are aelerated at di�erenttimes. Thus the distane between them is inreased.



3.1 Rotating referene frames 41rest frame) is
L′ = r2L0

∫ ω

0

ωdω

(1 − r2ω2)3/2
= (

1√
1 − r2ω2

− 1)L0. (3.19)Hene, after the aeleration there is a proper distane L′ between the rods. Inthe laboratory system (IF) the distane between the rods is
L =

√
1 − r2ω2L′ =

√
1 − r2ω2(

1√
1 − r2ω2

− 1)L0 = L0 − L0

√
1 − r2ω2,(3.20)where L0 is the rest length of the rods and L0

√
1 − r2ω2 is their Lorentz on-trated length. We now have the situation shown in Figure 3.6.

Lorenz contracted
Standard measuring rod,Figure 3.6: The standard measuring rods have been Lorentz ontrated.Thus, there is room for more standard rods around the periphery the fasterthe disk rotates. This means that as measured with measuring rods at restin the rotating frame the measured length of the periphery (number of stan-dard rods) gets larger with inreasing angular veloity. This is how an inertialobserver would explain the measuring result of the rotating observer. The rotat-ing observer, however, that the dis material has been strehed in the tangentialdiretion. Note that as measured by the inertial observer the length of the pe-riphery is 2πr independently of the angular veloity of the dis, sine the inertialobserver uses measuring rods at rest in the non-rotating referene frame. TheLorentz ontration of tangential lengths on the dis just ompensates for thestrehing of the dis (inrease of the length), making the length of the peripheryindependent of the rotating veloity.



42 Chapter 3. Aelerated Referene Frames3.1.3 Gravitational time dilation
ds2 = −(1 − r2ω2

c2
)c2dt2 + dr2 + r2dθ2 + dz2 + 2r2ωdθdt (3.21)We now look at standard loks with onstant r and z.

ds2 = c2dt2[−(1 − r2ω2

c2
) +

r2

c2
(
dθ

dt
)2 + 2

r2ω

c2
dθ

dt
] (3.22)Let dθ

dt ≡ θ̇ be the angular veloity of the lok in RF. The proper time intervalmeasured by the lok is then
ds2 = −c2dτ2 (3.23)From this we see that

dτ = dt

√

1 − r2ω2

c2
− r2θ̇2

c2
− 2

r2ωθ̇

c2
(3.24)A non-moving standard lok in RF: θ̇ = 0 ⇒

dτ = dt

√
1 − r2ω2

c2
(3.25)Seen from IF, the non-rotating laboratory system, (3.25) represents the veloitydependent time dilation from the speial theory of relativity.But how is (3.25) interpreted in RF? The lok does not move relative toan observer in this system, hene what happens an not bee interpreted as aveloity dependent phenomenon. Aording to Einstein, the fat that standardloks slow down the farther away from the axis of rotation they are, is due toa gravitational e�et.We will now �nd the gravitational potential at a distane r from the axis.The sentripetal aeleration is v2/r, v = rω so:

Φ = −
∫ r

0
g(r)dr = −

∫ r

0
rω2dr = −1

2
r2ω2We then get:

dτ = dt

√
1 − r2ω2

c2
= dt

√
1 +

2Φ

c2
(3.26)In RF the position dependent time dilation is interpreted as a gravitationaltime dilation: Time �ows slower further down in a gravitational �eld.



3.1 Rotating referene frames 433.1.4 Path of photons emitted from axes in the rotating refer-ene frame (RF)We start with desription in the inertial frame (IF). In IF photon paths areradial. Consider a photon path with Θ = 0, R = T with light soure at R = 0.Transforming to RF:
t = T, r = R, θ = Θ − ωT

⇒ r = t, θ = −ωt
(3.27)The orbit equation is thus θ = −ωr whih is the equation for an Arhimedeanspiral. The time used by a photon out to distane r from axis is t = r

c .3.1.5 The Sagna e�etIF desription:Here the veloity of light is isotropi, but the emitter/reeiver moves due to thedis's rotation as shown in Figure 3.7. Photons are emitted/reeived in/fromopposite diretions. Let t1 be the travel time of photons whih move with therotation.
+r

ω

XEmitter/Reeiver

Figure 3.7: The Sagna e�et demonstrates the anisotropy of the speed of lightwhen measured in a rotating referene frame.Then
⇒ 2πr + rωt1 = ct1

⇒ t1 =
2πr

c− rω

(3.28)Let t2 be the travel time for photons moving against the rotation of the dis.The di�erene in travel time is A is the areaenlosed by thephoton path ororbit.
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∆t = t1 − t2 = 2πr

(
1

c− rω
− 1

c+ rω

)

=
2πr2rω

c2 − r2ω2

= γ2 4Aω

c2

(3.29)
RF desription:

ds2
= 0 along theworld line of aphoton ds2 = −

(
1 − r2ω2

c2

)
c2dt2 + r2dθ2 + 2r2ωdθdtlet θ̇ =

dθ

dt

r2θ̇2 + 2r2ωθ̇ − (c2 − r2ω2) = 0

θ̇ =
−r2ω ±

√
(r4ω2 + r2c2 − r4ω2)

r2

θ̇ = −ω ± rc

r2

= −ω ± c

r

(3.30)The speed of light: v± = rθ̇ = −rω ± c. We see that in the rotating frame RF,the measured (oordinate) veloity of light is NOT isotropi. The di�erene inthe travel time of the two beams is
∆t =

2πr

c− rω
− 2πr

c+ rω

= γ2 4Aω

c2

(3.31)The oordinate loks are not Einstein synhronized in RF, but they representa globally well de�ned time. As measured with loally Einstein synhronizedloks the veloity of light is isotropi. But as shown, it is not possible toEinstein synhronize loks around a losed urve in RF. (See Phil. Mag. series6, vol. 8 (1904) for Mihelson's artile)3.2 Hyperbolially aelerated referene framesConsider a partile moving along a straight line with veloity u and aeleration
a = du

dT . Rest aeleration is â.
⇒ a =

(
1 − u2/c2

)3/2
â. (3.32)Assume that the partile has onstant rest aeleration â = g. That is

du

dT
=
(
1 − u2/c2

)3/2
g. (3.33)



3.2 Hyperbolially aelerated referene frames 45Whih on integration with u(0) = 0 gives
u =

gT
(
1 + g2T 2

c2

)1/2
=
dX

dT

⇒ X =
c2

g

(
1 +

g2T 2

c2

)1/2

+ k

⇒ c4

g2
= (X − k)2 − c2T 2 (3.34)In its �nal form the above equation desribes a hyperbola in the Minkowskidiagram as shown in �gure(3.8).T

X
Figure 3.8: Hyperbolially aelerated referene frames are so alled beausethe loi of partile trajetories in spae-time are hyperbolae.The proper time interval as measured by a lok whih follows the partile:

dτ =

(
1 − u2

c2

)1/2

dT (3.35)Substitution for u(T ) and integration with τ(0) = 0 gives
τ =

c

g
arsinh(gT

c

)or T =
c

g
sinh

(gτ
c

)and X =
c2

g
cosh

(gτ
c

)
+ k

(3.36)We now use this partile as the origin of spae in an hyperbolially aeleratedreferene frame.



46 Chapter 3. Aelerated Referene FramesDe�nition 3.2.1 (Born-sti� motion)Born-sti� motion of a system is motion suh that every element of the system hasonstant rest length. We demand that our aelerated referene frame is Born-sti�.Let the inertial frame have oordinates (T,X, Y, Z) and the aeleratedframe have oordinates (t, x, y, z). We now denote the X-oordinate of the�origin partile� by X0.
1 +

gX0

c2
= cosh

gτ0
c

(3.37)where τ0 is the proper time for this partile and k is set to −c2
g . (These areMøller oordinates. Setting k = 0 gives Rindler oordinates).Let us denote the aelerated frame by Σ. The oordinate time at an ar-bitrary point in Σ is de�ned by t = τ0. That is oordinate loks in Σ runidentially with the standard lok at the �origin partile�. Let ~X0 be the posi-tion 4-vetor of the �origin partile�. Deomposed in the laboratory frame, thisbeomes

~X0 =

{
c2

g
sinh

gt

c
,
c2

g

(
cosh

gt

c
− 1

)
, 0, 0

} (3.38)
P is hosen suh that P and P0 are simultaneous in the aelerated frame Σ. Thedistane (see �gure(3.9)) vetor from P0 to P , deomposed into an orthonormalomoving basis of the �origin partile� is X̂ = (0, x̂, ŷ, ẑ) where x̂, ŷ and ẑ arephysial distanes measured simultaneously in Σ. The spae oordinates in Σare de�ned by

x ≡ x̂, y ≡ ŷ, z ≡ ẑ. (3.39)The position vetor of P is ~X = ~X0+ ~̂X. The relationship between basis vetorsin IF and the omoving orthonormal basis is given by a Lorentz transformationin the x-diretion.
~eµ̂ = ~eµ

∂xµ

∂xµ̂

= (~eT , ~eX , ~eY , ~eZ , )





cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1




(3.40)where θ is the rapidity de�ned by

tanh θ ≡ U0

c
(3.41)

U0 being the veloity of the �origin partile�.
U0 =

dX0

dT0
= c tanh

gt

c

∴ θ =
gt

c

(3.42)
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T

X
~X0

P0

~et̂

P

~eX̂

~̂X

~X

Figure 3.9: Simultaneity in hyperbolially aelerated referene frames. Thevetor ~̂X lies along the �simultaneity line� whih makes the same angle with theX-axis as does ~et̂ with the T-axis. (Corretion: The vetor ~e bX in the �gureshould be hanged to ~ebx.)So the basis vetors an be written as follows
~et̂ = ~eT cosh

gt

c
+ ~eX sinh

gt

c

~ex̂ = ~eT sinh
gt

c
+ ~eX cosh

gt

c
~eŷ = ~eY

~eẑ = ~eZ

(3.43)
The equation ~X = ~X0 + ~̂X an now be deomposed in IF:
cT~eT +X~eX + Y ~eY + Z~eZ =

c

g
sinh

gt

c
~eT +

c2

g

(
cosh

gt

c
− 1

)
~eX +

x

c
sinh

gt

c
~eT + x cosh

gt

c
~eX + y~eY + z~eZ(3.44)



48 Chapter 3. Aelerated Referene FramesThis then, gives the oordinate transformations
T =

c

g
sinh

gt

c
+
x

c
sinh

gt

c

X =
c2

g

(
cosh

gt

c
− 1

)
+ x cosh

gt

c

Y = y

Z = z

⇒ gT

c
=
(
1 +

gx

c2

)
sinh

gt

c

1 +
gX

c2
=
(
1 +

gx

c2

)
cosh

gt

cNow dividing the last two of the above equations we get
gT

c
=

(
1 +

gX

c2

)
tanh

gt

c
(3.45)showing that the oordinate urves t = onstant are straight lines in the T,X-frame passing through the point T = 0, X = − c2

g . Using the identity cosh2 θ −
sinh2 θ = 1 we get

(
1 +

gX

c2

)2

−
(
gT

c

)2

=
(
1 +

gx

c2

)2 (3.46)showing that the oordinate urves x = onstant are hypebolae in the T,X-diagram.The line element (the metri) gives :ds2 is aninvariantquantity ds2 = −c2dT 2 + dX2 + dY 2 + dZ2

= −(1 +
gx

c2
)2c2dt2 + dx2 + dy2 + dz2 (3.47)Note: When the metri is diagonal the unit vetors are orthogonal.Cloks at rest in the aelerated system:

dx = dy = dz = 0, ds2 = −c2dτ2

⇓

−c2dτ2 = −(1 +
gx

c2
)2c2dt2

⇓

dτ = (1 +
gx

c2
)dt (3.48)Here dτ is the proper time and dt the oordinate time.An observer in the aelerated system Σ experienes a gravitational �eld inthe negative x-diretion. When x < 0 then dτ < dt. The oordinate loks
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X

cT

light t=constant

x=constant

g
-c 2

horizon

Figure 3.10: The hyperbolially aelerated referene systemtik equally fast independently of their position. This implies that time passesslower further down in a gravitational �eld.Consider a standard lok moving in the x-diretion with veloity v = dx/dt.Then
−c2dτ2 = −

(
1 +

gx

c2

)2
c2dt2 + dx2

= −
[(

1 +
gx

c2

)2
− v2

c2

]
c2dt2 (3.49)Hene

dτ =

√(
1 +

gx

c2

)2
− v2

c2
dt (3.50)This expresses the ombined e�et of the gravitational- and the kinemati timedilation.



Chapter 4Covariant Di�erentiation4.1 Di�erentiation of formsWe must have a method of di�erentiation that maintains the anti symmetry,thus making sure that what we end up with after di�erentiation is still a form.4.1.1 Exterior di�erentiationThe exterior derivative of a 0-form, i.e. a salar funtion, f , is given by:
df =

∂f

∂xµ
ωµ = f,µω

µ (4.1)where ωµ are oordinate basis forms:
ωµ(

∂

∂xν
) = δµν (4.2)We then (in general) get:

ωµ = δµνω
ν =

∂xµ

∂xν
ων = dxµ (4.3)In oordinate basis we an always write the basis forms as exterior derivativesof the oordinates. The di�erential dxµ is given by

dxµ(d~r) = dxµ (4.4)where d~r is an in�nitesimal position vetor. dxµ are not in�nitesimal quantities.In oordinate basis the exterior derivative of a p-form
α =

1

p!
αµ1···µpdx

µ1 ∧ · · · ∧ dxµp (4.5)will have the following omponent form:
d α =

1

p!
αµ1···µp,µ0

dxµ0 ∧ dxµ1 ∧ · · · ∧ dxµp (4.6)50



4.1 Di�erentiation of forms 51where , µ0 ≡ ∂
∂xµ0

. The exterior derivative of a p-form is a (p+ 1)-form.Consider the exterior derivative of a p-form α.
dα =

1

p!
αµ1···µp,µ0

dxµ0 ∧ · · · ∧ dxµp . (4.7)Let (dα)µ0···µp be the form omponents of dα. They must, by de�nition, beantisymmetri under an arbitrary interhange of indies.
dα =

1

(p+ 1)!
(dα)µ0···µpdx

µ0 ∧ · · · ∧ dxµpwhih, by (4.7) ⇒ =
1

p!
α[αµ1···µp,µ0

]dx
µ0 ∧ · · · ∧ dxµp

∴ (dα)µ0···µp = (p + 1)α[µ1···µp,µ0] (4.8)The form equation dα = 0 in omponent form is
α[µ1···µp,µ0] = 0 (4.9)Example 4.1.1 (Outer produt of 1-forms in 3-spae)

α = αidx
i xi = (x, y, z)

dα = αi,jdx
j ∧ dxi

(4.10)Also, assume that dα = 0. The orresponding omponent equation is
α[i,j] = 0 ⇒ αi,j − αj,i = 0

⇒ ∂αx
∂y

− ∂αy
∂x

= 0,
∂αx
∂z

− ∂αz
∂x

= 0,
∂αy
∂z

− ∂αz
∂y

= 0
(4.11)whih orresponds to

∇×~α = 0 (4.12)The outer produt of an outer produt!
d2α ≡ d(dα)

d2α =
1

p!
αµ1···µp,ν1ν2dx

ν2 ∧ dxν1 ∧ · · · ∧ dxµp
(4.13)

,ν1ν2 ≡ ∂2

∂xν1∂xν2
(4.14)



52 Chapter 4. Covariant Di�erentiationSine
,ν1ν2 ≡ ∂2

∂xν1∂xν2
=,ν2ν1≡

∂2

∂xν2∂xν1
(4.15)summation over ν1 and ν2 whih are symmetri in αµ1···µp,ν1ν2 and antisymmetriin the basis we get Poinaré's lemma (valid only for salar �elds)

d2α = 0 (4.16)This orresponds to the vetor equation
∇ · (∇× ~A) = 0 (4.17)Let α be a p-form and β be a q-form. Then

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ (4.18)4.1.2 Covariant derivativeThe general theory of relativity ontains a ovariane priniple whih statesthat all equations expressing laws of nature must have the same form irrespetiveof the oordinate system in whih they are derived. This is ahieved by writingall equations in terms of tensors. Let us see if the partial derivative of vetoromponents transform as tensor omponents. Given a vetor ~A = Aµ~eµ =
Aµ

′

~eµ′ with the transformation of basis given by
∂

∂xν′
=
∂xν

∂xν′
∂

∂xν
(4.19)So that

Aµ
′

,ν′ ≡ ∂

∂xν′

(
Aµ

′

)

=
∂xν

∂xν′
∂

∂xν

(
Aµ

′

)

=
∂xν

∂xν′
∂

∂xν

(
∂xµ′

∂xµ
Aµ
)

=
∂xν

∂xν′
∂xµ′

∂xµ
Aµ,ν +

∂xν

∂xν′
Aµ

∂2xµ
′

∂xν∂xµ
(4.20)The �rst term orresponds to a tensorial transformation. The existene of thelast term shows that Aµ,ν does not, in general, transform as the omponents ofa tensor. Note that Aµ,ν will transform as a tensor under linear transformationssuh as the Lorentz transformations.The partial derivative must be generalized suh as to ensure that when it isapplied to tensor omponents it produes tensor omponents.



4.1 Di�erentiation of forms 53Example 4.1.2 (The derivative of a vetor �eld with rotation)We have a vetor �eld:
~A = kr~eθThe hain rule for derivation gives:

d

dτ
=

∂

∂xν
· dx

ν

dτ
= uν

∂

∂xν

d ~A

dτ
= uν (Aµ~eµ),ν

= uν
(
Aµ,ν~eµ +Aµ~eµ,ν

)The hange of the vetor �eld with a displaement along a oordinate-urve isexpressed by:
∂ ~A

∂xν
= ~A,ν = Aµ,ν~eµ +Aµ~eµ,νThe hange in ~A with the displaement in the θ-diretion is:
∂ ~A

∂θ
= Aµ,θ~eµ +Aµ~eµ,θFor our vetor �eld, with Ar = 0, we get

∂ ~A

∂θ
= Aθ,θ︸︷︷︸

=0

~eθ +Aθ~eθ,θand sine Aθ,θ = 0 beause Aθ = kr we end up with
∂ ~A

∂θ
= Aθ~eθ,θ = kr~eθ,θ



54 Chapter 4. Covariant Di�erentiationWe now need to alulate the derivative of ~eθ. We have:
x = r cos θ y = r sin θUsing ~eµ = ∂

∂xµ we an write:
~eθ =

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y

= −r sin θ~ex + r cos θ~ey

~er =
∂

∂r
= cos θ~ex + sin θ~eyGives:

~eθ,θ = −r cos θ~ex − r sin θ~ey

= −r(cos θ~ex + sin θ~ey) = −r~erThis gives us �nally:
∂ ~A

∂θ
= −kr2~erThus ∂ ~A

∂θ 6= 0 even if ~A = Aθ~eθ and Aθ,θ = 0.4.2 The Christo�el SymbolsThe ovariant derivative was introdued by Christo�el to be able to di�erenti-ate tensor �elds. It is de�ned in oordinate basis by generalizing the partiallyderivative Aµ,ν to a derivative written as Aµ;ν and whih transforms tensorially,
Aµ

′

;ν′ ≡
∂xµ

′

∂xµ
· ∂x

ν

∂xν′
Aµ;ν . (4.21)The ovariant derivative of the ontravariant vetor omponents are written as:

Aµ;ν ≡ Aµ,ν +AαΓµαν (4.22)This equation de�nes the Christo�el symbols Γµαν , whih are also alled the�onnetion oe�ients in oordinate basis�. From the transformation formulaefor the two �rst terms follows that the Christo�el symbols transform as:
Γα

′

µ′ν′ =
∂xν

∂xν′
∂xµ

∂xµ′
∂xα

′

∂xα
Γαµν +

∂xα
′

∂xα
∂2xα

∂xµ′∂xν′
(4.23)The Christo�el symbols do not transform as tensor omponents. It is possible toanel all Christo�el symbols by transforming into a loally Cartesian oordinate



4.2 The Christo�el Symbols 55system whih is o-moving in a loally non-rotating referene frame in free fall.Suh oordinates are known as Gaussian oordinates.In general relativity theory an inertial frame is de�ned as a non-rotatingframe in free fall. The Christo�el symbols are 0 (zero) in a loally Cartesianoordinate system whih is o-moving in a loal inertial frame. Loal Gaussianoordinates are indiated with a bar over the indies, giving
Γᾱµ̄ν̄ = 0 (4.24)A transformation from loal Gaussian oordinates to any oordinates leads to:

Γα
′

µ′ν′ =
∂xα

′

∂xᾱ
∂2xᾱ

∂xµ′∂xν′
(4.25)This equation shows that the Christo�el symbols are symmetri in the two lowerindies, ie.

Γα
′

µ′ν′ = Γα
′

ν′µ′ (4.26)Example 4.2.1 (The Christo�el symbols in plane polar oordinates)
x = r cos θ, y = r sin θ

r =
√
x2 + y2, θ = arctan

y

x

∂x

∂r
= cos θ,

∂x

∂θ
= −r sin θ

∂r

∂x
=
x

r
= cos θ,

∂r

∂y
= sin θ

∂y

∂r
= sin θ,

∂y

∂θ
= r cos θ

∂θ

∂x
= −sin θ

r
,

∂θ

∂y
=

cos θ

r

Γrθθ =
∂r

∂x

∂2x

∂θ2
+
∂r

∂y

∂2y

∂θ2

= cos θ(−r cos θ) + sin θ(−r sin θ)

= −r(cos θ2 + sin θ2) = −r

Γθrθ = Γθθr =
∂θ

∂x

∂2x

∂θ∂r
+
∂θ

∂y

∂2y

∂θ∂r

= −sin θ

r
(− sin θ) +

cos θ

r
(cos θ)

=
1

r



56 Chapter 4. Covariant Di�erentiationThe geometrial interpretation of the ovariant derivative was given by Levi-Civita.Consider a urve S in any (eg. urved) spae. It is parameterized by λ, ie.
xµ = xµ(λ). λ is invariant and hosen to be the urve length.The tangent vetor �eld of the urve is ~u = (dxµ/dλ)~eµ. The urve passesthrough a vetor �eld ~A. The ovariant diretional derivative of the vetor �eldalong the urve is de�ned as:

∇~u
~A =

d ~A

dλ
≡ Aµ;ν

dxν

dλ
~eµ = Aµ;νu

ν~eµ (4.27)The vetors in the vetor �eld are said to beonneted by parallel transport along the urveif
Aµ;νu

ν = 0

λ)A(

B

)∆λA +λ(

u

λ+∆λ

Q

P

A( λ+∆λ)

λFigure 4.1: Parallel transport from P to Q. The vetor ~B = Aµ;νuν∆λ~eµ

~u =
dxµ

dλ
~eµ (4.28)Aording to the geometrial interpretation of Levi-Civita, the ovariant dire-tional derivative is:

∇~u
~A = Aµ;νu

ν~eµ = lim
∆λ→0

~A‖(λ+ ∆λ) − ~A(λ)

∆λ
(4.29)where ~A‖(λ+ ∆λ) means the vetor ~A parallel transported from Q to P .



4.3 Geodesi urves 574.3 Geodesi urvesDe�nition 4.3.1 (Geodesi urves)A geodesi urve is de�ned in suh a way that,the vetors of the tangent vetor �eldof the urve is onneted by parallell transport.This de�nition says that geodesi urves are 'as straight as possible'.If vetors in a vetor �eld ~A(λ) are onneted by parallell transport by a dis-plaement along a vetor ~u , we have Aµ;νuν = 0. For geodesi urves, we thenhave:
uµ;νu

ν = 0 (4.30)whih is the geodesi equation.
(uµ,ν + Γµανu

α)uν = 0 (4.31)Then we are using that d
dλ ≡ dxν

dλ
∂
∂xν = uν ∂

∂xν :
duµ

dλ
= uν

∂uµ

∂xν
= uνuµ,ν (4.32)The geodesi equation an also be written as:

duµ

dλ
+ Γµανu

αuν = 0 (4.33)Usual notation: ˙ = d
dλ

uµ =
dxµ

dλ
= ẋµ (4.34)

ẍµ + Γµαν ẋ
αẋν = 0 (4.35)By omparing eq.4.35 with the equation of motion(4.53) for a free partile (whihwe dedued from the Lagrangian equations) , we �nd the equations to be iden-tial. Conlusion:Free partiles follow geodesi urves in spaetime.Example 4.3.1 (vertial motion of free partile in hyperb. a. ref. frame)Inserting the Christo�el symbols Γxtt = (1 + gx

c2
)g from example 4.5.3 into thegeodesi equation for a vertial geodesi urve in a hyperbolially aelerated refer-ene frame, we get:

ẍ+ (1 +
gx

c2
)gṫ2 = 0



58 Chapter 4. Covariant Di�erentiation4.4 The ovariant Euler-Lagrange equationsGeodesi urves an also be de�ned as urves with an extremal distane betweentwo points. Let a partile have a world-line (in spae-time) between two points(events) P1 and P2. Let the urves be desribed by an invariant parameter λ(proper time τ is used for partiles with a rest mass).The Lagrange-funtion is a funtion of oordinates and their derivatives,
L = L(xµ, ẋµ), ẋµ ≡ dxµ

dλ
. (4.36)(Note: if λ = τ then ẋµ are the 4-veloity omponents)The ation-integral is S =

∫
L(xµ, ẋµ)dλ. The priniple of extremal ation(Hamiltons-priniple): The world-line of a partile is determined by the ondi-tion that S shall be extremal for all in�nitesimal variations of urves whih keep

P1 and P2 rigid, ie.
δ

∫ λ2

λ1

L(xµ, ẋµ)dλ = 0, (4.37)where λ1 and λ2 are the parameter-values at P1 and P2. For all the variations

P

P

1

2

ct

xFigure 4.2: Di�erent world-lines onneting P1 and P2 in a Minkowski diagramthe following ondition applies:
δxµ(λ1) = δxµ(λ2) = 0 (4.38)We write Eq. (4.37) as

δ

∫ λ2

λ1

Ldλ =

∫ λ2

λ1

[
∂L

∂xµ
δxµ +

∂L

∂ẋµ
δẋµ
]
dλ (4.39)



4.4 The ovariant Euler-Lagrange equations 59Partial integration of the last term
∫ λ2

λ1

∂L

∂ẋµ
δẋµdλ =

[
∂L

∂ẋµ
δxµ
]λ2

λ1

−
∫ λ2

λ1

d

dλ

(
∂L

∂ẋµ

)
δxµdλ (4.40)Due to the onditions δxµ(λ1) = δxµ(λ2) = 0 the �rst term beomes zero. Thenwe have :

δS =

∫ λ2

λ1

[
∂L

∂xµ
− d

dλ

(
∂L

∂ẋµ

)]
δxµdλ (4.41)The world-line the partile follows is determined by the ondition δS = 0 forany variation δxµ. Hene, the world-line of the partile must be given by

∂L

∂xµ
− d

dλ

(
∂L

∂ẋµ

)
= 0 (4.42)These are the ovariant Euler-Lagrange equations.The anonial momentum pµ onjugated to a oordinate xµ is de�ned as

pµ ≡ ∂L

∂ẋµ
(4.43)The Lagrange-equations an now be written as

dpµ
dλ

=
∂L

∂xµ
or ṗµ =

∂L

∂xµ
. (4.44)A oordinate whih the Lagrange-funtion does not depend on is known as ayli oordinate. Hene, ∂L

∂xµ = 0 for a yli oordinate. From this follows:The anonial momentum onjugated to a ylioordinate is a onstant of motionie. pµ = C (onstant) if xµ is yli.A free partile in spae-time (urved spae-time inludes gravitation) hasthe Lagrange funtion
L =

1

2
~u · ~u =

1

2
ẋµẋ

µ =
1

2
gµν ẋ

µẋν (4.45)An integral of the Lagrange-equations is obtained readily from the 4-veloityidentity: {
ẋµẋ

µ = −c2 for a partile with rest-mass
ẋµẋ

µ = 0 for light (4.46)The line-element is:
ds2 = gµνdx

µdxν = gµν ẋ
µẋνdλ2 = 2Ldλ2 . (4.47)Thus the Lagrange funtion of a free partile is obtained from the line-element.
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flat surface:

P

Q

Figure 4.3: On a �at surfae, the geodesi urve is the minimal distane betweenP and Q
sphere:

P

Q

Figure 4.4: On a sphere, the geodesi urves are great irles.4.5 Appliation of the Lagrangian formalism to freepartilesTo desribe the motion of a free partile, we start by setting up the line elementof the spae-time in the hosen oordinate system. There are oordinates onwhih the metri does not depend. For example, given axial symmetry we mayhoose the angle θ whih is a yli oordinate here and the onjugate (ovariant)impulse Pθ is a onstant of the motion (the orbital spin of the partile). If, inaddition, the metri is time independent (stationary metri) then t is alsoyli and pt is a onstant of the motion (the mehanial energy of the partile).A stati metri is time-independent and unhanged under time reversal(i.e. t → −t). A stationary metri hanged under time reversal. Examplesof stati metris are Minkowski and hyperbolially aelerated frames. Therotating ylindrial oordinate system is stationary.



4.5 Appliation of the Lagrangian formalism to free partiles 614.5.1 Equation of motion from Lagrange's equationThe Lagrange funtion for a free partile is:
L =

1

2
g µν ẋ

µẋν (4.48)where g µν = g µν(x
λ). And the Lagrange equations are

∂L

∂xβ
− d

dτ

(
∂L

∂ẋβ

)
= 0,

∂L

∂ẋβ
= g βν ẋ

ν ,

∂L

∂xβ
=

1

2
g µν,βẋ

µẋν .

(4.49)
d

dτ

(
∂L

∂ẋβ

)
≡
(
∂L

∂ẋβ

)•
= ġ βν ẋ

ν + g βν ẍ
ν

= g βν,µẋ
µẋν + g βν ẍ

ν .

(4.50)Now, (4.50) and (4.49) together give:
1

2
g µν,β ẋ

µẋν − g βν,µẋ
µẋν − g βν ẍ

ν = 0. (4.51)The seond term on the left hand side of (4.51) may be rewritten making use ofthe fat that ẋµẋν is symmetri in µν, as as follows
g βν,µẋ

µẋν =
1

2
(g βµ,ν + g βν,µ)ẋ

µẋν

⇒ g βν ẍ
ν +

1

2
(g βµ,ν + g βν,µ − g µν,β)ẋ

µẋν = 0.

(4.52)Finally, sine we are free to multiply (4.52) through by gαβ , we an isolate ẍαto get the equation of motion in a partiularly elegant and simple form:
ẍα + Γαµν ẋ

µẋν = 0 (4.53)where the Christo�el symbols Γαµν in (4.53) are de�ned by
Γαµν ≡

1

2
gαβ(g βµ,ν + g βν,µ − g µν,β). (4.54)Equation(4.53) desribes a geodesi urve .



62 Chapter 4. Covariant Di�erentiation4.5.2 Geodesi world lines in spaetimeConsider two timelike urves between two events in spaetime. In �g.4.5 theyare drawn in a Minkowski diagram whih refers to an inertial referene frame.
P

O

non-geodetic curve between O and P

X

geodetic curve

t

t

0

1

v(t)

cT

Figure 4.5: Timelike urves in spaetime.The general interpretation of the line-element for a time-like interval is; Thespaetime distane between O and P (See �gure 4.5) equals the proper timeinterval between two events O and P measured on a lok moving in a suh way,that it is present both at O and P.
ds2 = −c2dτ2 (4.55)whih gives

τ0−1 =

∫ T1

T0

√
1 − v2(T )

c2
dT (4.56)We an see that τ0−1 is maximal along the geodesi urve with v(T ) = 0. Time-like geodesi urves in spaetime have maximal distane between two points.Example 4.5.1 (How geodesis in spaetime an give parabolas in spae)A geodesi urve between two events O and P has maximal proper time. Considerthe last expression in Setion 3.2 of the propertime interval of a partile with position

x and veloity v in a gravitational �eld with aeleration of gravity g.
dτ = dt

√
(
1 +

gx

c2
)2 − v2

c2



4.5 Appliation of the Lagrangian formalism to free partiles 63This expression shows that the proper time of the partile proeeds faster the higherup in the �eld the partile is, and it proeeds slower the faster the partile moves.Consider �gure 4.6. The path a free partile follows between the events O and Pis a ompromize between moving as slowly as possible in spae, in order to keepthe veloity dependent time dilation small, and moving through regions high up inthe gravitational �eld, in order to prevent the slow proeeding of proper time fardown. However if the partile moves too high up, its veloity beomes so large thatit proeeds slower again. The ompromise between kinemati and gravitational timedilation whih gives maximal proper time between O and P is obtained for the thikurve in �g. 4.6. This is the urve followed by a free partile between the events Oand P.We shall now dedue the mathematial expression of what has been said above.Timelike geodesi urves are urves with maximal proper time, i.e.
τ =

∫ τ1

0

√
−gµν ẋµẋνdτis maximal for a geodesi urve. However the ation

J = −2

∫ τ1

0
Ldτ = −

∫ τ1

0
gµν ẋ

µẋνdτis maximal for the same urves and this gives an easier alulation.In the ase of a vertial urve in a hyperbolially aelerated referene frame theLagrangian is
L =

1

2

(
−
(
1 +

gx

c2

)2
ṫ2 +

ẋ2

c2

) (4.57)Using the Euler-Lagrange equations now gives
ẍ+ (1 +

gx

c2
)gṫ2 = 0whih is the equation of the geodesi urve in example 4.3.1.Sine spaetime is �at, the equation represents straight lines in spaetime. Theprojetion of suh urves into the three spae of arbitrary inertial frames givesstraight paths in 3-spae, in aordane with Newton's 1st law. However projetingit into an aelerated frame where the partile also has a horizontal motion, andtaking the Newtonian limit, one �nds the paraboli path of projetile motion.Example 4.5.2 (Spatial geodesis desribed in the referene frame of a rotating dis.)In Figure 4.7, we see a rotating dis. We an see two geodesi urves between P1and P2. The dashed line is the geodesi for the non-rotating dis. The other urveis a geodesi for the 3-spae of a rotating referene frame. We an see that thegeodesi is urved inward when the dis is rotating. The urve has to urve inwardsine the measuring rods are longer there (beause of Lorentz-ontration). Thus,the minimum distane between P1 and P2 will be ahieved by an inwardly benturve.
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The path of the particle

O P

g

Figure 4.6: The partile moves between two events O and P at �xed points intime. The path hosen by the partile between O and P is suh that the propertime taken by the partile betweem these two events is as large as possible.Thus the goal of the partile is to follow a path suh that its omoving standardloks goes as fast as possible. If the partile follows the horizontal line betweenO and P it goes as slowly as possible and the kinematial time dilation is assmall as possible. Then the slowing down of its omoving standard loks due tothe kinematial time dilation is as small as possible, but the partile is far downin the gravitational �eld and its proper time goes slowly for that reason. Pathsfurther up leads to a greater rate of proper time. But above the urve drawn asa thik line, the kinematial time dilation will dominate, and the proper timeproeeds more slowly.



4.5 Appliation of the Lagrangian formalism to free partiles 65We will show this mathematially, using the Lagrangian equations. The lineelement for the spae dt̂ = dz = 0 of the rotating referene frame is

2

ω

P1

PFigure 4.7: Geodesi urves on a non-rotating (dashed line) and rotating (solid line)dis.
dl2 = dr2 +

r2dθ2

1 − r2ω2

c2Lagrangian funtion:
L =

1

2
ṙ2 +

1

2

r2θ̇2

1 − r2ω2

c2We will also use the identity:
ṙ2 +

r2θ̇2

1 − r2ω2

c2

= 1 (4.58)(We got this from using ~u · ~u = 1) We see that θ is yli (∂L∂θ = 0), implying:
pθ =

∂L

∂θ̇
=

r2θ̇

1 − r2ω2

c2

= constantThis gives:
θ̇ =

(
1 − r2ω2

c2
)pθ
r2

=
pθ
r2

− ω2pθ
c2

(4.59)Inserting 4.59 into 4.58:
ṙ2 = 1 +

ω2p2
θ

c2
− p2

θ

r2
(4.60)This gives us the equation of the geodesi urve between P1 and P2:

ṙ

θ̇
= ±dr

dθ
=
r2
√

1 +
ω2p2

θ

c2
− p2

θ

r2

pθ
(
1 − r2ω2

c2

) (4.61)



66 Chapter 4. Covariant Di�erentiationBoundary onditions:
2

θ

r

geodesic

r
0

P1

P

Figure 4.8: Geodesi urves on a rotating dis,oordinates
ṙ = 0, r = r0, for θ = 0Inserting this into 4.60 gives:

pθ
r0

=

√

1 +
p2
θω

2

c2
(4.62)Rearranging 4.61,using 4.62 gives:

dr

r
√
r2 − r20

− ω2

c2
rdr√
r2 − r20

=
dθ

r0Integrating this yields:
θ = ±r0ω

2

c2

√
r2 − r20 ∓ arccos

r0
rExample 4.5.3 (Christo�el symbols in a hyperbolially aelerated referene frame)The Christo�el symbols were de�ned in Equation (4.53).

Γαµν ≡
1

2
gαβ(g βµ,ν + g βν,µ − g µν,β).In this example

gtt = −
(
1 +

gx

c2

)2
c2, gxx = gyy = gzz = 1
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x

ct

P
g

O

non-geodetic curve between O and P
geodetic curve

2

1

HIGH
LOW

Figure 4.9: Vertial throw in the aelerated refereneframe.and only the term ∂gtt

∂x ontributes to Γαµν . Thus the only non-vanishing Christo�elsymbols are
Γtxt = Γttx =

1

2
gtt
(
∂gtt
∂x

)

=
1

2gtt

∂gtt
∂x

=
2
(
1 + gx

c2

)
g

2
(
1 + gx

c2

)2
c2

=
1(

1 + gx
c2

) g
c2

Γxtt = −1

2
gxx

(
∂gtt
∂x

)

= −1

2

{
−2
(
1 +

gx

c2

) g

c2
c2
}

=
(
1 +

gx

c2

)
g



68 Chapter 4. Covariant Di�erentiationExample 4.5.4 (Vertial projetile motion in a hyperbolially aelerated referene frame)
ds2 = −

(
1 +

gx

c2

)2
c2dt2 + dx2 + dy2 + dz2 (4.63)Vertial motion implies that dy = dz = 0 and the Lagrange funtion beomes

L =
1

2
g µν ẋ

µẋν

= −1

2

(
1 +

gx

c2

)2
c2ṫ2 +

1

2
ẋ2where the dots imply di�erentiation w.r.t the partile's proper time, τ . And theinitial onditions are:

x(0) = 0, ẋ(0) = (u0, ux, 0, 0)

= γ(c, v, 0, 0),where, γ =
(
1 − v2/c2

)−1/2
.What is the maximum height, h reahed by the partile?Newtonian desription: 1

2mv
2 = mgh⇒ h = v2

2g .Relativisti desription: t is a yli oordinate ⇒ x0 = ct is yli and p0 =
constant.

p0 =
∂L

∂ẋ0
=

1

c

∂L

∂ṫ
= −c

(
1 +

gx

c2

)2
ṫ (4.64)Now the 4-veloity identity is

~u · ~u = g µν ẋ
µẋν = −c2 (4.65)so

−1

2

(
1 +

gx

c2

)2
c2ṫ2 +

1

2
ẋ2 = −1

2
c2 (4.66)and given that the maximum height h is reahed when ẋ = 0 we get

(
1 +

gh

c2

)2

ṫ2x=h = 1. (4.67)Now, sine p0 is a onstant of the motion, it preserves its initial value throughoutthe �ight (i.e. p0 = −cṫ(0) = −γc) and partiularly at x = h,
(4.64) ⇒ p0 = −γc = −c

(
1 +

gh

c2

)2

ṫx=h (4.68)Finally, dividing equation (4.67) by equation (4.68) and substituting bak in equation(4.67) gives
h =

c2

g
(γ − 1) (4.69)



4.5 Appliation of the Lagrangian formalism to free partiles 69In the Newtonian limit (4.69) beomes
h =

c2

g

(
1

(1 − v2/c2)1/2
− 1

)
≅
c2

g

(
1 +

1

2

v2

c2
− 1

)
⇒ h ≅

v2

2gExample 4.5.5 (The twin �paradox�)Eva travels to Alpha Centauri, 4 light years from the Earth, with a veloity v = 0.8c(γ = 1/0.6). The trip takes 5 years out and 5 years bak. This means that Eli, whoremains at Earth is 10 years older when she meets Eva at the end of her journey.Eva, on the other hand, is 10(1 − v2/c2)1/2 = 10(0.6) = 6 years older.T
EvaEli

XFigure 4.10: The twins Eli and Eva eah travel between two �xed events in spae-timeAording to the general priniple of relativity (see G2 in setion 1.5 ), Eva anonsider herself as being stationary and Eli as the one whom undertakes the longjourney. In this piture it seems that Eva and Eli must be 10 and 6 years olderrespetively upon their return.Let us aept the priniple of general relativity as applied to aelerated refereneframes and review the twin �paradox� in this light.Eva's desription of the trip when she sees herself as stationary is as follows.Eva pereives a Lorentz ontrated distane between the Earth and Alpha Cen-tauri, namely, 4 light years ×1/γ = 2.4light years. The Earth and Eli travel with
v = 0.8c. Her travel time in one diretion is then 2.4light years

0.8c = 3 years. So theround trip takes 6 years aording to Eva. That is Eva is 6 years older when theymeet again. This is in aordane with the result arrived at by Eli. Aording to



70 Chapter 4. Covariant Di�erentiationEva, Eli ages by only 6 years ×1/γ = 3.6 years during the round trip, not 10 yearsas Eli found.On turning about Eva experienes a fore whih redues her veloity and aeler-ates her towards the Earth and Eli. This means that she experienes a gravitationalfore direted away from the Earth. Eli is higher up in this gravitational �eld andages faster than Eva, beause of the gravitational time dilation. We assume thatEva has onstant proper aeleration and is stationary in a hyperbolially aeleratedframe as she turns about.The anonial momentum pt for Eli is then(see Equation (4.64))
pt = −

(
1 +

gx

c2

)2
cṫInserting this into the 4-veloity identity gives

p2
t − c2

(
1 +

gx

c2

)2
=
(
1 +

gx

c2

)2
ẋ2, (4.70)or

dτ =
1 + gx

c2√
p2
t − c2

(
1 + gx

c2

)2 dxNow, sine ẋ = 0 for x = x2 (x2 is Eli's turning point aording to Eva), wehave that
pt = c

(
1 +

gx2

c2

)Let x1 be Eli's position aording to Eva just as Eva begins to notie the gravitational�eld. That is when Eli begins to slow down in Eva's frame.Integration from x1 to x2 and inserting the value of pt gives
τ1−2 =

c

g

√(
1 +

gx2

c2

)2
−
(
1 +

gx1

c2

)2

⇒ lim
g→∞

τ1−2 =
1

c

√
x2

2 − x2
1.Now setting x2 = 4 and x1 = 2.4 light years respetively we get

lim
g→∞

τ1−2 = 3.2 yearsEli's aging as she turns about is, aording to Eva,
∆τEli = 2 lim

g→∞
τ1−2 = 6.4 years.So Eli's has aged by a total of τEli = 3.6+ 6.4 = 10 years, aording to Eva, whihis just what Eli herself found.



4.5 Appliation of the Lagrangian formalism to free partiles 714.5.3 Gravitational Doppler e�etThis onerns the frequeny shift of light traversing up or down in a gravitational�eld. The 4-momentum of a partile with relativisti energy E and spatialveloity ~w (3-veloity) is given by:
~P = E(1, ~w) (c = 1) (4.71)Let ~U be the 4-veloity of an observer. In a o-moving orthonormal basis of theobserver we have ~U = (1, 0, 0, 0). This gives

~U · ~P = −Ê (4.72)The energy of a partile with 4-momentum ~P measured by an observer with4-veloity ~U is
Ê = −~U · ~P (4.73)Let ES = −(~U · ~P )S and Ea = −(~U · ~P )a be the energy of a photon, measuredloally by observers in rest in the transmitter and reeiver positions, respetively.This gives1
ES

(~U · ~P )S
=

Ea

(~U · ~P )a
(4.74)Let the angular frequeny of the light, measured by the transmitter and reeiver,be ws and wa, respetively. We then have

ws =
ES
~
, wa =

Ea
~
, (4.75)whih gives:

wa =
(~U · ~P )a

(~U · ~P )s
ws (4.76)For an observer at rest in a time-independent orthogonal metri we have

~U · ~P = U tPt =
dt

dτ
Pt (4.77)where Pt is a onstant of motion (sine t is a yli oordinate) for photons andhene has the same value in transmitter and reeiver positions. The line-elementis

ds2 = gttdt
2 + gii(dx

i)2 (4.78)Using the physial interpretation (4.55) of the line-element for a time like inter-val, we obtain for the proper time of an observer at rest
dτ2 = −gttdt2 ⇒ dτ =

√−gttdt (4.79)1 ~A · ~B = A0B
0

+ A1B
1

+ ... = g00A
0B0

+ g11A
1B1

+ ..., an orthonormal basis gives
~A · ~B = −A0B0

+ A1B1
+ ...



72 Chapter 4. Covariant Di�erentiationHene
dt

dτ
=

1√−gtt
, (4.80)whih gives

~U · ~P =
1√−gtt

Pt. (4.81)Inserting this into the expression for angular frequeny (4.76) gives
wa =

√
(gtt)s
(gtt)a

ws (4.82)Note: we have assumed an orthogonal and time-independent metri, i.e. Pt1 =
Pt2 . Inserting the metri of a hyperbolially aelerated referene system with

gtt = −(1 +
gx

c2
)2 (4.83)gives

wa =
1 + gxs

c2

1 + gxa

c2
ws, (4.84)or

wa −ws
ws

=
1 + gxs

c2

1 + gxa

c2
− 1 =

g
c2

(xs − xa)

1 + gxa

c2
≈ g

c2
H, (4.85)where H = xs− xa is the di�erene in height between transmitter and reeiver.Example 4.5.6 (Measurements of gravitational Doppler e�ets (Pound and Rebka 1960))

H ≈ 20m, g = 10m/s2gives
∆w

w
=

200

9 × 1016
= 2.2 × 10−15.This e�et was measured by Pound and Rebka in 1960.4.6 The Koszul onnetionThe ovariant diretional derivative of a salar �eld f in the diretion of a vetor

~u is de�ned as:
∇~uf ≡ ~u(f) (4.86)Here the vetor ~u should be taken as a di�erensial operator. (In oordinatebasis, ~u = uµ ∂

∂xµ )The diretional derivative along a basis vetor ~eν is written as:
∇ν ≡ ∇~eν

(4.87)Hene ∇µ( ) = ∇~eµ
( ) = ~eµ( )



4.6 The Koszul onnetion 73De�nition 4.6.1 (Koszul's onnetion oe�eients in an arbitrary basis)In an aribitrary basis the Koszul onnetion oe�ients are de�ned by
∇ν~eµ ≡ Γαµν~eα (4.88)whih may also be written ~eν(~eµ) = Γαµν~eα. In oordinate basis , Γαµν is reduedto Christo�el symbols and one often writes ~eµ,ν = Γαµν~eα. In an arbitrary basis, Γαµν has no symmetry.Example 4.6.1 (The onnetion oe�ients in a rotating referene frame.)Coordinate transformation: (T,R,Θ are oordinates in the non-rotating refereneframe, t, r, θ in the rotating.) Corresponding Cartesian oordinates:X,Y and x, y.

t = T, r = R, θ = Θ − ωT

X = R cos Θ, Y = R sin Θ

X = r cos(θ + ωt), Y = r sin(θ + ωt)

X

Y

t

y

xP (x,y)
(X,Y)

ωtθ+ωFigure 4.11: The non-rotating oordinate system (X,Y) and the rotating system(x,y),rotating with angular veloity ω
~et =

∂

∂t
=
∂X

∂t

∂

∂X
+
∂Y

∂t

∂

∂Y
+
∂T

∂t

∂

∂T



74 Chapter 4. Covariant Di�erentiationgives:
~et = −rω sin(θ + ωt)~eX + rω cos(θ + ωt)~eY + ~eT

~er =
∂X

∂r

∂

∂X
+
∂Y

∂r

∂

∂Y
= cos(θ + ωt)~eX + sin(θ + ωt)~eY

~eθ =
∂X

∂θ

∂

∂X
+
∂Y

∂θ

∂

∂Y
= −r sin(θ + ωt)~eX + r cos(θ + ωt)~eYWe are going to �nd the Christo�el symbols, whih involves di�erentiation of ba-sis vetors. This oordinate transformation makes this easy, sine ~eX , ~eY , ~eT areonstant. Di�erentiation gives

∇t~et = −rω2 cos(θ + ωt)~eX − rω2 sin(θ + ωt)~eY (4.89)The onnetion oe�ients are (see eq. 4.88)
∇ν~eµ ≡ Γαµν~eα (4.90)So, to alulate Γαµν , the right hand side of eq.4.89 has to by expressed by thebasis that we are di�erentiating.By inspetion, the right hand side is −rω2~er.That is ∇t~et = −rω2~er giving Γrtt = −rω2.The other nonzero Christo�el symbols are

Γθrt = Γθtr =
ω

r
,Γθθr = Γθrθ =

1

r
Γrθt = Γrtθ = −rω,Γrθθ = −rExample 4.6.2 (Aeleration in a non-rotating referene frame (Newton))
~̈r = ~̇v = (v̇i + Γiαβv

αvβ)~ei,where · ≡ d
dt . i, j, and k are spae indies. Inserting the Christo�el symbols forplane polar oordinates (see example 4.2.1), gives:

~ainert = (r̈ − rθ̇2)~er + (θ̈ +
2

r
ṙθ̇)~eθExample 4.6.3 (The aeleration of a partile, relative to the rotating referene frame)Inserting the Christo�el symbols from example 4.6.1:

~arot = (r̈ − rθ̇2 − Γrttṫ
2 + Γrθtθ̇ṫ+ Γrtθ ṫθ̇)~er + (θ̈ +

2

r
ṙθ̇ + Γθrtṙṫ+ Γθtr ṫṙ)~eθ

= (r̈ − rθ̇2 − rω2 − 2rωθ̇)~er̂ + (rθ̈ + 2ṙθ̇ + 2ṙω)~eθ̂

= ~ainert − (rω2 + 2rωθ̇)~er̂ + 2ṙω~eθ̂



4.7 Connetion oe�ients Γαµν and struture oe�ients cαµν in ... 75The angular veloity of the referene frame, is ~ω = ω~ez. We also introdue ~r = r~er.The veloity relative to the rotating referene frame is then:
~̇r = ṙ~er + r~̇erFurthermore

~̇er =
d~er
dt

=
∂~er
∂xi

dxi

dt
= vi~er,iUsing de�nition 4.6.1 in a oordinate basis, this may be written

~̇er = viΓjri~ejUsing the expressions of the Christo�el symbols in example 4.6.1, we get
~̇er = vθΓθrθ~eθ = θ̇

1

r
~eθ = θ̇~eθ̂Hene

~v = ~̇r = ṙ~er̂ + rθ̇~eθ̂Inserting this into the expression for the aeleration, gives:
~̈rrot = ~̈rinert + ~ω × (~ω × ~r) + 2~ω × ~vWe an see that the entrifugal aeleration (the term in the middle) and the oriolisaeleration (last term) is ontained in the expression for the ovariant derivative.4.7 Connetion oe�ients Γ

α
µν and struture oe�-ients c

α
µν in a Riemannian (torsion free) spaeThe ommutator of two vetors, ~u and ~v, expressed by ovariant diretionalderivatives is given by:

[~u,~v] = ∇~u~v −∇~v~u (4.91)Let ~u = ~eµ and ~v = ~eν . We then have:
[ ~eµ, ~eν ] = ∇µ ~eν −∇ν ~eµ. (4.92)Using the de�nitions of the onnetion and struture oe�ients we get:
cαµν ~eα = (Γανµ − Γαµν) ~eα (4.93)Thus in a torsion free spae

cαµν = Γανµ − Γαµν (4.94)In oordinate basis we have
~eµ =

∂

∂xµ
, ~eν =

∂

∂xν
(4.95)



76 Chapter 4. Covariant Di�erentiationAnd therefore:
[ ~eµ, ~eν ] = [

∂

∂xµ
,
∂

∂xν
]

=
∂

∂xµ
(
∂

∂xν
) − ∂

∂xν
(
∂

∂xµ
)

=
∂2

∂xµ∂xν
− ∂2

∂xν∂xµ
= 0

(4.96)Equation (4.96) shows that cαµν = 0, and that the onnetion oe�ients inEquation (4.94) therefore are symmetrial in a oordinate basis:
Γανµ = Γαµν (4.97)4.8 Covariant di�erentiation of vetors, forms and ten-sors4.8.1 Covariant di�erentiation of a vetor in an arbitrary basis

∇ν ~A = ∇ν(Aµ ~eµ)
= ∇νAµ ~eµ +Aα∇ν ~eα

(4.98)
∇νAµ = ~eν(A

µ) , ~eν = Mµ
ν

∂

∂xµ
, (4.99)where Mµ

ν are the elements of a transformation matrix between a oordinatebasis { ∂
∂xµ } and an arbitrary basis {~eν}. ( If ~eν had been a oordinate basisvetor, we would have gotten ~eν(A

µ) = ∂
∂xν (Aµ) = Aµ,ν).

∇ν ~A = [~eν(A
µ) +AαΓµαν ] ~eµ (4.100)De�nition 4.8.1 (Covariant derivative of a vetor)The ovariant derivative of a vetor in an arbitrary basis is de�ned by:

∇ν ~A ≡ Aµ;ν~eµ (4.101)So:
Aµ;ν = ~eν(A

µ) +AαΓµαν

where ∇ν~eα ≡ Γµαν~eµ
(4.102)

4.8.2 Covariant di�erentiation of formsDe�nition 4.8.2 (Covariant diretional derivative of a one-form �eld)Given a vetor �eld ~A and a one-form �eld α, the ovariant diretional derivative of
α in the diretion of the vetor ~u is de�ned by:

(∇~uα)( ~A ) ≡ ∇~u[α( ~A )︸ ︷︷ ︸
αµAµ

] − α(∇~u ~A) (4.103)



4.8 Covariant di�erentiation of vetors, forms and tensors 77Let α = ωµ (basis form), ωµ(~eν) ≡ δµν and let ~A = ~eν and ~u = ~eλ. We thenhave:
(∇λωµ)(~eν) = ∇λ[ωµ(~eν)︸ ︷︷ ︸

δµ
ν

] − ωµ(∇λ ~eν) (4.104)The ovariant diretional derivative ∇λ of a onstant salar �eld is zero, ∇λδµν =
0. We therefore get:

(∇λωµ)(~eν) = −ωµ(∇λ ~eν)
= −ωµ(Γανλ ~eα)

= −Γανλω
µ( ~eα)

= −Γανλδ
µ
α

= −Γµνλ

(4.105)The ontration between a one-form and a basis vetor gives the omponentsof the one-form, α(~eν) = αν . Equation (4.105) tells us that the ν-omponent of
∇λωµ is equal to −Γµνλ, and that we therefore have

∇λωµ = −Γµνλω
ν (4.106)Equation (4.106) gives the diretional derivatives of the basis forms. Using theprodut of di�erentiation gives

∇λα = ∇λ(αµωµ)
= ∇λ(αµ)ωµ + αµ∇λωµ

= ~eλ(αµ)ω
µ − αµΓ

µ
νλω

ν

(4.107)
De�nition 4.8.3 (Covariant derivative of a one-form)The ovariant derivative of a one-form α = αµω

µ is therefore given by Equation(4.108) below, when we let µ→ ν in the �rst term on the right hand side in (4.107):
∇λα = [ ~eλ(αν) − αµΓ

µ
νλ]ω

ν (4.108)The ovariant derivative of the one-form omponents αµ are denoted by αν;λ andare de�ned by
∇λα ≡ αν;λω

ν (4.109)It then follows that
αν;λ = ~eλ(αν) − αµΓ

µ
νλ (4.110)It is worth to note that Γµνλ in Equation (4.110) are not Christo�el symbols. Inoordinate basis we get:

αν;λ = αν,λ − ανΓ
µ
λν (4.111)where Γµλν = Γµνλ are Christo�el symbols.



78 Chapter 4. Covariant Di�erentiation4.8.3 Generalization for tensors of higher rankDe�nition 4.8.4 (Covariant derivative of a tensor)Let A and B be two tensors of arbitrary rank. The ovariant diretional derivativealong a basis vetor ~eλ of a tensor A⊗B of arbitrary rank is de�ned by:
∇λ(A⊗B) ≡ (∇λA) ⊗B +A⊗ (∇λB) (4.112)We will use (4.112) to �nd the formula for the ovariant derivative of the om-ponents of a tensor of rank 2:

∇αS = ∇α(Sµνω
µ ⊗ ων)

= (∇αSµν)ωµ ⊗ ων + Sµν(∇αωµ) ⊗ ων + Sµνω
µ ⊗ (∇αων)

= (Sµν,α − SβνΓ
β
µα − SµβΓ

β
να)ωµ ⊗ ων

(4.113)where Sµν,α = ~eα(Sµν). De�ning the ovariant derivative Sµν;α by
∇αS = Sµν;αω

µ ⊗ ων (4.114)we get
Sµν;α = Sµν,α − SβνΓ

β
µα − SµβΓ

β
να (4.115)For the metri tensor we get

gµν;α = gµν,α − gβνΓ
β
µα − gµβΓ

β
να (4.116)From

gµν = ~eµ · ~eν (4.117)we get:
gµν,α = (∇α ~eµ) · ~eν + ~eµ(∇α ~eν)

= Γβµα ~eβ · ~eν + ~eµ · Γβνα ~eβ
= gβνΓ

β
µα + gµβΓ

β
να

(4.118)This means that
gµν;α = 0 (4.119)So the metri tensor is a (ovariant) onstant tensor.4.9 The Cartan onnetionDe�nition 4.9.1 (Exterior derivative of a basis vetor)

d~eµ ≡ Γνµα~eν ⊗ ωα (4.120)



4.9 The Cartan onnetion 79Exterior derivative of a vetor �eld:
d ~A = d(~eµA

µ) = ~eν ⊗ dAν +Aµd~eµ (4.121)In arbitrary basis:
dAν = ~eλ(A

ν)ωλ (4.122)(In oordinate basis, ~eλ(Aν) = ∂
∂xλ (Aν) = Aν,λ)giving:

d ~A = ~eν ⊗ [~eλ(A
ν)ωλ] +AµΓνµλ~eν ⊗ ωλ

= (~eλ(A
ν) +AµΓνµλ)~eν ⊗ ωλ

(4.123)
d ~A = Aν;λ~eν ⊗ ωλ (4.124)De�nition 4.9.2 (Connetion forms Ω

ν

µ
)The onnetion forms Ωνµ are 1-forms, de�ned by:

d~eµ ≡ ~eν ⊗ Ων
µ

Γνµα~eν ⊗ ωα = ~eν ⊗ Γνµαω
α = ~eν ⊗ Ων

µ

(4.125)
Ωνµ = Γνµαω

α (4.126)The exterior derivatives of the omponents of the metri tensor:
dgµν = d(~eµ · ~eν) = ~eµ · d~eν + ~eν · d~eµ (4.127)where the meaning of the dot is de�ned as follows:De�nition 4.9.3 (Salar produt between vetor and 1-form)The salar produt between a vetor ~u and a (vetorial) one form A = Aµν~eµ ⊗ ωνis de�ned by:

~u · A ≡ uαAµν(~eα · ~eµ)ων (4.128)Using this de�nition, we get:
dgµν = (~eµ · ~eλ)Ωλ

ν + (~eν · ~eγ)Ωγ
µ

= gµλΩ
λ
ν + gνγΩ

γ
µ

(4.129)



80 Chapter 4. Covariant Di�erentiationLowering an index gives
dgµν = Ωµν + Ωνµ (4.130)In an orthonormal basis �eld there is Minkowski-metri:

gµ̂ν̂ = ηµ̂ν̂ (4.131)whih is onstant. Then we have :
dgµ̂ν̂ = 0 ⇒ Ων̂µ̂ = −Ωµ̂ν̂ (4.132)where we write Ων̂µ̂ = Γν̂µ̂α̂ω

α̂. It follows that Γν̂µ̂α̂ = −Γµ̂ν̂α̂.It also follows that
Γt̂
îĵ

= −Γt̂̂iĵ = Γît̂ĵ = Γî
t̂ĵ

Γî
ĵk̂

= −Γĵ
îk̂

(4.133)Cartans 1st struture equation (without proof):
dωρ = −1

2
cρµνω

µ ∧ ων

= −1

2
(Γρνµ − Γρµν)ω

µ ∧ ων

= −Γρνµω
µ ∧ ων

= −Ωρν ∧ ων

(4.134)
dωρ = −Ωρν ∧ ων and dωρ = Γρµνω

µ ∧ ων (4.135)In oordinate basis, we have ωρ = dxρ.Thus, dωρ = d2xρ = 0.We also have cρµν = 0 , and C1 is redued to an identity.This formalism annot be used in oordinate basis!Example 4.9.1 (Cartan-onnetion in an orthonormal basis �eld in plane polar oord.)
ds2 = dr2 + r2dθ2Introduing basis forms in an orthonormal basis �eld (where the metri is gr̂r̂ =

gθ̂θ̂ = 1):
ds2 = gr̂r̂ω

r̂ ⊗ ωr̂ + gθ̂θ̂ω
θ̂ ⊗ ωθ̂ = ωr̂ ⊗ ωr̂ + ωθ̂ ⊗ ωθ̂

⇒ ωr̂ = dr, ωθ̂ = rdθExterior di�erentiation gives:
dωr̂ = d2r = 0, dωθ̂ = dr ∧ dθ =

1

r
ωr̂ ∧ ωθ̂



4.9 The Cartan onnetion 81C1:
dωµ̂ = −Ωµ̂

ν̂ ∧ ων̂

= −Ωµ̂
r̂ ∧ ωr̂ − Ωµ̂

θ̂
∧ ωθ̂We have that dωr̂ = 0 , whih gives:

Ωr̂
θ̂

= Γr̂
θ̂θ̂
ωθ̂ (4.136)sine ωθ̂ ∧ ωθ̂ = 0. (Ωr̂

r̂=0 beause of the antisymmetry Ων̂µ̂ = −Ωµ̂ν̂ .)We also have: dωθ̂ = −1
rω

θ̂ ∧ ωr̂. C1:
dωθ̂ = −Ωθ̂r̂ ∧ ωr̂ − Ωθ̂

θ̂︸︷︷︸
=0

∧ωθ̂

Ωθ̂
r̂ = Γθ̂

r̂θ̂
ωθ̂ + Γθ̂r̂r̂ω

r̂ (4.137)giving Γθ̂
r̂θ̂

= 1
r .We have: Ωr̂

θ̂
= −Ωθ̂r̂. Using equations 4.136 and 4.137 we get:

Γθ̂r̂r̂ = 0

⇒ Γr̂
θ̂θ̂

= −1

rgiving Ωr̂
θ̂

= −Ωθ̂
r̂ = −1

rω
θ̂.
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λ

λ+ ∆λ

~A(λ)

~AQP (λ+ ∆λ)

∇~v
~A∆λ

~v

~A(λ+ ∆λ)

Figure 5.1: Parallel transport of ~AThe ovariant diretional derivative of a vetor �eld ~A along a vetor ~u wasde�ned and interpreted geometrially in setion 4.2, as follows
∇~v

~A =
d ~A

dλ
= Aµ;νv

ν~eµ

= lim
∆λ→0

~AQP (λ+ ∆λ) − ~A(λ)

∆λ

(5.1)Let ~AQP be the parallel transported of ~A from Q to P. Then to �rst order in
∆λ we have: ~AQP = ~AP + (∇~v

~A)P∆λ and82
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-
~A

6

~A‖

:

3

�
�

Figure 5.2: Parallel transport of a vetor along a triangle of angles 90◦ is rotated
90◦

~APQ = ~AQ − (∇~v
~A)Q∆λ (5.2)To seond order in ∆λ we have:

~APQ = (1 −∇~v∆λ+
1

2
∇~v∇~v(∆λ)2) ~AQ (5.3)If ~APQ is parallel transported further on to R we get

~APQR = (1 −∇~u∆λ+
1

2
∇~u∇~u(∆λ)2)

· (1 −∇~v∆λ+
1

2
∇~v∇~v(∆λ)2) ~AR

(5.4)where ~AQ is replaed by ~AR beause the di�erential operator always shall beapplied to the vetor in the �rst position. If we parallel transport ~A around thewhole polygon in �gure 5.3 we get:
~APQRSTP = (1 + ∇~u∆λ+

1

2
∇~u∇~u(∆λ)2)

· (1 + ∇~v∆λ+
1

2
∇~v∇~v(∆λ)2)

· (1 −∇[~u,~v](∆λ)2) · (1 −∇~u∆λ+
1

2
∇~u∇~u(∆λ)2)

· (1 −∇~v∆λ+
1

2
∇~v∇~v(∆λ)2) ~AP

(5.5)
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I I
O

1P
λ

Q
λ+ ∆λ

R
S

T (∇~u∆λ~v −∇~v∆λ~u)∆λ
= [~u,~v]∆λ2

∇~v∆λ~u∆λ

∇~u∆λ~v∆λ

~u(P )∆λ

~AP

~uPQ∆λ

~APQ

~AQ
∇~v

~A

~v(P )∆λ

~vPT∆λ

~v(T )∆λ

~u(Q)∆λ

Figure 5.3: Geometrially implied urvature from non-zero di�erenes betweenvetors along a urve (parameterized by λ) and their parallel transported equiv-alentsCalulating to 2. order in ∆λ gives:
~APQRSTP = ~AP + ([∇~u,∇~v] −∇[~u,~v])(∆λ)2 ~AP (5.6)There is a variation of the vetor under parallel transport around the losedpolygon:

δ ~A = ~APQRSTP − ~AP = ([∇~u,∇~v ] −∇[~u,~v]) ~AP (∆λ)2 (5.7)We now introdue the Riemann's urvature tensor as:
R( , ~A, ~u,~v) ≡ ([∇~u,∇~v] −∇[~u,~v])( ~A) (5.8)The omponents of the Riemann urvature tensor is de�ned by applying thetensor on basis vetors,
Rµναβ~eµ ≡ ([∇α,∇β ] −∇[~eα,~eβ ])(~eν) (5.9)Anti-symmetry follows from the de�nition:

Rµνβα = −Rµναβ (5.10)The expression for the variation of ~A under parallel transport around the poly-



5.1 The Riemann urvature tensor 85gon, Eq. (5.7), an now be written as:
δ ~A = R( , ~A, ~u,~v)(∆λ)2

= R( , Aν~eν , u
α~eα, v

β~eβ)(∆λ)2

= ~eµR
µ
ναβA

νuαvβ · (∆λ)2

=
1

2
~eµR

µ
ναβA

ν(uαvβ − uβvα)(∆λ)2

(5.11)The area of the parallellogram de�ned by the vetors ~u∆λ and ~v∆λ is
-

�

6

~v∆λ

~u∆λ

∆~S = ~u× ~v(∆λ)2

∆S

∆~S = ~u× ~v(∆λ)2.Using that
(~u× ~v)αβ = uαvβ − uβvα .we an write Eq. (5.11) as:
δ ~A =

1

2
AνRµναβ∆S

αβ~eµ . (5.12)The omponents of the Riemann tensor expressed by the onnetion- and struture-oe�ients are given below:
~eµR

µ
ναβ = [∇α,∇β]~eν −∇[~eα,~eβ ]~eν

= (∇α∇β −∇β∇α − cραβ∇ρ)~eν

= ∇α∇β~eν −∇β∇α~eν − cραβ∇ρ~eν(Kozul-onnetion) = ∇αΓ
µ
νβ~eµ −∇βΓ

µ
να~eµ − cραβΓ

µ
νρ~eµ

= (∇αΓµνβ)~eµ + Γµνβ∇α~eµ

− (∇βΓ
µ
να)~eµ − Γµνα∇β~eµ − cραβΓ

µ
νρ~eµ

= ~eα(Γµνβ)~eµ + ΓρνβΓ
µ
ρα~eµ

− ~eβ(Γ
µ
να)~eµ − ΓρναΓ

µ
ρβ~eµ − cραβΓ

µ
νρ~eµ .

(5.13)
This gives (in arbitrary basis):

Rµναβ = ~eα(Γ
µ
νβ) − ~eβ(Γ

µ
να)

+ ΓρνβΓ
µ
ρα − ΓρναΓµρβ − cραβΓ

µ
νρ .

(5.14)



86 Chapter 5. CurvatureIn oordinate basis eq. (5.14) is redued to:
Rµναβ = Γµνβ,α − Γµνα,β + ΓρνβΓ

µ
ρα − ΓρναΓ

µ
ρβ , (5.15)where Γµνβ = Γµβν are the Christo�el symbols.Due to the antisymmetry (5.10) we an de�ne a matrix of urvature-forms

Rµν =
1

2
Rµναβω

α ∧ ωβ (5.16)Inserting the omponents of the Riemann tensor from eq. (5.14) gives
Rµν = (~eα(Γµνβ) + ΓρνβΓ

µ
ρα − 1

2
cραβΓ

µ
νρ)ω

α ∧ ωβ (5.17)The onnetion forms:
Ωµ
ν = Γµναω

α (5.18)Exterior derivatives of basis forms:
dωρ = −1

2
cραβω

α ∧ ωβ (5.19)Exterior derivatives of onnetion forms (C1: dωρ = −Ωρα ∧ ωα) :
dΩµ

ν = dΓµνβ ∧ ωβ + Γµνρdω
ρ

= ~eα(Γµνβ)ω
α ∧ ωβ − 1

2
cραβΓ

µ
νρω

α ∧ ωβ
(5.20)The urvature forms an now be written as:

Rµν = dΩµν + Ωµ
λ ∧ Ωλ

ν (5.21)This is Cartans 2nd struture equation.



5.2 Di�erential geometry of surfaes 875.2 Di�erential geometry of surfaes
λ

µe

eν

N

u

Figure 5.4: The geometry of a surfae. We see the normal vetor and the unitvetors of the tangent plane of a point on the surfae.Imagine an arbitrary surfae embedded in an Eulidian 3 dimensional spae.(See �gure 5.4). Coordinate vetors on the surfae :
~eu =

∂

∂u
,~ev =

∂

∂v
(5.22)where u and v are oordinates on the surfae.Line element on the surfae:

ds2 = gµνdx
µdxν (5.23)with x1 = u and x2 = v.(1st fundamental form)The diretional derivatives of the basis vetors are written

~eµ,ν = Γαµν~eα +Kµν
~N,α = 1, 2 (5.24)Greek indies run through the surfae oordinates, ~N is a unit vetor orthogonalto the surfae.



88 Chapter 5. CurvatureThe equation above is alled Gauss' equation. We have: Kµν = ~eµ,ν · ~N . Inoordinate basis, we have ~eµ,ν = ∂2

∂xµ∂xν = ∂2

∂xν∂xµ = ~eν,µ. It follows that
Kµν = Kνµ (5.25)Let ~u be the unit tangent vetor to a urve on the surfae, parametrised by λ.Di�erentiating ~u along the urve:

d~u

dλ
= uµ;νu

ν~eµ + Kµνu
µuν︸ ︷︷ ︸2nd fundamental form ~N (5.26)We de�ne κg and κN by:

d~u

dλ
= κg~e+ κN ~N (5.27)

κg is alled geodesi urvature. κN is alled normal urvature (external urva-ture). κg = 0 for geodesi urves on the surfae.
κg~e = uµ;νu

ν~eµ = ∇~u~u

κN = Kµνu
µuνAnd :κN =

d~u

dλ
· ~N

(5.28)We also have that ~u · ~N = 0 along the whole urve. Di�erentiation gives:
d~u

dλ
· ~N + ~u · d

~N

dλ
= 0 (5.29)gives:

κN = −~u · d
~N

dλ
(5.30)whih is alled Weingarten's equation.

κg and κN together give a omplete desription of the geometry of a surfaein a �at 3 dimensional spae. We are now going to onsider geodesi urvesthrough a point on the surfae. Tangent vetor ~u = uµ~eµ with ~u ·~u = gµνu
µuν =

1. Diretions with maximum and minimum values for the normal urvatures arefound, by extremalizing κN under the ondition gµνuµuν = 1. We then solve thevariation problem δF = 0 for arbitrary uµ, where F = Kµνu
µuν−k(gµνuµuν−1).Here k is the Lagrange multipliator. Variation with respet to uµ gives:

δF = 2(Kµν − kgµν)u
νδuµ

δF = 0 for arbitrary δuµ demands:
(Kµν − kgµν)u

ν = 0 (5.31)For this system of equations to have nonzero solutions, we must have:det(Kµν − kgµν) = 0 (5.32)
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∣∣∣∣
K11 − kg11 K12 − kg12
K21 − kg21 K22 − kg22

∣∣∣∣ = 0 (5.33)This gives the following quadrati equation for k:
k2det(gµν) − (g11K22 − 2g12K12 + g22K11)k + det(Kµν) = 0 (5.34)

(K symmetri K12 = K21)The equation has two solutions, k1 and k2. These are the extremal values of k.To �nd the meaning of k, we multiply eq.5.31 by uµ:
0 = (Kµν − kgµν)u

µuν

= Kµνu
µuν − kgµνu

µuν

= κN − k ⇒ k = κN

(5.35)The extremal values of κN are alled the prinipal urvatures of the surfae.Let the diretions of the geodesis with extreme normal urvature be given bythe tangent vetors ~u and ~v.Eq.5.31 gives:
Kµνu

ν = kgµνu
ν (5.36)We then get:

Kµνu
νvµ = k1gµνu

νvµ

= k1uµv
µ = k1(~u · ~v)

Kµνv
νuµ = k2gµνv

νuµ = k2(~u · ~v)

gives (k1 − k2)(~u · ~v) = Kµν(u
νvµ − vνuµ)

= 2Kµνu
[νvµ]

(5.37)
Kµν is symmetri in µ and ν. So we get:(k1 − k2)(~u · ~v) = 0. For k1 6= k2 wehave to demand ~u ·~v = 0. So the geodesis with extremal normal urvature, areorthogonal to eah other.The Gaussian urvature (at a point) is de�ned as:

K = κN1 · κN2 (5.38)Sine κN1 and κN2 are solutions of the quadrati equation above, we get:
K =

det(Kµν)det(gµν) (5.39)



90 Chapter 5. Curvature5.2.1 Surfae urvature, using the Cartan formalismIn eah point on the surfae we have an orthonormal set of basis vetors. Greekindies run through the surfae oordinates (two dimensional) and Latin indiesthrough the spae oordinates (three dimensional):
~ea = (~e1, ~e2, ~N) , ~eµ = {~e1, ~e2} (5.40)Using the exterior derivative and form formalism, we �nd how the unit vetorson the surfae hange:
d~eν = ~ea ⊗ Ωa

ν

= ~eα ⊗ Ωαν + ~N ⊗ Ω3
ν ,

(5.41)where Ωµ
ν = Γµναωα are the onnetion forms on the surfae, i.e. the intrinsionnetion forms. The extrinsi onnetion forms are

Ω3
ν = Kναω

α ,Ωµ
3 = Kµ

αω
α (5.42)We let the surfae be embedded in an Eulidean (�at) 3-dimensional spae. Thismeans that the urvature forms of the 3-dimensional spae are zero:

Ra3b = 0 = d Ωab + Ωa
k ∧ Ωk

b (5.43)whih gives:
Rµ3ν = 0 = d Ωµν + Ωµ

α ∧ Ωα
ν + Ωµ3 ∧ Ω3

ν

= Rµν + Ωµ
3 ∧ Ω3

ν ,
(5.44)where Rµν are the urvature forms of the surfae. We then have:

1

2
Rµναβω

α ∧ ωβ = −Ωµ3 ∧ Ω3
ν (5.45)Inserting the omponents of the extrinsi onnetion forms, we get: (when weremember the anti symmetry of α and β in Rµναβ)

Rµναβ = Kµ
αKνβ −Kµ

βKνα (5.46)We now lower the �rst index:
Rµναβ = KµαKνβ −KµβKνα (5.47)

Rµναβ are the omponents of a urvature tensor whih only refer to the dimen-sions of the surfae. In partiular we have:
R1212 = K11K22 −K12K21 = detK (5.48)We then have the following onnetion between this omponent of the Riemannurvature tensor of the surfae and the Gaussian urvature of the surfae:
K = κN1 · κN2 =

detKµν

det gµν
=

R1212

det gµν
(5.49)Sine the right hand side refers to the intrinsi urvature and the metri on thesurfae, we have proved that the Gaussian urvature of a surfae is an intrinsiquantity. It an be measured by observers on the surfae without embedding thesurfae in a three-dimensional spae. This is the ontents of Gauss' theoremaegregium.



5.3 The Rii identity 915.3 The Rii identity
~eµR

µ
ναβA

ν = (∇α∇β −∇β∇α −∇[ ~eα, ~eβ ])(~A) (5.50)In oordinate basis this is redued to
~eµR

µ
ναβA

ν = (Aµ;βα −Aµ;αβ) ~eµ , (5.51)where
Aµ;αβ ≡ (Aµ;β);α (5.52)The Rii identity on omponent form is:

AνRµναβ = Aµ;βα −Aµ;αβ (5.53)We an write this as:
d2 ~A =

1

2
RµναβA

ν ~eµ ⊗ ωα ∧ ωβ (5.54)This shows us that the 2nd exterior derivative of a vetor is equal to zero onlyin a �at spae. Equations (5.53) and (5.54) both represents the Rii identity.5.4 Bianhi's 1st identityCartan's 1st struture equation:
d ωµ = −Ωµν ∧ ων (5.55)Cartan's 2nd struture equation:

Rµν = d Ωµν + Ωµ
λ ∧ Ωλ

ν (5.56)Exterior di�erentiation of (5.55) and use of Poincaré′s lemma (4.16) gives:(d2 ωµ = 0)
0 = d Ωµ

ν ∧ ων − Ωµλ ∧ d ωλ (5.57)Use of (5.55) gives:
d Ωµν ∧ ων + Ωµ

λ ∧ Ωλν ∧ ων = 0 (5.58)From this we see that
(d Ωµν + Ωµ

λ ∧ Ωλν) ∧ ων = 0 (5.59)We now get Bianhi's 1st identity:
Rµν ∧ ων = 0 (5.60)



92 Chapter 5. CurvatureOn omponent form Bianhi's 1st identity is
1

2
Rµναβω

α ∧ ωβ
︸ ︷︷ ︸

Rµ
ν

∧ων = 0 (5.61)The omponent equation is: (remember the anti symmetry in α and β)
Rµ[ναβ] = 0 (5.62)or

Rµναβ +Rµαβν +Rµβνα+ = 0 (5.63)where the anti symmetry Rµναβ = −Rµνβα has been used. Without this antisymmetry we would have gotten six, and not three, terms in this equation.5.5 Bianhi's 2nd identityExterior di�erentiation of (5.56) ⇒
d Rµν = Rµλ ∧ Ωλ

ν − Ωµ
ρ ∧ Ωρλ ∧ Ωλ

ν − Ωµλ ∧Rλν + Ωµ
λ ∧ Ωλ

ρ ∧ Ωρ
ν

= Rµλ ∧ Ωλ
ν − Ωµ

λ ∧Rλν
(5.64)We now have Bianhi's 2nd identity as a form equation:

d Rµν + Ωµλ ∧Rλν −Rµλ ∧ Ωλ
ν = 0 (5.65)As a omponent equation Bianhi's 2nd identity is given by

Rµν[αβ;γ] = 0 (5.66)
De�nition 5.5.1 (Contration)`Contration' is a tensor operation de�ned by

Rνβ ≡ Rµνµβ (5.67)We must here have summation over µ. What we do, then, is onstruting a newtensor from another given tensor, with a rank 2 lower than the given one.The tensor with omponents Rνβ is alled the Rii urvature tensor.Another ontration gives the Rii urvature salar, R = Rµµ.



5.5 Bianhi's 2nd identity 93Riemann urvature tensor has four symmetries. The de�nition of the Rie-mann tensor implies that Rµναβ = −RµνβαBianhi's 1st identity: Rµ[ναβ] = 0From Cartan's 2nd struture equation follows
R µν = dΩ µν + Ωµλ ∧ Ωλν

⇒ R µναβ = −R νµαβ

(5.68)By hoosing a loally Cartesian oordinate system in an inertial frame we getthe following expression for the omponents of the Riemann urvature tensor:
R µναβ =

1

2
(gµβ,να − gµα,νβ + gνα,µβ − gνβ,µα) (5.69)from whih it follows that Rµναβ = Rαβµν . Contration of µ and α leads to:

Rαναβ = Rαβαν

⇒ Rνβ = Rβν
(5.70)i.e. the Rii tensor is symmetri. In 4-D the Rii tensor has 10 independentomponents.



Chapter 6Einstein's Field Equations6.1 Energy-momentum onservation6.1.1 Newtonian �uidEnergy-momentum onservation for a Newtonian �uid in terms of the divergeneof the energy momentum tensor an be shown as follows. The total derivativeof a veloity �eld is
D~v

Dt
≡ ∂~v

∂t
+ (~v · ~∇)~v (6.1)

∂~v
∂t is the loal derivative whih gives the hange in ~v as a funtion of timeat a given point in spae. (~v · ~∇)~v is alled the onvetive derivative of ~v. Itrepresents the hange of ~v for a moving �uid partile due to the inhomogeneityof the �uid veloity �eld. In omponent notation the above beome

Dvi

Dt
≡ ∂vi

∂t
+ vj

∂vi

∂xj
(6.2)The ontinuity equation

∂ρ

∂t
+ ∇ · (ρ~v) = 0 or ∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 (6.3)Euler's equation of motion (ignoring gravity)

ρ
D~v

Dt
= −~∇p or ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
= − ∂p

∂xi
(6.4)The energy momentum tensor is a symmetri tensor of rank 2 thatdesribes material harateristis.

T µν =





T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33



 (6.5)
c ≡ 1 94



6.1 Energy-momentum onservation 95
T 00 represents energy density.
T i0 represents momentum density.
T ii represents pressure (T ii > 0).
T ii represents stress (T ii < 0).
T ij represents shear fores (i 6= j).Example 6.1.1 (Energy momentum tensor for a Newtonian �uid)

T 00 = ρ T i0 = ρvi

T ij = ρvivj + pδij
(6.6)where p is pressure, assumed isotropi here. We hoose a loally Cartesian oordinatesystem in an inertial frame suh that the ovariant derivatives are redued to partialderivatives. The divergene of the momentum energy tensor, T µν;ν has 4 omponents,one for eah value of µ.The zeroth omponent is

T 0ν
;ν = T 0ν

,ν = T 00
,0 + T 0i

,i

=
∂ρ

∂t
+
∂(ρvi)

∂xi

(6.7)whih by omparison to Newtonian hydrodynamis implies that T 0ν
;ν = 0 is theontinuity equation. This equation represents the onservation of energy.The ith omponent of the divergene is

T iν,ν = T i0,0 + T ij,j

=
∂(ρvi)

∂t
+
∂(ρvivj + pδij)

∂xj

= ρ
∂vi

∂t
+ vi

∂ρ

∂t
+ vi

∂ρvj

∂xj
+ ρvj

∂vi

∂xj
+
∂p

∂xi

(6.8)now, aording to the ontinuity equation
∂(ρvi)

∂xi
= −∂ρ

∂t

⇒ T iν,ν = ρ
∂vi

∂t
+ vi

∂ρ

∂t
− vi

∂ρ

∂t
+ ρvj

∂vi

∂xj
+
∂p

∂xi

= ρ
Dvi

Dt
+
∂p

∂xi

∴ T iν;ν = 0 ⇒ ρ
Dvi

Dt
= − ∂p

∂xi

(6.9)
whih is Euler's equation of motion. It expresses the onservation of momentum.



96 Chapter 6. Einstein's Field EquationsThe equations T µν;ν = 0 are general expressions for energy and momentumonservation.6.1.2 Perfet �uidsA perfet �uid is a �uid with no visosity and is given by the energy-momentumtensor
Tµν = (ρ+

p

c2
)uµuν + pgµν (6.10)where ρ and p are the mass density and the stress, respetively, measured in the�uids rest frame, uµ are the omponents of the 4-veloity of the �uid.In a omoving orthonormal basis the omponents of the 4-veloity are uµ̂ =

(c, 0, 0, 0). Then the energy-momentum tensor is given by
Tµ̂ν̂ =





ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p



 (6.11)where p > 0 is pressure and p < 0 is tension.There are three di�erent types of perfet �uids that are useful.1. dust or non-relativisti gas is given by p = 0 and the energy-momemtumtensor Tµν = ρuµuν .2. radiation or ultra-relativisti gas is given by a traeless energy-momemtumtensor, i.e. T µµ = 0. It follows that p = 1
3ρc

2.3. vauum energy: If we assume that no veloity an be measured relativelyto vauum, then all the omponents of the energy-momentum tensor mustbe Lorentz-invariant. It follows that Tµν ∝ gµν . If vauum is de�ned as aperfet �uid we get p = −ρc2 so that Tµν = pgµν = −ρc2gµν .6.2 Einstein's urvature tensorThe �eld equations are assumed to have the form:spae-time urvature ∝ momentum-energy tensorAlso, it is demanded that energy and momentum onservation should follow asa onsequene of the �eld equation. This puts the following onstraints on theurvature tensor: It must be a symmetri, divergene free tensor of rank 2.Bianhi's 2nd identity:
Rµναβ;σ +Rµνσα;β +Rµνβσ;α = 0 (6.12)ontration of µ and α ⇒
Rµνµβ;σ −Rµνµσ;β +Rµνβσ;µ = 0

R νβ;σ −R νσ;β +Rµνβσ;µ = 0
(6.13)



6.3 Einstein's �eld equations 97further ontration of ν and σ gives
Rσβ;σ −Rσσ;β +Rσµσβ;µ = 0

Rσβ;σ −R ;β +Rσβ;σ = 0

∴ 2Rσβ;σ = R ;β

(6.14)Thus, we have alulated the divergene of the Rii tensor,
Rσβ;σ =

1

2
R ;β (6.15)Now we use this expression together with the fat that the metri tensor is o-variant and divergene free to onstrut a new divergene free urvature tensor.

Rσβ;σ −
1

2
R ;β = 0 (6.16)Keeping in mind that (gσβR);σ = gσβR;σ we multiply (6.16) by gβα to get

gβαR
σ
β;σ − gβα

1

2
R ;β = 0

(
gβαR

σ
β

)

;σ
− 1

2

(
gβαR

)

;β
= 0

(6.17)interhanging σ and β in the �rst term of the last equation:
(
gσαR

β
σ

)

;β
− 1

2

(
gβαR

)

;β
= 0

⇒
(
Rβα − 1

2
δβαR

)

;β

= 0
(6.18)sine gσαRβσ=δσαRβσ=Rβα. So that Rβα − 1

2δ
β
αR is the divergene free urvaturetensor desired.This tensor is alled the Einstein tensor and its ovariant omponents aredenoted by Eαβ . That is

Eαβ = R αβ −
1

2
g αβR (6.19)NOTE THAT: Eµν;ν = 0 → 4 equations, giving only 6 equations from E µν ,whih seures a free hoie of oordinate system.6.3 Einstein's �eld equationsEinstein's �eld equations:

Eµν = κTµν (6.20)
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Rµν −

1

2
gµνR = κTµν (6.21)Contration gives:

R− 1

2
4R = κT , where T ≡ T µµ

R = −κT
(6.22)

Rµν =
1

2
gµν(−κT ) + κTµν , (6.23)Thus the �eld equations may be written in the form

Rµν = κ(Tµν −
1

2
gµνT ) (6.24)In the Newtonian limit the metri may be written

ds2 = −
(

1 +
2φ

c2

)
c2dt2 + (1 + hii)(dx

2 + dy2 + dz2) (6.25)where the Newtonian potential |φ| ≪ c2, and hii is a perturbation of the metrisatisfying |hii| << 1. We also have T00 ≫ Tkk and T ≈ −T00. Then the
00-omponent of the �eld equations beomes

R00 ≈ κ

2
T00 (6.26)Furthermore we have

R00 = Rµ0µ0 = Ri0i0

= Γi00,i − Γi0i,0

=
∂Γk00
∂xk

=
1

c2
∇2φ (6.27)Sine T00 ≈ ρc2 eq.(6.26) an be written ∇2φ = 1

2κc
4ρ. Comparing this equationwith the Newtonian law of gravitation on loal form: ∇2φ = 4πGρ, we see that

κ = 8πG
c4

.In lassial vauum we have : Tµν = 0, whih gives
Eµν = 0 or Rµν = 0 . (6.28)These are the �vauum �eld equations�. Note that Rµν = 0 does not imply

Rµναβ = 0.



6.4 The �geodesi postulate� as a onsequene of the �eld equations 99Digression 6.3.1 (Lagrange (variation priniple))It was shown by Hilbert that the �eld equations may be dedued from a variationpriniple with ation ∫
R
√−gd4x , (6.29)where R√−g is the Lagrange density. One may also inlude a so-alled osmologialonstant Λ: ∫

(R + 2Λ)
√−gd4x (6.30)The �eld equations with osmologial onstant are

Rµν −
1

2
gµνR+ Λgµν = κTµν (6.31)6.4 The �geodesi postulate� as a onsequene of the�eld equationsThe priniple that free partiles follow geodesi urves has been alled the�geodesi postulate�. We shall now show that the �geodesi postulate� followsas a onsequene of the �eld equations.Consider a system of free partiles in urved spae-time. This system anbe regarded as a pressure-free gas. Suh a gas is alled dust. It is desribed byan energy-momentum tensor
T µν = ρuµuν (6.32)where ρ is the rest density of the dust as measured by an observer at rest in thedust and uµ are the omponents of the four-veloity of the dust partiles.Einstein's �eld equations as applied to spae-time �lled with dust, take theform

Rµν − 1

2
gµνR = κρuµuν (6.33)Beause the divergene of the left hand side is zero, the divergene of the righthand side must be zero, too

(ρuµuν);ν = 0 (6.34)or
(ρuνuµ);ν = 0 (6.35)we now regard the quantity in the parenthesis as a produt of ρuν and uµ. Bythe rule for di�erentiating a produt we get

(ρuν);νu
µ + ρuνuµ;ν = 0 (6.36)



100 Chapter 6. Einstein's Field EquationsSine the four-veloity of any objet has a magnitude equal to the veloity oflight we have
uµu

µ = −c2 (6.37)Di�erentiation gives
(uµu

µ);ν = 0 (6.38)Using, again, the rule for di�erentiating a produt, we get
uµ;νu

µ + uµu
µ
;ν = 0 (6.39)From the rule for raising an index and the freedom of hanging a summationindex from α to µ, say, we get

u µ;νu
µ = uµuµ;ν = gµαuαuµ;ν = uαg

µαuµ;ν = uαu
α
;ν = uµu

µ
;ν (6.40)Thus the two terms of eq.(6.39) are equal. It follows that eah of them are equalto zero. So we have

uµu
µ
;ν = 0 (6.41)Multiplying eq.(6.36) by uµ, we get

(ρuν);νuµu
µ + ρuνuµu

µ
;ν = 0 (6.42)Using eq.(6.37) in the �rst term, and eq.(6.41) in the last term, whih thenvanishes, we get

(ρuν);ν = 0 (6.43)Thus the �rst term in eq.(6.36) vanishes and we get
ρuνuµ;ν = 0 (6.44)Sine ρ 6= 0 we must have
uνuµ;ν = 0 (6.45)This is just the geodesi equation. Conlusion: It follows from Einstein's�eld equations that free partiles move along paths orresponding to geodesiurves of spae-time.



Chapter 7The Shwarzshild spaetime7.1 Shwarzshild's exterior solutionThis is a solution of the vauum �eld equations Eµν = 0 for a stati spheriallysymmetri spaetime. One an then hoose the following form of the line element(employing units so that =1),
ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

dΩ2 = dθ2 + sin2 θdφ2
(7.1)These oordinates are hosen so that the area of a sphere with radius r is 4πr2.Physial distane in radial diretion, orresponding to a oordinate distane

dr, is dlr =
√
grrdr = eβ(r)dr.Here follows a stepwise algorithm to determine the omponents of the Ein-stein tensor by using the Cartan formalism:1. Using orthonormal basis we �nd

ωt̂ = eα(r)dt , ωr̂ = eβ(r)dr , ωθ̂ = rdθ , ωφ̂ = r sin θdφ (7.2)2. Computing the onnetion forms by applying Cartan's 1. struture equa-tions
dωµ̂ = −Ωµ̂ν̂ ∧ ων̂ (7.3)

dωt̂ = eαα′dr ∧ dt
= eαα′e−βωr̂ ∧ e−αωt̂

= −e−βα′ωt̂ ∧ ωr̂

= −Ωt̂
r̂ ∧ ωr̂

(7.4)
∴ Ωt̂

r̂ = e−βα′ωt̂ + f1ω
r̂ (7.5)101



102 Chapter 7. The Shwarzshild spaetime3. To determine the f-funtions we apply the anti-symmetry
Ω µ̂ν̂ = −Ω ν̂µ̂ (7.6)This gives (the non-zero onnetion forms):

Ωr̂
φ̂

= −Ωφ̂
r̂ = −1

r
e−βωφ̂

Ωθ̂
φ̂

= −Ωφ̂

θ̂
= −1

r
cot θωφ̂

Ωt̂
r̂ = +Ωr̂

t̂
= e−βα′ωt̂

Ωr̂
θ̂

= −Ωθ̂
r̂ = −1

r
e−βωθ̂

(7.7)
4. We then proeed to determine the urvature forms by applying Cartan's2nd struture equations

Rµ̂ν̂ = dΩµ̂
ν̂ + Ωµ̂α̂ ∧ Ωα̂ν̂ (7.8)whih gives:

Rt̂r̂ = −e−2β(α′′ + α′2 − α′β′)ωt̂ ∧ ωr̂

Rt̂
θ̂

= −1

r
e−2βα′ωt̂ ∧ ωθ̂

Rt̂
φ̂

= −1

r
e−2βα′ωt̂ ∧ ωφ̂

Rr̂
θ̂

=
1

r
e−2ββ′ωr̂ ∧ ωθ̂

Rr̂
φ̂

=
1

r
e−2ββ′ωr̂ ∧ ωφ̂

Rθ̂
φ̂

=
1

r2
(1 − e−2β)ωθ̂ ∧ ωφ̂

(7.9)
5. By applying the following relation

Rµ̂ν̂ =
1

2
Rµ̂
ν̂α̂β̂

ωα̂ ∧ ωβ̂ (7.10)we �nd the omponents of Riemann's urvature tensor.6. Contration gives the omponents of Rii's urvature tensor
Rµ̂ν̂ ≡ Rα̂µ̂α̂ν̂ (7.11)7. A new ontration gives Rii's urvature salar
R ≡ Rµ̂µ̂ (7.12)



7.1 Shwarzshild's exterior solution 1038. The omponents of the Einstein tensor an then be found
Eµ̂ν̂ = Rµ̂ν̂ −

1

2
ηµ̂ν̂R , (7.13)where ηµ̂ν̂ = diag(−1, 1, 1, 1). We then have:

Et̂t̂ =
2

r
e−2ββ′ +

1

r2
(1 − e−2β)

Er̂r̂ =
2

r
e−2βα′ − 1

r2
(1 − e−2β)

Eθ̂θ̂ = Eφ̂φ̂ = e−2β(α′′ + α′2 − α′β′ +
α′

r
− β′

r
)

(7.14)We want to solve the equations Eµ̂ν̂ = 0. We get only 2 independentequations, and hoose to solve those:
Et̂t̂ = 0 and Er̂r̂ = 0 (7.15)By adding the 2 equations we get:

Et̂t̂ + Er̂r̂ = 0

⇒ 2

r
e−2β(β′ + α′) = 0

⇒ (α+ β)′ = 0 ⇒ α+ β = K1 (onst) (7.16)We now have:
ds2 = −e2αdt2 + e2βdr2 + r2dΩ2 (7.17)By hoosing a suitable oordinate time, we an ahieve

K1 = 0 ⇒ α = −βSine we have ds2 = −e2αdt2 + e−2αdr2 + r2dΩ2, this means that grr =
− 1
gtt
. We still have to solve one more equation to get the omplete solution,and hoose the equation Et̂t̂ = 0, whih gives

2

r
e−2ββ′ +

1

r2
(1 − e−2β) = 0This equation an be written:

1

r2
d

dr
[r(1 − e−2β)] = 0

∴ r(1 − e−2β) = K2 (onst) (7.18)If we hoose K2 = 0 we get β = 0 giving α = 0 and
ds2 = −dt2 + dr2 + r2dΩ2 , (7.19)



104 Chapter 7. The Shwarzshild spaetimewhih is the Minkowski spae-time desribed in spherial oordinates. Ingeneral, K2 6= 0 and 1 − e−2β = K2

r ≡ K
r , giving

e2α = e−2β = 1 − K

rand
ds2 = −(1 − K

r
)dt2 +

dr2

1 − K
r

+ r2dΩ2 (7.20)We an �nd K by going to the Newtonian limit. We alulate the gravita-tional aeleration ( that is, the aeleration of a free partile instantanously atrest ) in the limit of a weak �eld of a partile at a distane r from a spherialmass M . Newtonian:
g =

d2r

dt2
= −GM

r2
(7.21)We antiipate that r >> K. Then the proper time τ of a partile will beapproximately equal to the oordinate time, sine dτ =

√
1 − K

r dtThe aeleration of a partile in 3-spae, is given by the geodesi equation:
d2xµ

dτ2
+ Γµαβu

αuβ = 0

uα =
dxα

dτ

(7.22)For a partile instantanously at rest in a weak �eld, we have dτ ≈ dt. Using
uµ = (1, 0, 0, 0), we get:

g =
d2r

dt2
= −Γrtt (7.23)This equation gives a physial interpretation of Γrtt as the gravitational aeler-ation. This is a mathematial way to express the priniple of equivalene: Thegravitational aeleration an be transformed to 0, sine the Christo�el symbolsalways an be transformed to 0 loally, in a freely falling non-rotating frame,i.e. a loal inertial frame.

Γrtt =
1

2
grα︸︷︷︸

1
grα

(∂gαt
∂t︸ ︷︷ ︸
=0

+
∂gαt
∂t︸ ︷︷ ︸
=0

−∂gtt
∂xα

)

= − 1

2grr

∂gtt
∂r

gtt = −(1 − K

r
) , ∂gtt

∂r
= −K

r2

g = −Γrtt = − K

2r2
= −GM

r2gives K = 2GMor with : K =
2GM

c2

(7.24)



7.2 Radial free fall in Shwarzshild spaetime 105Then we have the line element of the exterior Shwarzshild metri:
ds2 = −(1 − 2GM

c2r
)c2dt2 +

dr2

1 − 2GM
c2r

+ r2dΩ2 (7.25)
RS ≡ 2GM

c2
is the Shwarzshild radius of a mass M.Weak �eld: r >> RS .For the earth: RS ∼ 0.9cmFor the sun: RS ∼ 3kmA standard lok at rest in the Shwarzshild spaetime shows a proper time τ :

dτ =

√
1 − RS

r
dt (7.26)So the oordinate loks showing t, are tiking with the same rate as the stan-dard loks far from M. Coordinate loks are running equally fast no matterwhere they are. If they hadn't, the spatial distane between simultanous eventswith given spatial oordinates, would depend on the time of the measuring ofthe distane. Then the metri would be time dependent. Time is not runningat the Shwarzshild radius.De�nition 7.1.1 (Physial singularity)A physial singularity is a point where the urvature is in�nitely large.De�nition 7.1.2 (Coordinate singularity)A oordinate singularity is a point (or a surfae) where at least one of the omponentsof the metri tensor is in�nitely large, but where the urvature of spaetime is �nite.Kretshmann's urvature salar is RµναβRµναβ . From the Shwarzshild metri,we get:

RµναβR
µναβ =

48G2M2

r8
(7.27)whih diverges only at the origin. Sine there is no physial singularity at

r = RS , the singularity here is just a oordinate singularity, and an be re-moved by a transformation to a oordinate system falling inward. (Eddington -Finkelstein oordinates, Kruskal - Szekers analytial extension of the desriptionof Shwarzshild spaetime to inlude the area inside RS).7.2 Radial free fall in Shwarzshild spaetimeThe Lagrangian funtion of a partile moving radially in Shwarzshild spae-time
L = −1

2
(1 − RS

r
)c2 ṫ2 +

1

2

ṙ2

(1 − RS

r )
, · ≡ d

dτ
(7.28)



106 Chapter 7. The Shwarzshild spaetimewhere τ is the time measured on a standard lok whih the partile is arrying.The momentum onjugate pt of the yli oordinate t, is a onstant of motion.
pt =

∂L

∂ṫ
= −(1 − RS

r
)c2ṫ (7.29)4-veloity identity: uµuµ = −c2:

−(1 − RS
r

)c2ṫ2 +
ṙ2

1 − RS

r

= −c2 (7.30)Inserting the expression for ṫ gives:
ṙ2 − p2

t

c2
= −(1 − RS

r
)c2 (7.31)Boundary onditions: the partile is falling from rest at r = r0.

pt = −(1 − RS
r0

)
c2√

1 − RS

r0︸ ︷︷ ︸
ṫ(r=r0)

= −
√

1 − RS
r0
c2 (7.32)

giving
ṙ =

dr

dτ
= −c

√
RS
r0

√
r0 − r

r
(7.33)

∫
dr√
r0−r
r

= −c
√
RS
r0
τ (7.34)Integration with τ = 0 for r = 0 gives:

τ = −r0
c

√
r0
RS

(arcsin

√
r

r0
−
√

r

r0

√
1 − r

r0
) (7.35)

τ is the proper time that the partile spends on the part of the fall whih isfrom r to r=0. The proper travelling time from the initial point r = r0 to r = 0is
|τ(r0)| = −π

2

√
r0
RS

r0
c

(7.36)If the partile falls from r0 = RS the travelling time is
|τ | =

π

2

RS
c

=
πGm

c3
(7.37)



7.3 Light ones in Shwarzshild spaetime 1077.3 Light ones in Shwarzshild spaetimeThe Shwarzshild line-element (with c = 1) is
ds2 = −(1 − RS

r
)dt2 +

dr2

(1 − RS

r )
+ r2dΩ2 (7.38)We will look at radially moving photons (ds2 = dΩ2 = 0). We then get

dr√
1 − RS

r

= ±
√

1 − RS
r
dt⇔ r

1
2 dr√
r −RS

= ±
√
r −RS

r
1

2

dt

rdr

r −RS
= ±dt

(7.39)with + for outward motion and − for inward motion. For inwardly movingphotons, integration yields
r + t+RS ln | r

RS
− 1| = k = constant (7.40)We now introdue a new time oordinate t′ suh that the equation of motionfor photons moving inwards takes the following form

r + t′ = k ⇒ dr

dt′
= −1

∴ t′ = t+RS ln | r
RS

− 1|
(7.41)The oordinate t′ is alled an ingoing Eddington-Finkelstein oordinate. Thephotons here always move with the loal veloity of light, c. For photons movingoutwards we have

r +RS ln | r
RS

− 1| = t+ k (7.42)Making use of t = t′ −RS ln | rRS
− 1| we get

r + 2RS ln | r
RS

− 1| = t′ + k

⇒ dr

dt′
+

2RS
r −RS

dr

dt′
= 1 ⇔ r +RS

r −RS

dr

dt′
= 1

⇔ dr

dt′
=
r −RS
r +RS

(7.43)Making use of ordinary Shwarzshild oordinates we would have gotten thefollowing oordinate veloities for inn- and outwardly moving photons:
dr

dt
= ±(1 − RS

r
) (7.44)whih shows us how light is deelerated in a gravitational �eld. Figure 7.1 showshow this is viewed by a non-moving observer loated far away from the mass. InFigure 7.2 we have instead used the alternative time oordinate t′. The speialtheory of relativity is valid loally, and all material partiles thus have to remaininside the light one.
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Figure 7.1: At a radius r = RS the light ones ollapse, and nothing an anylonger esape, when we use the Shwarzshild oordinate time.
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Figure 7.2: Using the ingoing Eddingto n-Finkelstein time oordinate there is noollapse of the light one at r = RS . Instead we get a ollapse at the singularityat r = 0. The angle between the left part of the light one and the t′-axis isalways 45 degrees. We also see that one the transmitter gets inside the horizonat r = RS , no partiles an esape.



7.4 Analytial extension of the Shwarzshild spaetime 1097.4 Analytial extension of the Shwarzshild spae-timeThe Shwarzshild oordinates are omoving with a stati referene frame out-side a spherial mass distribution. If the mass has ollapsed to a blak holethere exist a horizon at the Shwarzshild radius. As we have seen in setion7.3 there do not exist stati observers at �nite radii inside the horizon. Hene,the Shwarzshild oordinates are well de�ned only outside the horizon.Also the rr-omponent of the metri tensor has a oordinate singularity atthe Shwarzshild radius. The urvature of spaetime is �nite here.Kruskal and Szekeres have introdued new oordinates that are well de�nedinside as well as outside the Shwarzshild radius, and with the property thatthe metri tensor is non-singular for all r > 0.In order to arrive at these oordinates we start by onsidering a photonmoving radially inwards. From eq. (7.40) we then have
t = −r −RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣+ v (7.45)where v is a onstant along the world line of the photon. We introdue a newradial oordinate
r∗ ≡ r +RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣ (7.46)Then the equation of the worldline of the photon takes the form
t+ r∗ = v (7.47)The value of the onstant v does only depend upon the point of time when thephoton was emitted. We may therefore use v as a new time oordinate.For an outgoing photon we get in the same way
t− r∗ = u (7.48)where u is a onstant of integration, whih may be used as a new time oordinatefor outgoing photons. The oordinates u and v are the generalization of the lightone oordinates of Minkowski spaetime to the Shwarzhild spaetime.From eqs. (7.47) and (7.48) we get

dt =
1

2
(dv + du) (7.49)

dr∗ =
1

2
(dv − du) (7.50)and from eq. (7.46)

dr =

(
1 − Rs

r

)
dr∗ (7.51)Inserting these di�erentials into eq. (7.38) we arrive at a new form of theShwarzshild line-element,

ds2 = −
(

1 − Rs
r

)
du dv + r2dΩ2 (7.52)



110 Chapter 7. The Shwarzshild spaetimeThe metri is still not well behaved at the horizon. Introduing the oordinates
U = −e−

u
2Rs (7.53)

V = e
v

2Rs (7.54)gives
UV = −e

v−u
2Rs = −e

r∗

Rs = −
∣∣∣∣
Rs
r

− 1

∣∣∣∣ e
r

Rs (7.55)and
du dv = −4R 2

s

dUdV

UV
(7.56)The line-element (7.52) then takes the form

ds2 = −4R 3
s

r
e−

r
Rs dUdV + r2dΩ2 (7.57)This is the �rst form of the Kruskal-Szekeres line-element. Here is no oordinatesingularity, only a physial singularity at r = 0.We may furthermore introdue two new oordinates

T =
1

2
(V + U) =

∣∣∣∣
r

Rs
− 1

∣∣∣∣

1
2

e
r

2Rs sinh
t

2Rs
(7.58)

Z =
1

2
(V − U) =

∣∣∣∣
r

Rs
− 1

∣∣∣∣

1
2

e
r

2Rs cosh
t

2Rs
(7.59)Hene

V = T + Z (7.60)
U = T − Z (7.61)giving

dUdV = dT 2 − dZ2 (7.62)Inserting this into eq. (7.57) we arrive at the seond form of the Kruskal-Szekeresline-element
ds2 = −4R 3

s

r
e−

r
Rs

(
dT 2 − dZ2

)
+ r2dΩ2 (7.63)The inverse transformations of eqs. (7.58) and (7.59) is

∣∣∣∣
r

Rs
− 1

∣∣∣∣ e
r

Rs = Z2 − T 2 (7.64)
tanh

t

2Rs
=
T

Z
(7.65)Note from eq. (7.63) that with the Kruskal-Szekeres oordinates T and Zthe equation of the radial null geodesis has the same form as in �at spaetime

Z = ±T + onstant (7.66)



7.5 Embedding of the Shwarzshild metri 1117.5 Embedding of the Shwarzshild metriWe will now look at a stati, spherially symmetri spae. A urved simultaneityplane (dt = 0) through the equatorial plane (dθ = 0) has the line element
ds2 = grrdr

2 + r2dφ2 (7.67)with a radial oordinate suh that a irle with radius r has a irumferene oflength 2πr.We now embed this surfae in a �at 3-dimensional spae with ylinder o-ordinates (z, r, φ) and line element
ds2 = dz2 + dr2 + r2dφ2 (7.68)The surfae desribed by the line element in (7.67) has the equation z = z(r).The line element in (7.68) is therefore written as

ds2 = [1 + (
dz

dr
)2]dr2 + r2dφ2 (7.69)Demanding that (7.69) is in agreement with (7.67) we get

grr = 1 + (
dz

dr
)2 ⇔ dz

dr
= ±

√
grr − 1 (7.70)Choosing the positive solution gives

dz =
√
grr − 1dr (7.71)In the Shwarzshild spaetime we have

grr =
1

1 − RS

r

(7.72)Making use of this we �nd z:
z =

∫ r

RS

dr√
r
RS

− 1
=
√

4RS(r −RS) (7.73)This is shown in Figure 7.3.7.6 Deeleration of lightThe radial speed of light in Shwarzshild oordinates found by putting ds2 =
dΩ2 = 0 in eq. (7.38) is

c̄ = 1 − RS
r

(7.74)To measure this e�et one an look at how long it takes for light to get fromMerury to the Earth. This is illustrated in Figure 7.4. The travel time from
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Figure 7.3: Embedding of the Shwarzshild metri.
z

Sun
x

b

Mercury

z1 <0

z2 >0
r2

r1

EarthFigure 7.4: General relativity predits that light traveling from Merury to theEarth will be delayed due to the e�et of the Suns gravity �eld on the speed oflight. This e�et has been measured.
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z1 to z2 is

∆t =

∫ z2

z1

dz

1 − RS

r

≈
∫ z2

z1

(1 +
RS
r

)dz =

∫ z2

z1

(1 +
RS√
b2 + z2

)dz

= z2 + |z1| +RS ln

√
z22 + b2 + z2√
z12 + b2 − |z1|

(7.75)where RS is the Shwarzshild radius of the Sun.The deeleration is greatest when Earth and Merury (where the light isre�eted) are on nearly opposite sides of the Sun. The impat parameter b isthen small. A series expansion to the lowest order of b/z gives
∆t = z2 + |z1| +RS ln

4|z1|z2
b2

(7.76)The last term represents the extra traveling time due to the e�et of the Sunsgravity �eld on the speed of light. The journey takes longer time:
RS = the Shwarzshild radius of the Sun ∼ 3km
|z1|= the radius of Earth's orbit = 15 × 1010m
z2 = the radius of Merury's orbit = 5.8 × 1010m
b = R⊙ = 7 × 108mgive a delay of 1.1 × 10−4s. In addition to this one must also, of ourse, takeinto aount among other things the e�ets of the urvature of spaetime nearthe Sun and atmospheri e�ets on Earth.7.7 Partile trajetories in Shwarzshild 3-spae

L =
1

2
g µνẊ

µẊν

= −1

2

(
1 − Rs

r

)
ṫ2 +

1
2 ṙ

2

1 − Rs

r

+
1

2
r2θ̇2 +

1

2
r2 sin2 θφ̇2

(7.77)Sine t is a yli oordinate
−pt = −∂L

∂ṫ
=

(
1 − Rs

r

)
ṫ = constant = E (7.78)where E is the partile's energy as measured by an observer "far away" (r ≫ Rs).Also φ is a yli oordinate so that

pφ =
∂L

∂φ̇
= r2 sin2 θφ̇ = constant (7.79)where pφ is the partile's orbital angular momentum.



114 Chapter 7. The Shwarzshild spaetimeMaking use of the 4-veloity identity ~U2 = g µνẊ
µẊν = −1 we transformthe above to get

−
(

1 − Rs
r

)
ṫ2 +

ṙ2

1 − Rs

r

+ r2θ̇2 + r2 sin2 θφ̇2 = −1 (7.80)whih on substitution for ṫ = E
1−Rs

r

and φ̇ =
pφ

r2 sin2 θ
beomes

− E2

1 − Rs

r

+
ṙ2

1 − Rs

r

+ r2θ̇2 +
p2
φ

r2 sin2 θ
= −1 (7.81)Now, refering bak to the Lagrange equation

d

dτ

(
∂L

∂Ẋµ

)
− ∂L

∂Xµ
= 0 (7.82)we get, for θ

(r2θ̇)• = r2 sin θ cos θφ̇2

=
p2
φ cos θ

r2 sin3 θ

(7.83)Multiplying this by r2θ̇ we get
(r2θ̇)(r2θ̇)• =

cos θθ̇

sin3 θ
p2
φ (7.84)whih, on integration, gives

(r2θ̇)2 = k −
( pφ

sin θ

)2 (7.85)where k is the onstant of integration.Beause of the spherial geometry we are free to hoose a oordinate systemsuh that the partile moves in the equatorial plane and along the equator at agiven time t = 0. That is θ = π
2 and θ̇ = 0 at time t = 0. This determines theonstant of integration and k = p2

φ suh that
(r2θ̇)2 = p2

φ

(
1 − 1

sin2 θ

) (7.86)The RHS is negative for all θ 6= π
2 . It follows that the partile annot deviatefrom its original (equatorial) trajetory. Also, sine this partiular hoie oftrajetory was arbitrary we an onlude, quite generally, that any motion offree partiles in a spherially symmetri gravitational �eld is planar motion.



7.7 Partile trajetories in Shwarzshild 3-spae 1157.7.1 Motion in the equatorial plane
− E2

1 − Rs

r

+
ṙ2

1 − Rs

r

+
p2
φ

r2
= −1 (7.87)that is

ṙ2 = E2 −
(

1 − Rs
r

)(
1 +

p2
φ

r2

) (7.88)This orresponds to an energy equation with an e�etive potential V (r) givenby
V 2(r) =

(
1 − Rs

r

)(

1 +
p2
φ

r2

)

ṙ2 + V 2(r) = E2

⇒ V =

√

1 − rs
r

+
p2
φ

r2
−
Rsp

2
φ

r3

≅ 1 − 1

2

Rs
r

+
1

2

p2
φ

r2

(7.89)
Newtonian potential VN is de�ned by using the last expression in

VN = V − 1 ⇒ VN = −GM
r

+
p2
φ

2r2
(7.90)The possible trajetories of partiles in the Shwarzshild 3-spae are shownshematially in Figure 7.5 as funtions of position and energy of the partilein the Newtonian limit.To take into aount the relativisti e�ets the above piture must be mod-i�ed. We introdue dimensionless variables

X =
r

GM
and k =

pφ
GMm

(7.91)The potential V 2(r) now take the form
V =

(
1 − 2

X
+
k2

X2
− 2k2

X3

)1/2 (7.92)For r equal to the Shwarzshild radius (X = 2) we have
V (2) =

√
1 − 1 +

k2

4
− 2k2

8
= 0 (7.93)For k2 < 12 partiles will fall in towards r = 0.
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Figure 7.5: Newtonian partile trajetories are funtions of the position andenergy of the partile. Note the entrifugal barrier. Due to this partileswith pφ 6= 0 annot arrive at r = 0.An orbit equation is one whih onnets r and φ. So for motion in theequatorial plane for weaks �elds we have
dφ

dt
=

pφ
mr2

• ≡ d

dt
=

pφ
mr2

d

dφ
(7.94)Introduing the new radial oordinate u ≡ 1

r our equations transform to
du

dφ
= − 1

r2
dr

dφ
= − 1

r2
mr2

pφ

dr

dt
= −m

pφ
ṙ

⇒ ṙ = −pφ
m

du

dφ

(7.95)Substitution from above for ṙ in the energy equation yields the orbit equation,
(
du

dφ

)2

+ (1 − 2GMu)

(
u2 +

m2

p2
φ

)
=
E2

p2
φ

. (7.96)Di�erentiating this, we �nd
d2u

dφ2
+ u =

GMm2

p2
φ

+ 3GMu2 (7.97)The last term on the RHS is a relativisti orretion term.
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Figure 7.6: When relativisti e�ets are inluded there is no longer a limit tothe values that r an take and ollapse to a singularity is "possible". Note that
V 2 is plotted here.7.8 Classial tests of Einstein's general theory of rel-ativity7.8.1 The Hafele-Keating experimentHafele and Keating measured the di�erene in time shown on moving and sta-tionary atomi loks. This was done by �ying around the Earth in the East-West diretion omparing the time on the lok in the plane with the time on alok on the ground.The proper time interval measured on a lok moving with a veloity vi = dxi

dtin an arbitrary oordinate system with metri tensor gµν is given by
dτ = (−gµν

c2
dxµdxν)

1
2 , dx0 = cdt

= (−g00 − 2gi0
vi

c
− v2

c2
)

1
2 dt

v2 ≡ gijv
ivj

(7.98)



118 Chapter 7. The Shwarzshild spaetimeFor a diagonal metri tensor (gi0 = 0) we get
dτ = (−g00 −

v2

c2
)

1
2dt , v2 = gii(v

i)2 (7.99)We now look at an idealized situation where a plane �ies at onstant altitudeand with onstant speed along the equator.
dτ = (1 − RS

r
− v2

c2
)

1
2 dt , r = R+ h (7.100)To the lowest order in RS

r and v2

c2
we get

dτ = (1 − RS
2r

− 1

2

v2

c2
)dt (7.101)The speed of the moving lok is

v = (R+ h)Ω + u (7.102)where Ω is the angular veloity of the Earth and u is the speed of the plane. Aseries expansion and use of this value for v gives
∆τ = (1 − GM

Rc2
− 1

2

R2Ω2

c2
+
gh

c2
− 2RΩu+ u2

2c2
)∆t , g =

GM

R2
−RΩ2(7.103)

u > 0 when �ying in the diretion of the Earth's rotation, i.e. eastwards. For alok that is left on the airport (stationary, h = u = 0) we get
∆τ0 = (1 − GM

Rc2
− 1

2

R2Ω2

c2
)∆t (7.104)To the lowest order the relative di�erene in travel time is

k =
∆τ − ∆τ0

∆τ0
∼= gh

c2
− 2RΩu+ u2

2c2
(7.105)Measurements:Travel time: ∆τ0 = 1.2 × 105s (a little over 24h)Traveling eastwards: ke = −1.0 × 10−12Traveling westwards: kw = 2.1 × 10−12

(∆τ − ∆τ0)e = −1.2 × 10−7s ≈ −120ns
(∆τ − ∆τ0)w = 2.5 × 10−7s ≈ 250ns



7.8 Classial tests of Einstein's general theory of relativity 1197.8.2 Merury's perihelion preessionThe orbit equation for a planet orbiting a star of mass M is given by equation(7.97),
d2u

dφ2
+ u =

GMm2

pφ2
+ ku2 (7.106)where k = 3GM . We will be slightly more general, and allow k to be a theory-or situation dependent term. This equation has a irular solution, suh that

u0 =
GMm2

pφ2
+ ku0

2 (7.107)With a small perturbation from the irular motion u is hanged by u1, where
u1 ≪ u0. To lowest order in u1 we have

d2u1

dφ2
+ u0 + u1 =

GMm2

pφ2
+ ku0

2 + 2ku0u1 (7.108)or
d2u1

dφ2
+ u1 = 2ku0u1 ⇔ d2u1

dφ2
+ (1 − 2ku0)u1 = 0 (7.109)For ku0 ≪ 1 the equilibrium orbit is stable and we get a periodi solution:

u1 = ǫu0 cos[
√

1 − 2ku0(φ− φ0)] (7.110)where ǫ and φ0 are integration onstants. ǫ is the eentriity of the orbit. Wean hoose φ0 = 0 and then have
1

r
= u = u0 + u1 = u0[1 + ǫ cos(

√
1 − 2ku0φ) (7.111)Let f ≡

√
1 − 2ku0 ⇒

1

r
=

1

r0
(1 + ǫ cos fφ) (7.112)For f = 1 (k = 0, no relativisti term) this expression desribes a non-preessingellipti orbit (a Kepler-orbit).For f < 1 (k > 0) the ellipse is not losed. To give the same value for r ason a given starting point, φ has to inrease by 2π

f > 2π. The extra angle perrotation is 2π( 1
f − 1) = ∆φ1.

∆φ1 = 2π(
1√

1 − 2ku0
− 1) ≈ 2πku0 (7.113)Using general relativity we get for Merury

k = 3GM ⇒ ∆φ = 6πGMu0 ≈ 6πGM
GMm2

pφ2
(7.114)

∆φ = 6π(
GMm

pφ
)2per orbit. (7.115)whih in Merury's ase amounts to (∆φ)entury = 43′′



120 Chapter 7. The Shwarzshild spaetime7.8.3 De�etion of lightThe orbit equation for a free partile with mass m = 0 is
d2u

dφ2
+ u = ku2 (7.116)If light is not de�eted it will follow the straight line

cosφ =
b

r
= b u0 (7.117)where b is the impat parameter of the path. This is the horizontal dashed linein Figure 7.7. The 0'th order solution (7.117) full�lls

d2u0

dφ2
+ u0 = 0 (7.118)Hene it is a solution of (7.116) with k = 0.

photon

φ

2

Sun
M, GM<<b

b
r

∆θ

Figure 7.7: Light traveling lose to a massive objet is de�eted.The perturbed solution is
u = u0 + u1 , |u1| ≪ u0 (7.119)Inserting this into the orbit equation gives

d2u0

dφ2
+
d2u1

dφ2
+ u0 + u1 = ku 2

0 + 2ku0u1 + ku 2
1 (7.120)The �rst and third term at the left hand side anel eah other due to eq. (7.118℄and the last term at the right hand side is small to seond order in u1 and willbe negleted. Hene we get

d2u1

dφ2
+ u1 = ku 2

0 + 2ku0u1 (7.121)



7.8 Classial tests of Einstein's general theory of relativity 121The last term at the right hand side is muh smaller then the �rst, and will alsobe negleted. Inserting for u0 from (7.117) we then get
d2u1

dφ2
+ u1 =

k

b2
cos2 φ (7.122)This equation has a partiular solution of the form

u1p = A+B cos2 φ (7.123)Inserting this into (7.122) we �nd
A =

2k

3b2
, B = − k

3b2
(7.124)Hene

u1p =
k

3b2
(
2 − cos2 φ

) (7.125)giving
1

r
= u = u0 + u1 =

cosφ

b
+

k

3b2
(
2 − cos2 φ

) (7.126)The de�etion of the light ∆θ is assumed to be small. We therefore put φ =
π
2 + ∆θ

2 where ∆θ ≪ π, (see Figure 7.7). Hene
cosφ = cos

(
π

2
+

∆θ

2

)
= − sin

∆θ

2
≈ ∆θ

2
(7.127)Thus, the term cos2 φ in (7.126) an be negleted. Furthermore, the de�etionof the light is found by letting r → ∞, i. e. u→ 0. Then we get

∆θ =
4k

3b
(7.128)For motion in the Shwarzshild spaetime outside the Sun, k = 3

2RS where RSis the Shwarzshild radius of the Sun. And for light passing the surfae of theSun b = R⊙ where R⊙ is the atual radius of the Sun. The de�etion is then
∆θ = 2

RS
R⊙

= 1.75′′ (7.129)



Chapter 8Blak Holes8.1 'Surfae gravity':gravitational aeleration on thehorizon of a blak holeSurfae gravity is denoted by κ1 and is de�ned by
κ = lim

r→r+

a

ut
a =

√
aµaµ (8.1)where r+ is the horizon radius, r+ = RS for the Shwarzshild spaetime, ut isthe time omponent of the 4-veloity.The 4-veloity of a free partile instantanously at rest in the Shwarzshildspaetime:

~u = ut~et =
dt

dτ
~et =

1√−gtt
~et =

~et√
1 − RS

r

(8.2)The only omponent of the 4-aeleration di�erent from zero, is ar. The4-aeleration:~a = ∇~u~u = uµ;νuν~eµ = (uµ,ν + Γµανuα)uν~eµ.
ar = (ur,ν + Γrανu

α)uν

= ur,νu
ν

︸ ︷︷ ︸
=0

+Γrtt(u
t)2

=
Γrtt

1 − RS

r

Γrtt = −1

2

∂gtt
∂r

= −RS
2r2

ar =
RS

2r2

1 − RS

r

ar = grrar =
ar
grr

= (1 − RS
r

)ar =
RS
2r2

(8.3)
The aeleration salar: a =

√
arar =

RS
2r2q
1−RS

r

(measured with standard instru-122



8.2 Hawking radiation:radiation from a blak hole (1973) 123ments: at the horizon, time is not running).
a

ut
=
RS
2r2

(8.4)With :
a

ut
=
c2RS
2r2

=
GM

r2
(8.5)

κ = lim
r→RS

a

ut
=

1

2RS
=

1

4GM
(8.6)Inluding c the expression is κ = c2

4GM . On the horizon of a blak hole with onesolar mass, we get κ⊙ = 2 × 1013 m
s2 .8.2 Hawking radiation:radiation from a blak hole (1973)The radiation from a blak hole has a thermal spetrum. We are going to '�nd'the temperature of a Shwarzshild blak hole of mass M. The Plank spetrumhas an intensity maximum at a wavelength given by Wien's displaement law.

Λ =
N~c

kT
where k is the Boltzmann onstant, and N=0.2014For radiation emitted from a blak hole, Hawking derived the following expres-sion for the wavelength at a maximum intensity

Λ = 4πNRS =
8πNGM

c2
(8.7)Inserting Λ from Wien's displaement law, gives:

T =
~c3

8πGkM
=

~c

2πk
κ (8.8)Inserting values for ~, c and k gives:

T ≈ 2 × 10−4m

RS
K (8.9)For a blak hole with one solar mass,we have T⊙ ≈ 10−7. When the mass isdereasing beause of the radiation, the temperature is inreasing.So a blakhole has a negative heat apaity. The energy loss of a blak hole beause ofradiation, is given by the Stefan-Boltzmann law:

−dM
dt

= σT 4A

c2
(8.10)where A is the surfae of the horizon.

A = 4πR2
S =

16πG2M2

c4
(8.11)



124 Chapter 8. Blak Holesgives:
−dM
dt

=
1

15360π

~c6

G2M2
≡ Q

M2

M(t) = (M3
0 − 3Qt)1/3, M0 = M(0)

(8.12)A blak hole with mass M0 early in the history of the universe whih is aboutto explode now, had to have a starting mass
M0 = (3Qt0)

1/3 ≈ 1012kg (8.13)about the mass of a mountain. They are alled 'mini blak holes'.8.3 Rotating Blak Holes: The Kerr metriThis solution was found by Roy Kerr in 1963.A time-independent, time-orthogonal metri is known as a stati metri. Atime-independent metri is known as a stationary metri. A stationary metriallows rotation.Consider a stationary metri whih desribes a axial-symmetri spae
ds2 = −e2νdt2 + e2µdr2 + e2ψ(dφ− ωdt)2 + e2λdθ2 , (8.14)where ν, µ, ψ, λ and ω are funtions of r and θ.By solving the vauum �eld equations for this line-element, Kerr found thesolution:

e2ν =
ρ2∆

Σ2
, e2µ =

ρ2

∆
, e2ψ =

Σ2

ρ2
sin2 θ , e2λ = ρ2 ,

ω =
2Mar

Σ2
, where ρ2 = r2 + a2 cos2 θ

∆ = r2 + a2 − 2Mr

Σ2 = (r2 + a2)2 − a2∆ sin2 θ(8.15)This is the Kerr solution expressed in Boyer-Lindquist oordinates. The funtion
ω is the angular-veloity. The Kerr-solution is the metri for spae-time outsidea rotating mass-distribution. The onstant a is spin per mass-unit for the mass-distribution and M is its mass.Line-element:

ds2 = −(1 − 2Mr

ρ2
)dt2 +

ρ2

∆
dr2 − 4Mar

ρ2
sin2 θdtdφ+ ρ2dθ2

+ (r2 + a2 +
2Ma2r

ρ2
sin2 θ) sin2 θdφ2

(8.16)(Here M is a measure of the mass so that M = G · mass, ie. G = 1)



8.3 Rotating Blak Holes: The Kerr metri 125Light emitted from the surfae, r = r0, where g tt = 0 is in�nitely redshiftedfurther out. Observed from the outside time stands still.
ρ2 = 2Mr0 ⇒ r20 + a2 cos2 θ = 2Mr0

r0 = M ±
√
M2 − a2 cos2 θ

(8.17)This is the equation for the surfae whih represents in�nite redshift.8.3.1 Zero-angular-momentum-observers (ZAMO's)The Lagrange funtion of a free partile in the equator plane, θ = π
2

L = −1

2
(e2ν − ω2e2ψ)ṫ2 +

1

2
e2µṙ2 +

1

2
e2ψφ̇2 +

1

2
e2λθ̇2 − ωe2ψ ṫφ̇ (8.18)Here θ̇ = 0. The momentum pφ of the yli oordinates φ:

pφ ≡ ∂L

∂φ̇
= e2ψ(φ̇− ωṫ) , ṫ =

dt

dτ
, φ̇ =

dφ

dτ
(8.19)The angular speed of the partile relative to the oordinate system:

Ω =
dφ

dt
=
φ̇

ṫ
, φ̇ = Ωṫ

⇒ pφ = e2ψ ṫ(Ω − ω)

(8.20)
pφ is onserved during the movement.

ω = − gtφ
gφφ

=
2Mar

(r2 + a2)2 − a2(r2 + a2 − 2Mr)
,

ω → 0 when r → ∞
(8.21)When studying the Kerr metri one �nds that Kerr → Minkowski for large

r. The oordinate loks in the Kerr spae-time show the same time as thestandard-loks at rest in the asymptoti Minkowski spae-time.A ZAMO is per de�nition a partile or observer with pφ = 0. Consider afar away observer who let a stone fall with vanishing initial veloity. pφ is aonstant of motion, so the stone remains a ZAMO during the movement. Aloal referene frame whih oinides with the stone is a member of the lassof inertial frames that are at rest in the asymptoti Minkowski region. TheseZAMO nertial frames may be used to de�ne �the state of motion of the spae�.They have .
pφ = 0 ⇒ Ω =

dφ

dt
= ω (8.22)That is, the loal inertial frame obtains an angular speed relative to the BL-system (Boyer-Lindquist system).Sine the Kerr metri is time independent, the BL-system is sti�. Thedistant observer has no motion relative to the BL-system. To this observer the



126 Chapter 8. Blak HolesBL-system will appear sti� and non-rotating. The observer will observe thatthe loal inertial system of the stone obtains an angular speed a is spinper massunity and
Ma is spindφ

dt
= ω =

2Mar

(r2 + a2)2 − a2(r2 + a2 − 2Mr)
(8.23)In other words, inertial systems at �nite distanes from the rotating mass Mare dragged with it in the same diretion. This is known as inertial draggingor the Lense-Thirring e�et (about 1920).8.3.2 Does the Kerr spae have a horizon?De�nition 8.3.1 (Horizon)a surfae one an enter, but not exit.Consider a partile in an orbit with onstant r and θ. It's 4-veloity is:

~u =
d~x

dτ
=
dt

dτ

d~x

dt

= (−g tt − 2g tφΩ − g φφΩ
2)−

1
2 (1,Ω) , where Ω =

dφ

dt

(8.24)To have stationary orbits the following must be true
g φφΩ

2 + 2g tφΩ + g tt < 0 (8.25)This implies that Ω must be in the interval
Ωmin < Ω < Ωmax , (8.26)where Ωmin = ω −

√
ω2 − g tt

g
φφ
, Ωmax = ω +

√
ω2 − g tt

g
φφ

sine g tφ = −ωg φφ.Outside the surfae with in�nite redshift g tt < 0. That is Ω an be negative,zero and positive. Inside the surfae r = r0 with in�nite redshift g tt > 0. Here
Ωmin > 0 and stati partiles, Ω = 0, annot exist. This is due to the inertialdragging e�et. The surfae r = r0 is therefore known as �the stati border�.The interval of Ω, where stationary orbits are allowed, is redued to zerowhen Ωmin = Ωmax, that is ω2 =

g tt

g
φφ

⇒ g tt = ω2g φφ (equation for the horizon).For the Kerr metri we have:
g tt = ω2g φφ − e2ν (8.27)Therefore the horizon equation beomes

e2ν = 0 ⇒ ∆ = 0 ∴ r2 − 2Mr + a2 = 0 (8.28)The largest solution is r+ = M +
√
M2 − a2 and this is the equation for aspherial surfae. The stati border is r0 = M +

√
M2 − a2 cos θ.
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�ergo-sphere Kstationary pathsMstati border



horizon
r+

r0

θ = 0

θ = π
2Ω > 0

Ω = 0

2M

Figure 8.1: Stati border and horizon of a Kerr blak hole



Chapter 9Shwarzshild's Interior Solution9.1 Newtonian inompressible star
∇2φ = 4πGρ, φ = φ(r)

1

r2
d

dr
(r2

dφ

dr
) = 4πGρ

(9.1)Assuming ρ = constant.
d(r2

dφ

dr
) = 4πGρr2dr

r2
dφ

dr
=

4π

3
Gρr3 +K

= M(r) +K

(9.2)Gravitational aeleration: ~g = −∇φ = −dφ
dr~er

g =
M(r)

r2
+
K1

r2
=

4π

3
Gρr +

K1

r2
(9.3)Finite g in r = 0 demands K1 = 0.

g =
4π

3
Gρr,

dφ

dr
=

4π

3
Gρr (9.4)Assume that the massdistribution has a radius R.

φ =
2π

3
Gρr2 +K2 (9.5)Demands ontinuous potensial at r = R.

2π

3
GρR2 +K2 =

M(R)

R
= −4π

3
GρR2

⇒ K2 = −2πGρR2
(9.6)(with zero level at in�nite distane). Gives the potensial inside the mass distri-bution:

φ =
2π

3
Gρ(r2 − 3R2) (9.7)128



9.1 Newtonian inompressible star 129The star is in hydrostati equilibrium, that is, the pressure fores are in equi-librium with the gravitational fores.
4π
3

ρ

r ρ3

dm= drdA

Figure 9.1: The shell with thikness dr, is a�eted by both gravitational andpressure fores.Consider a mass element, dm = ρdV = ρdAdr, in the shell depited in �gure9.1. The pressure fore on the mass element is dF = dAdp, and the gravitationalfore is
dG = gdm =

Gm(r)

r2
dm (9.8)wherem(r) is the mass inside the shell. With onstant densitym(r) = (4π/3)ρr3.Hene

dG = gdm =
4π

3
Gρ2rdAdr (9.9)Equilibrium, dF = −dG, demands that

dp = −4π

3
Gρ2rdr (9.10)Integrating this gives

p = K3 −
2πG

3
ρ2r2 (9.11)

p(R) = 0 gives the value of the onstant of integration K3

K3 =
2πG

3
ρ2R2 (9.12)and we �nd

p(r) =
2πG

3
ρ2(R2 − r2) (9.13)No matter how massive the star is, it is possible for the pressure fores to keepthe equilibrium with gravity. In Newtonian theory, gravitational ollapse is nota neessity.



130 Chapter 9. Shwarzshild's Interior Solution9.2 The pressure ontribution to the gravitational massof a stati, spherial symmetri systemWe now give a new de�nition of the gravitational aeleration (not equivalentto (7.23))
g = − a

ut
, a =

√
aµaµ (9.14)We have the line element:

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

gtt = −e2α , grr = e2β
(9.15)gives (beause of the gravitational aeleration)

g = −eα−βα′ (9.16)From the expressions for E
t̂t̂
, E r̂r̂, E θ̂θ̂

, E
φ̂φ̂

follow (see Setion 7.1)
E t̂
t̂
− E r̂r̂ − Eθ̂

θ̂
− Eφ̂

φ̂
= −2e−2β(

2α′

r
+ α′′ + α′2 − α′β′) . (9.17)We also have

(r2eα−βα′)
′
= r2eα−β(

2α′

r
+ α′′ + α′2 − α′β′) , (9.18)whih gives

g = +
1

2r2

∫
(E t̂

t̂
− E r̂r̂ − Eθ̂

θ̂
−Eφ̂

φ̂
)r2eα+βdr . (9.19)By applying Einstein's �eld equations

Eµ̂ν̂ = 8πGT µ̂ν̂ (9.20)we get
g = +

4πG

r2

∫
(T t̂
t̂
− T r̂r̂ − T θ̂

θ̂
− T φ̂

φ̂
)r2eα+βdr . (9.21)This is the Tolman-Whittaker expression for gravitational aeleration.The orresponding Newtonian expression is :

gN = −4πG

r2

∫
ρr2dr (9.22)The relativisti gravitational mass density is therefore de�ned as

ρG = −T t̂
t̂
+ T r̂r̂ + T θ̂

θ̂
+ T φ̂

φ̂
(9.23)



9.3 The Tolman-Oppenheimer-Volkov equation 131For an isotropi �uid with
T t̂
t̂
= −ρ , T r̂r̂ = T θ̂

θ̂
= T φ̂

φ̂
= p (9.24)we get ρG = ρ+ 3p (with c = 1), whih beomes

ρG = ρ+
3p

c2
(9.25)It follows that in relativity, pressure has a gravitational e�et. Greater pressuregives inreasing gravitational attration. Strain (p < 0) dereases the gravita-tional attration.In the Newtonian limit, c→ ∞, pressure has no gravitational e�et.9.3 The Tolman-Oppenheimer-Volkov equationWith spherial symmetry the spaetime line-element may be written

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

E
t̂t̂

= 8πGT
t̂t̂
, T µ̂ν̂ = diag(−ρ, p, p, p)

(9.26)From E
t̂t̂
we get

1

r2
d

dr
[r(1 − e−2β)] = 8πGρ

r(1 − e−2β) = 2G

∫ r

0
4πρr2dr ,

(9.27)where m(r) =
∫ r
0 4πρr2dr giving

e−2β = 1 − 2Gm(r)

r
=

1

g rr
(9.28)From E r̂r̂ we have

E r̂r̂ = 8πGT r̂r̂

2

r

dα

dr
e−2β − 1

r2
(1 − e−2β) = 8πGp

(9.29)We get
2

r

dα

dr
(1 − 2Gm(r)

r
) − 2Gm(r)

r3
= 8πGp

dα

dr
= G

m(r) + 4πr3p(r)

r(r − 2Gm(r))
(9.30)



132 Chapter 9. Shwarzshild's Interior SolutionThe relativisti generalized equation for hydrostati equilibrium is T r̂ν̂;ν̂ = 0,giving
T r̂ν̂,ν̂ + Γν̂α̂ν̂T

r̂α̂ + Γr̂α̂ν̂T
α̂ν̂ = 0

T r̂ν̂,ν̂ = T r̂r̂,r̂ = p ,r̂ =
1

√
g rr

∂p

∂r

T r̂ν̂,ν̂ = e−β
dp

dr

Γν̂α̂ν̂T
r̂α̂ = Γν̂r̂ν̂p = Γt̂

r̂t̂
p+ Γα̂r̂α̂p

Γr̂α̂ν̂T
α̂ν̂ = Γr̂ν̂ν̂T

ν̂ν̂ = Γr̂
t̂t̂
ρ+ Γr̂α̂α̂p

(9.31)
In orthonormal basis we have

Ω ν̂µ̂ = −Ω µ̂ν̂ ⇒ Γ µ̂ν̂α̂ = −Γ ν̂µ̂α̂

Γα̂r̂α̂ = Γ α̂r̂α̂ = −Γ r̂α̂α̂ = −Γr̂α̂α̂
(9.32)

T r̂ν̂;ν̂ = 0 now takes the form:
e−β

dp

dr
+ Γt̂

r̂t̂
p+ Γr̂

t̂t̂
ρ = 0 (9.33)We have

Γt̂
r̂t̂

= −Γ
t̂r̂t̂

= Γ
r̂t̂t̂

= Γr̂
t̂t̂

(9.34)and we also have Γr̂
t̂t̂

= e−β dαdr , giving:
dp

dr
+ (p+ ρ)

dα

dr
= 0 (9.35)Inserting Equation 9.30 into Equation 9.35 gives

dp

dr
= −G(ρ+ p)

m(r) + 4πr3p(r)

r(r − 2Gm(r))
(9.36)This is the Tolman-Oppenheimer-Volkov (TOV) equation. The omponent gtt =

−e2α(r) may now be alulated as follows
dp

ρ+ p
= −dα , ρ = onstant

ln(ρ+ p) = K − α

ρ+ p = K1e
−α , p = K1e

−α − ρ

(9.37)Hene
eα = eα(R)(1 +

p

ρ
)−1 (9.38)where R is the radius of the mass distribution.



9.4 An exat solution for inompressible stars - Shwarzshild's interior solution1339.4 An exat solution for inompressible stars - Shwarzshild'sinterior solutionThe mass inside a radius r for an inompressiable star is
m(r) =

4

3
πρr3 (9.39)

e−2β = 1 − 2Gm(r)

r
≡ 1 − r2

a2
(9.40)where

a2 =
3

8πGρ
, m(r) =

r3

2Ga2
, rs = 2Gm =

r2

a2
r (9.41)TOV equation:

dp

dr
= −G

4
3πρr

3 + 4πr3p(r)

r(r − 2G4
3πρr

3)
(ρ+ p(r))

= −G4

3
π
ρ+ 3p(r)

1 −G8
3πρr

2
r(ρ+ p(r))

= − 1

2a2ρ

ρ+ 3p(r)

1 − r2

a2

r(ρ+ p(r))

⇒
∫ p

0

dp

(ρ+ 3p)(ρ+ p
= − 1

2a2ρ

∫ r

R

r

1 − r2

a2

dr

p+ ρ

3p + ρ
=

√
a2 −R2

a2 − r2

(9.42)
So the relativisti pressure distribution is

p(r) =

√
a2 − r2 −

√
a2 −R2

3
√
a2 −R2 −

√
a2 − r2

ρ, ∀r ≤ R (9.43)also
a2 =

3

8πGρ
,
a2

r2
=

r

rs
> 1 ⇒ a > r (9.44)To satisfy the ondition for hydrostati equilibrium we must have p > 0 or

p(0) > 0 whih gives
p(0) ≡ pc =

a−
√
a2 −R2

3
√
a2 −R2 − a

> 0 (9.45)in whih the numerator is positive so that
3
√
a2 −R2 > a

9a2 − 9R2 > a2

R <

√
8

9
a

R2 <
8

9
a =

8

9

3

8πGρ
=

1

3πGρ

(9.46)



134 Chapter 9. Shwarzshild's Interior SolutionStellar mass:
M =

4

3
πρR3 <

4

3
πρR

1

3πGρ
=

4R

9G

M <
4

9G

1√
3πGρ

(9.47)For a neutron star we an use ρ ≈ 1017 g /cm3. An upper limit on the mass isthen M < 2.5 M⊙ Substitution for p in the expression for eα gives
eα =

3

2

√
1 − Rs

R
− 1

2

√
1 − Rs

R3
r2 (9.48)The line element for the interior Shwarzshild solution is

ds2 = −
(

3

2

√
1 − Rs

R
− 1

2

√
1 − Rs

R3
r2

)2

dt2 +
dr2

1 − Rs

R3 r2
+ r2dΩ, r ≤ R(9.49)



Chapter 10Cosmology10.1 Comoving oordinate systemWe will onsider expanding homogenous and isotropi models of the universe.We introdue an expanding frame of referene with the galati lusters asreferene partiles. Then we introdue a 'omoving oordinate system' in thisframe of referene with spatial oordinates χ, θ, φ. We use time measured onstandard loks arried by the galati lusters as oordinate time (osmi time).The line element an then be written in the form:
ds2 = −dt2 + a(t)2[dχ2 + r(χ)2dΩ2] (10.1)(For standard loks at rest in the expanding system, dχ = dΩ = 0 and ds2 =

−dτ2 = −dt2). The funtion a(t) is alled the expansion fator, and t is alledosmi time.The physial distane to a galaxy with oordinate distane dχ from an ob-server at the origin, is:
dlx =

√
gχχdχ = a(t)dχ (10.2)Even if the galati lusters have no oordinate veloity, they do have a radialveloity expressed by the expansion fator.The value χ determines whih luster we are observing and a(t) how it ismoving. 4-veloity of a referene partile (galati luster):

uµ =
dxµ

dτ
=
dxµ

dt
= (1, 0, 0, 0) (10.3)This applies at an abritrary time, that is duµ

dt = 0. Geodesi equation: duµ

dt +
Γµαβu

αuβ = 0 whih is redues to: Γµtt = 0

Γµtt =
1

2
gµν(

0︷︸︸︷
gνt,t +

0︷︸︸︷
gtν,t +

0︷︸︸︷
gtt,ν ) = 0 (10.4)We have that gtt = −1. This shows that the referene partiles are freely falling.135



136 Chapter 10. Cosmology10.2 Curvature isotropy - the Robertson-Walker met-riIntrodue orthonormal form-basis:
ωt̂ = dt ωχ̂ = a(t)dχ ωθ̂ = a(t)r(χ)dθ

ωφ̂ = a(t)r(χ) sin θdφ
(10.5)Using Cartans 1st equation:

dωµ̂ = −Ωµ̂ν̂ ∧ ων̂ (10.6)to �nd the onnetion forms. Then using Cartans 2nd struture equation toalulate the urvature forms:
Rµ̂ν̂ = dΩµ̂ν̂ + Ωµ̂

λ̂
∧ Ωλ̂

ν̂ (10.7)Calulations give: (notation: · = d
dt , ′ = d

dχ )
Rt̂
î
=
ä

a
ωt̂ ∧ ωî, ωî = ωχ̂, ωθ, ωφ

Rχ̂
ĵ

=
( ȧ2

a2
− r′′

ra2

)
ωχ̂ ∧ ωĵ , ωĵ = ωθ̂, ωφ̂

Rθ̂
φ̂

=
( ȧ2

a2
+

1

r2a2
− r′2

r2a2

)
ωθ̂ ∧ ωφ̂

(10.8)The urvature of 3-spae (dt = 0) an be found by putting a = 1. That is:
3R

χ̂

ĵ
= −r

′′

r
ωχ̂ ∧ ωĵ

3R
θ̂
φ̂

=
( 1

r2
− r′2

r2
)
ωθ̂ ∧ ωφ̂

(10.9)The 3-spae is assumed to be isotropi and homogenous. This demands
−r

′′

r
=

1 − r′2

r2
= k , (10.10)where k represents the onstant urvature of the 3-spae.

∴ r′′ + kr = 0 and r′ =
√

1 − kr2 (10.11)Solutions with r(0) = 0, r′(0) = 1 :
√
−kr = sinh(

√
−kχ) (k < 0)

r = χ (k = 0) (10.12)√
kr = sin(

√
kχ) (k > 0)



10.3 Cosmi dynamis 137The solutions an be haraterized by the following 3 ases:
r = sinhχ, dr =

√
1 + r2dχ, (k = −1)

r = χ, dr = dχ, (k = 0) (10.13)
r = sinχ, dr =

√
1 − r2dχ, (k = 1)In all three ases one may write dr =

√
1 − kr2dχ, whih is just the last equationabove.We now set dχ2 = dr2

1−kr2 into the line-element :
ds2 = −dt2 + a2(t)

(
dχ2 + r2(χ)dΩ2

)

= −dt2 + a2(t)

(
dr2

1 − kr2
+ r2dΩ2

) (10.14)The �rst expression is known as the standard form of the line-element, theseond is alled the Robertson-Walker line-element.The 3-spae has onstant urvature. 3-spae is spherial for k = 1, Eulideanfor k = 0 and hyperboli for k = −1.Universe models with k = 1 are known as 'losed' and models with k = −1are known as 'open'. Models with k = 0 are alled '�at' even though thesemodels also have urved spae-time.10.3 Cosmi dynamis10.3.1 Hubbles lawThe observer is plaed in origo of the oordinate-system; χ0 = 0. The properdistane to a galaxy with radial oordinate χe is D = a(t)χe. The galaxy has aradial veloity:
v =

dD

dt
= ȧχe =

ȧ

a
D = HD whereH =

ȧ

a
(10.15)The expansion veloity v is proportional to the distane D. This is Hubbleslaw.10.3.2 Cosmologial redshift of light

∆te : the time interval in transmitter-position at transmission-time
∆t0 : the time interval in reeiver-position at reeiving-timeLight follows urves with ds2 = 0, with dθ = dφ = 0 we have :

dt = −a(t)dχ (10.16)
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-

6
t

χ

t0 + ∆t0

t0

χ0 = 0 χe

te + ∆te

teFigure 10.1: Shemati representation of osmologial redshiftIntegration from transmitter-event to reeiver-event :
∫ t0

te

dt

a(t)
= −

∫ χ0

χe

dχ = χe

∫ t0+∆t0

te+∆te

dt

a(t)
= −

∫ χ0

χe

dχ = χe ,whih gives ∫ t0+∆t0

te+∆te

dt

a
−
∫ t0

te

dt

a
= 0 (10.17)or

∫ t0+∆t0

t0

dt

a
−
∫ te+∆te

te

dt

a
= 0 (10.18)Under the integration from te to te + ∆te the expansion fator a(t) an beonsidered a onstant with value a(te) and under the integration from t0 to

t0 + ∆t0 with value a(t0), giving:
∆te
a(te)

=
∆t0
a(t0)

(10.19)



10.3 Cosmi dynamis 139
∆t0 and ∆te are intervals of the light at the reeiving and transmitting time.Sine the wavelength of the light is λ = c∆t we have:

λ0

a(t0)
=

λe
a(te)

(10.20)This an be interpreted as a �strething� of the eletromagneti waves due tothe expansion of spae. The osmologial redshift is denoted by z and is givenby:
z =

λ0 − λe
λe

=
a(t0)

a(te)
− 1 (10.21)Using a0 ≡ a(t0) we an write this as:

1 + z(t) =
a0

a
(10.22)10.3.3 Cosmi �uidsThe energy-momentum tensor for a perfet �uid (no visosity and no thermalondutivity) is

Tµν = (ρ+ p)uµuν + pgµν (10.23)In an orthonormal basis
Tµ̂ν̂ = (ρ+ p)uµ̂uν̂ + pηµ̂ν̂ (10.24)where ηµ̂ν̂ is the Minkowski metri. We onsider 3 types of osmi �uid:1. dust: p = 0,

T µ̂ν̂ = ρuµ̂uν̂ (10.25)2. radiation: p = 1
3ρ,

T µ̂ν̂ =
4

3
ρuµ̂uν̂ + pη µ̂ν̂

=
ρ

3
(4uµ̂uν̂ + η µ̂ν̂)

(10.26)The trae
T = T µ̂µ̂ =

ρ

3
(4uµ̂uµ̂ + δµµ) = 0 (10.27)3. vauum: p = −ρ,

T µ̂ν̂ = −ρη µ̂ν̂ (10.28)If vauum an be desribed as a perfet �uid we have pv = −ρv, where
ρ is the energy density. It an be related to Einstein's osmologial onstant,
Λ = 8πGρv .One has also introdued a more general type of vauum energy given bythe equation of state pφ = wρφ, where φ denotes that the vauum energy is



140 Chapter 10. Cosmologyonneted to a salar �eld φ. In a homogeneous universe the pressure and thedensity are given by
pφ =

1

2
φ̇2 − V (φ), ρφ =

1

2
φ̇2 + V (φ) (10.29)where V (φ) is the potential for the salar �eld. Then we have

w =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
(10.30)The speial ase φ̇ = 0 gives the Lorentz invariant vauum with w = −1. Themore general vauum is alled �quintessene�.10.3.4 Isotropi and homogeneous universe modelsWe will disuss isotropi and homogenous universe models with perfet �uidand a non-vanishing osmologial onstant Λ. Calulating the omponents ofthe Einstein tensor from the line-ement (10.14) we �nd in an orthonormal basis

Et̂t̂ =
3ȧ2

a2
+

3k

a2
(10.31)

Em̂m̂ = −2ä

a
− ȧ2

a2
− k

a2
. (10.32)The omponents of the energy-momentum tensor of a perfet �uid in a omovingorthonormal basis are

Tt̂t̂ = ρ, Tm̂m̂ = p. (10.33)Hene the t̂t̂ omponent of Einstein's �eld equations is
3
ȧ2 + k

a2
= 8πGρ+ Λ (10.34)

m̂m̂ omponents:
−2

ä

a
− ȧ2

a2
− k

a2
= 8πGp − Λ (10.35)where ρ is the energy density and p is the pressure. The equations with vanishingosmologial onstant are alled the Friedmann equations. Inserting eq. (10.34)into eq. (10.35) gives:

ä = −4πG

3
a(ρ+ 3p) (10.36)If we interpret ρ as the mass density and use the speed of light c, we get

ä = −4πG

3
a(ρ+ 3p/c2) (10.37)Inserting the gravitational mass density ρG from eq.(9.25) this equation takesthe form

ä = −4πG

3
aρG (10.38)



10.3 Cosmi dynamis 141Inserting p = wρc2 into (9.25) gives
ρG = (1 + 3w)ρ (10.39)whih is negative for w < −1/3, i.e. for φ̇2 < V (φ). Speial ases:

• dust: w = 0, ρG = ρ

• radiation: w = 1
3 , ρG = 2ρ

• Lorentz-invariant vauum: w = −1, ρG = −2ρIn a universe dominated by a Lorentz-invariant vauum the aeleration of theosmi expansion is
äv =

8πG

3
aρv > 0, (10.40)i.e. aelerated expansion. This means that vauum ats upon itself with repul-sive gravitation.The �eld equations an be ombined into

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρm +

Λ

3
− k

a2
(10.41)where ρm is the density of matter, Λ = 8πGρΛ where ρΛ is the vauum energywith onstant density. ρ = ρm + ρΛ is the total mass density. Then we maywrite

H2 =
8πG

3
ρ− k

a2
(10.42)The ritial density ρcr is the density in a universe with eulidean spaelikegeometry, k = 0, whih gives

ρcr =
3H2

8πG
(10.43)We introdue the relative densities

Ωm =
ρm
ρcr

, ΩΛ =
ρΛ

ρcr
(10.44)Furthermore we introdue a dimensionless parameter that desribes the urva-ture of 3-spae

Ωk = − k

a2H2
(10.45)Eq. (10.42) an now be written

Ωm + ΩΛ + Ωk = 1 (10.46)From the Bianhi identity and Einstein's �eld equations follow that the energy-momentum density tensor is ovariant divergene free. The time-omponentexpresses the equation of ontinuity and takes the form
[(ρ+ p)ut̂uν̂ ];ν̂ + (pηt̂ν̂);ν̂ = 0 (10.47)



142 Chapter 10. CosmologySine ut̂ = 1, um̂ = 0 and ηt̂t̂ = −1, ηt̂m̂ = 0, we get
(ρ+ p). + (ρ+ p)uν̂;ν̂ − ṗ = 0 (10.48)or
ρ̇+ (ρ+ p)(uν̂,ν̂ + Γν̂

t̂ν̂
) = 0 (10.49)Here uν,ν = 0 and Γt̂

t̂t̂
= 0. Calulating Γm̂

t̂m̂
for dωµ̂ = Γµ̂

α̂β̂
ωα̂ ∧ ωβ̂ we get

Γm̂
t̂m̂

= Γr̂
t̂r̂

+ Γθ̂
t̂θ̂

+ Γφ̂
t̂φ̂

= 3
ȧ

a
(10.50)Hene

ρ̇+ 3(ρ+ p)
ȧ

a
= 0 (10.51)whih may be written

(ρa3). + p(a3). = 0 (10.52)Let V = a3 be a omoving volume in the universe and U = ρV be the energyin the omoving volume. Then we may write
dU + pdV = 0 (10.53)This is the �rst law of thermodynamis for an adiabati expansion. It followsthat the universe expands adiabatially. The adiabati equation an be written
ρ̇

ρ+ p
= −3

ȧ

a
(10.54)Assuming p = wρ we get

dρ

ρ
= −3(1 + w)

da

a

ln
ρ

ρ0
= ln

(
a

a0

)−3(1+w)It follows that
ρ = ρ0

(
a

a0

)−3(1+w) (10.55)This equation tells how the density of di�erent types of matter depends on theexpansion fator
ρa3(1+w) = constant (10.56)Speial ases:

• dust: w = 0 gives ρda3 = constantThus, the mass in a omoving volume is onstant.
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• radiation: w = 1

3 gives ρra4 = constantThus, the radiation energy density dereases faster than thease with dust when the universe is expanding. The energyin a omoving volume is dereasing beause of the thermo-dynami work on the surfae. In a remote past, the densityof radiation must have exeeded the density of dust:
ρd0a

3
0 =ρda

3

ρr0a
4
0 =ρra

4

ρra
4

ρda3
=
ρr0a

4
0

ρd0a
3
0The expansion fator when ρr = ρd:

a(t1) =
ρr0
ρd0

a0

• Lorentz-invariant vauum: w = −1 gives ρΛ = constant.The vauum energy in a omoving volume is inreasing ∝ a3.10.4 Some osmologial models10.4.1 Radiation dominated modelThe energy-momentum tensor for radiation is trae free. Aording to the Ein-stein �eld equations the Einstein tensor must then be trae free:
aä+ ȧ2 + k = 0

(aȧ+ kt)· = 0
(10.57)Integration gives

aȧ+ kt = B (10.58)Another integration gives
1

2
a2 +

1

2
kt2 = Bt+C (10.59)The initial ondition a(0) = 0 gives C = 0. Hene

a =
√

2Bt− kt2 (10.60)For k = 0 we have
a =

√
2Bt , ȧ =

√
B

2t
(10.61)The expansion veloity reahes in�nity at t = 0, (limt→0 ȧ = ∞)
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Figure 10.2: In a radiation dominated universe the expansion veloity reahesin�nity at t = 0.
ρRa

4 = K , a =
√

2Bt

4ρRB
2t2 = K

(10.62)Aording to the Stefan-Boltzmann law we then have
ρR = σT 4 → 4B2σT 4t2 = K ⇒

t =
K1

T 2
⇔ T =

√
K1

t

(10.63)where T is the temperature of the bakground radiation.10.4.2 Dust dominated modelFrom the �rst of the Friedmann equations we have
ȧ2 + k =

8πG

3
ρa2 (10.64)We now introdue a time parameter η given by

dt

dη
= a(η) ⇒ d

dt
=

1

a

d

dηSo: ȧ =
da

dt
=

1

a

da

dη

(10.65)We also introdue A ≡ 8πG
3 ρ0a0

3. The �rst Friedmann equation then gives
aȧ2 + ka =

8πG

3
ρa3 =

8πG

3
ρ0a0

3 = A (10.66)
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1

a
(
da

dη
)2 = A− ka

1

a2
(
da

dη
)2 =

A

a
− k

1

a

da

dη
=

√
A

a
− k =

√
A

a

√
1 − a

A
k

(10.67)
where we hose the positive root. We now introdue u, given by a = Au2, u =√

a
A . We then get

da

dη
= 2Au

du

dη
(10.68)whih together with the equation above give

1

Au2
2Au

du

dη
=

1

u

√
1 − ku2

⇓
du√

1 − ku2
=

1

2
dη

(10.69)This equation will �rst be integrated for k < 0. Then k = −|k|, so that
∫

du√
1 + |k|u2

=
η

2
+K (10.70)or arsinh(√−ku) = η

2 +K. The ondition u(0) = 0 gives K = 0. Hene
− k

A
a = sinh2 η

2
=

1

2
(cosh η − 1) (10.71)or

a = − A

2k
(cosh η − 1) (10.72)From eqs. (10.43), (10.44) and (10.66) we have

A =
8πG

3
ρm0 = H2

0

ρm0

ρcr0
= H2

0Ωm0 (10.73)From egs. (10.45) and (10.46) we get
k = H2

0 (Ωm0 − 1) (10.74)Hene, the sale fator of the negatively urved, dust dominated universe modelis
a(η) =

1

2

Ωm0

1 − Ωm0
(cosh η − 1) (10.75)



146 Chapter 10. CosmologyInserting this into eq. (10.65) and integrating with t(0) = η(0) leads to
t(η) =

Ωm0

2H0(1 − Ωm0)3/2
(sinh η − η) (10.76)Integrating eg. (10.69) for k = 0 leads to an Einstein-deSitter universe

a(t) = (
t

t0
)

2
3 (10.77)Finally integrating eg. (10.69) for k > 0 gives, in a similar way as for k < 0

a(η) =
1

2

Ωm0

Ωm0 − 1
(1 − cos η) (10.78)

t(η) =
Ωm0

2H0(Ωm0 − 1)3/2
(η − sin η) (10.79)We see that this is a parametri representation of a yloid.In the Einstein-deSitter model the Hubble fator is

H =
ȧ

a
=

2

3

1

t
, t =

2

3

1

H
=

2

3
tH (10.80)The ritial density in the Einstein-deSitter model is given by the �rst Fried-mann equation:

H2 =
8πG

3
ρr , k = 0

⇓

ρr =
3H2

8πG
, Ω =

ρ

ρr (10.81)
Example 10.4.1 (Age-redshift relation for dust dominated universe with k = 0)

1 + z =
a0

a
⇒ a =

a0

1 + z

da = − a0

(1 + z)2
dz = − a

1 + z
dz

(10.82)Eq. (10.34) gives
( ȧ
a

)2
=

8πG

3
ρ =

8πG

3

ρ0a
3
0

a3

=
8πG

3
ρ0(1 + z)3

(10.83)
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Figure 10.3: For k = 1 the density is larger than the ritial density, and theuniverse is losed. For k = 0 we have ρ = ρr and the expansion veloity ofthe universe will approah zero as t → ∞. For k = −1 we have ρ < ρr. Theuniverse is then open, and will ontinue expanding forever.Using H2
0 = 8πG

3 ρ0 gives ȧ
a = H0(1 + z)

3
2 . From ȧ = da

dt we get:
dt =

da

ȧ
=
da

a ȧa
= − dz

H0(1 + z)
5
2

(10.84)Integration gives the age of the universe:
t0 = − 1

H0

∫ 0

∞

dz

(1 + z)
5
2

=
2

3

1

H0

[ 1

(1 + z)
3
2

]0
∞ =

2

3
tH (10.85)where the Hubble-time tH ≡ 1

H0
is the age of the universe if the expansion rate hadbeen onstant. The 'Look-bak-time' to a soure with redshift z is:

∆t = tH

∫ z

0

dz

(1 + z)
5

2

=
2

3
tH
[
1 − 1

(1 + z)
3

2

] (10.86)
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Figure 10.4: tH is the age of the universe if the expansion had been onstant,BUT:The exp.rate was faster loser to the Big Bang, so the age is lower.
∆t = t0[1 − 1

(1 + z)3/2
] (10.87)Hene, the redshift of an objet with lookbak time ∆t is

z =
1

(1 − ∆t
t0

)2/3
− 1 (10.88)

10.4.3 Transition from radiation- to matter dominated universeWe onsider the early universe �lled with radiation and matter, but where va-uum energy am be negleted. The universe is assumed to be �at. Then Fried-mann's 1. equation takes the form
ȧ2 =

8πG

3
(ρM + ρR) a2 (10.89)For matter,

ρMa
3 = ρM0 (10.90)
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ρRa

4 = ρR0 (10.91)Hene
a2ȧ2 =

8πG

3
(ρM0 a+ ρR0) (10.92)The present values of the ritial density and the density parameters are

ρcr0 =
3H2

0

8πG
(10.93)

ΩM0 =
ρM0

ρcr0
(10.94)

ΩR0 =
ρR0

ρcr0
(10.95)giving

aȧ = H0 (ΩM0 a+ ΩR0)
1/2 (10.96)Integration with a(0) = 0 leads to

H0t =
4

3

Ω
3/2
R0

Ω2
M0

+
2

3

(ΩM0 a− 2ΩR0) (ΩM0 a+ ΩR0)
1/2

Ω2
M0

(10.97)From eqs. (10.90) and (10.91) follows that at the transition time teq when
ρM = ρR, the sale fator has the value

aeq =
ρR0

ρM0
=

ΩR0

ΩM0
(10.98)Inserting this into eq. (10.97) gives

teq =
2

3

(
2 −

√
2
) Ω

3/2
R0

Ω2
M0

tH (10.99)The mirowave bakground radiation has a temperature 2,73 K orrespondingto a density parameter ΩR0 = 8, 4 · 10−5. In a �at universe without vauumenergy ΩM0 = 1 − ΩR0. From the value of H0 as determined by measurementswe have tH ≈ 14 · 109 years. This leads to teq = 47 · 103 years.10.4.4 Friedmann-Lemaître modelThe dynamis of galaxies and lusters of galaxies has made it lear that farstronger gravitational �elds are needed to explain the observed motions thanthose produed by visible matter (MGaugh 2001). At the same time it hasbeome lear that the density of this dark matter is only about 30% of the ritialdensity, although it is a predition by the usual versions of the in�ationaryuniverse models that the density ought to be equal to the ritial density (Linde2001). Also the reent observations of the temperature �utuations of the osmimirowave radiation have shown that spae is either �at or very lose to �at(Bernadis et.al 2001, Stompor et al. 2001, Pryke et al. 2001). The energy that



150 Chapter 10. Cosmology�lls up to the ritial density must be evenly distributed in order not to a�etthe dynamis of the galaxies and the lusters.Furthermore, about two years ago observations of supernovae of type Ia withhigh osmi red shifts indiated that the expansion of the universe is aelerating(Riess et al. 1998, Perlmutter et al. 1999). This was explained as a result ofrepulsive gravitation due to some sort of vauum energy. Thereby the missingenergy needed to make spae �at, was identi�ed as vauum energy. Hene, itseems that we live in a �at universe with vauum energy having a density around70% of the ritial density and with matter having a density around 30% of theritial density.Until the disovery of the aelerated expansion of the universe the standardmodel of the universe was assumed to be the Einstein-DeSitter model, whih isa �at universe model dominated by old matter. This universe model is thor-oughly presented in nearly every text book on general relativity and osmology.Now it seems that we must replae this model with a new "standard model"ontaining both dark matter and vauum energy.Reently several types of vauum energy or so alled quintessene energyhave been disussed (Zlatev, Wang and Steinhardt 1999, Carroll 1998). How-ever, the most simple type of vauum energy is the Lorentz invariant vauumenergy (LIVE), whih has onstant energy density during the expansion of theuniverse (Zeldovih 1968, Grøn 1986). This type of energy an be mathemati-ally represented by inluding a osmologial onstant in Einstein's gravitational�eld equations. The �at universe model with old dark matter and this type ofvauum energy is the Friedmann-Lemaître model.The �eld equations for the �at Friedmann-Lemaître is found by putting
k = p = 0 in equation (10.35). This gives

2
ä

a
+
ȧ2

a2
= Λ (10.100)Integration leads to

aȧ2 =
Λ

3
a3 +K (10.101)where K is a onstant of integration. Sine the amount of matter in a volumeomoving with the osmi expansion is onstant, ρMa3 = ρM0a

3
0, where theindex 0 refers to measured values at the present time. Normalizing the expansionfator so that a0 = 1 and omparing eqs.(10.42) and(10.101) then gives K =

(8πG/3)ρM0. Introduing a new variable x by a3 = x2 and integrating onemore with the initial ondition a(0) = 0 we obtain
a3 =

3K

Λ
sinh2

(
t

tΛ

)
, tΛ =

2√
3Λ

(10.102)The vauum energy has a onstant density ρΛ given by
Λ = 8πGρΛ (10.103)The ritial density, whih is the density making the 3-spae of the universe �at,is
ρcr =

3H2

8πG
(10.104)



10.4 Some osmologial models 151The relative density, i.e. the density measured in units of the ritial density, ofthe matter and the vauum energy, are respetively
ΩM =

ρ

ρcr
=

8πGρM
3H2

(10.105)
ΩΛ =

ρΛ

ρcr
=

Λ

3H2
(10.106)Sine the present universe model has �at spae, the total density is equal tothe ritial density, i.e. ΩM + ΩΛ = 1. Eq. (10.101) with the normalization

a(t0) = 1, where t0 is the present age of the universe, gives 3H2
0 = 3K + Λ.Eq. (10.34) with k = 0 gives 8πGρ0 = 3H2

0 − Λ. Hene K = 8πGρ0/3 and
3K
Λ = 8πGρ0

Λ = ρ0
ρΛ

= ΩM0

ΩΛ0
. In terms of the values of the relative densities at thepresent time the expression for the expansion fator then takes the form

a = A1/3 sinh2/3

(
t

tΛ

)
, A =

ΩM0

ΩΛ0
=

1 − ΩΛ0

ΩΛ0
(10.107)Using the identity sinh(x/2) =

√
(coshx− 1)/2 this expression may be written

a3 =
A

2

[
cosh

(
2t

tΛ

)
− 1

] (10.108)The age t0 of the universe is found from a(t0) = 1, whih by use of the formula
arc tanhx = arc sinh(x/

√
1 − x2), leads to the expression
t0 = tΛarc tanh

√
ΩΛ0 (10.109)Inserting typial values t0 = 15 · 109years, ΩΛ0 = 0.7 we get A = 0.43, tΛ =

12·109years. With these values the expansion fator is a = 0.75 sinh2/3(1.2t/t0).This funtion is plotted in �g. 10.5. The Hubble parameter as a funtion oftime is
H = (2/3tΛ) coth(t/tΛ) (10.110)Inserting t0 = 1.2tΛ we get Ht0 = 0.8 coth(1.2t/t0), whih is plotted in �g. 10.6The Hubble parameter dereases all the time and approahes a onstant value

H∞ = 2/3tΛ in the in�nite future. The present value of the Hubble parameteris
H0 =

2

3tΛ
√

ΩΛ0
(10.111)The orresponding Hubble age is tH0 = (3/2)tΛ

√
ΩΛ0. Inserting our numerialvalues gives H0 = 64km/seMp−1 and tH0 = 15.7 · 109years. In this universemodel the age of the universe is nearly as large as the Hubble age, while inthe Einstein-DeSitter model the orresponding age is t0ED = (2/3)tH0 = 10.5 ·

109years. The reason for this di�erene is that in the Einstein-DeSitter modelthe expansion is deelerated all the time, while in the Friedmann-Lemaître modelthe repulsive gravitation due to the vauum energy have made the expansionaelerate lately (see below). Hene, for a given value of the Hubble parameter
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Figure 10.5: The expansion fator as funtion of osmi time in units of the ageof the universe.

Figure 10.6: The Hubble parameter as funtion of osmi time.



10.4 Some osmologial models 153the previous veloity was larger in the Einstein-DeSitter model than in theFriedmann-Lemaître model.The ratio of the age of the universe and its Hubble age depends upon thepresent relative density of the vauum energy as follows,
t0
tH0

= H0t0 =
2

3

arc tanh
√

ΩΛ0√
ΩΛ0

(10.112)This funtion is depited graphially in �g. 10.7. The age of the universe

Figure 10.7: The ratio of the age of the universe and the Hubble age as funtionof the present relative density of the vauum energy.inreases with inreasing density of vauum energy. In the limit that the densityof the vauum approahes the ritial density, there is no dark matter, andthe universe model approahes the DeSitter model with exponential expansionand no Big Bang. This model behaves in the same way as the Steady Stateosmologial model and is in�nitely old.A dimensioness quantity representing the rate of hange of the osmi ex-pansion veloity is the deeleration parameter, whih is de�ned as q = −ä/aH2.For the present universe model the deeleration parameter as a funtion of timeis
q =

1

2
[1 − 3 tanh2(t/tΛ)] (10.113)whih is shown graphially in �g. 10.8 The in�etion point of time t1 whendeeleration turned into aeleration is given by q = 0. This leads to

t1 = tΛarc tanh(1/
√

3) (10.114)
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Figure 10.8: The deeleration parameter as funtion of osmi time.or expressed in terms of the age of the universe
t1 =

arc tanh(1/
√

3)

arc tanh
√

ΩΛ0
t0 (10.115)The orresponding osmi red shift is

z(t1) =
a0

a(t1)
− 1 =

(
2ΩΛ0

1 − ΩΛ0

)1/3

− 1 (10.116)Inserting ΩΛ0 = 0.7 gives t1 = 0.54t0 and z(t1 = 0.67.The results of analysing the observations of supernova SN 1997 at z = 1.7,orresponding to an emission time te = 0.30t0 = 4.5 · 109years, have providedevidene that the universe was deelerated at that time (Riess n.d.). M.Turnerand A.G.Riess (Turner and Riess 2001) have reently argued that the othersupernova data favour a transition from deeleration to aeleration for a redshift around z = 0.5.Note that the expansion veloity given by Hubble's law, v = Hd, alwaysdereases as seen from �g. 10.6. This is the veloity away from the Earth of theosmi �uid at a �xed physial distane d from the Earth. The quantity ȧ on theother hand, is the veloity of a �xed �uid partile omoving with the expansionof the universe. If suh a partile aelerates, the expansion of the universe issaid to aelerate. While Ḣ tells how fast the expansion veloity hanges at a�xed distane from the Earth, the quantity ä represents the aeleration of afree partile omoving with the expanding universe. The onnetion betweenthese two quantities are ä = a(Ḣ +H2).



10.4 Some osmologial models 155The ratio of the in�etion point of time and the age of the universe, as givenin eq.(10.115), is depited graphially as funtion of the present relative densityof vauum energy in �g. 10.9 The turnover point of time happens earlier the

Figure 10.9: The ratio of the point of time when osmi deelerations turn overto aeleration to the age of the universe.greater the vauum density is. The hange from deeleration to aelerationwould happen at the present time if ΩΛ0 = 1/3.The red shift of the in�etion point given in eq.(10.116) as a funtion ofvauum energy density, is plotted in �g. 10.10 Note that the red shift of futurepoints of time is negative, sine then a > a0. If ΩΛ0 < 1/3 the transition toaeleration will happen in the future.The ritial density is
ρcr = ρΛ tanh−2(t/tΛ) (10.117)This is plotted in �g. 10.11. The ritial density dereases with time.Eq. (10.116) shows that the relative density of the vauum energy is

ΩΛ = tanh2(t/tΛ) (10.118)whih is plotted in �g. 10.12. The density of the vauum energy approahesthe ritial density. Sine the density of the vauum energy is onstant, this isbetter expressed by saying that the ritial density approahes the density ofthe vauum energy. Furthermore, sine the total energy density is equal to theritial density all the time, this also means that the density of matter dereasesfaster than the ritial density. The density of matter as funtion of time is
ρM = ρΛ sinh−2(t/tΛ) (10.119)
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Figure 10.10: The osmi red shift of light emitted at the turnover time fromdeeleration to aeleration as funtion of the present relative density of vauumenergy.

Figure 10.11: The ritial density in units of the onstant density of the vauumenergy as funtion of time.
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Figure 10.12: The relative density of the vauum energy density as funtion oftime.

Figure 10.13: The density of matter in units of the density of vauum energy asfuntion of time.



158 Chapter 10. Cosmologywhih is shown graphially in �g. 10.13 The relative density of matter as fun-tion of time is
ΩM = cosh−2(t/tΛ) (10.120)whih is depited in �g. 10.14 Adding the relative densities of �g. 10.13 and

Figure 10.14: The relative density of matter as funtion of time.�g. 10.14 or the expressions (10.117) and (10.119) we get the total relativedensity ΩTOT = ΩM + ΩΛ = 1.The universe beame vauum dominated at a point of time t2 when ρΛ(t2) =
ρM (t2). From eq.(10.119) follows that this point of time is given by sinh(t2/tΛ) =
1. Aording to eq.(10.109) we get

t2 =
arc sinh(1)

arc tanh(
√

ΩΛ0)
t0 (10.121)From eq.(10.107) follows that the orresponding red shift is

z(t2) = A−1/3 − 1 (10.122)Inserting ΩΛ0 = 0.7 gives t2 = 0.73t0 and z(t2) = 0.32. The transition toaelerated expansion happens before the universe beomes vauum dominated.Note from eqs.(10.113) and (10.118) that in the ase of the �at Friedmann-Lemaître universe model, the deeleration parameter may be expressed in termsof the relative density of vauum only, q = (1/2)(1 − 3ΩΛ). The supernova Iaobservations have shown that the expansion is now aelerating. Hene if theuniverse is �at, this alone means that ΩΛ0 > 1/3.As mentioned above, many di�erent observations indiate that we live in auniverse with ritial density, where old matter ontributes with about 30%



10.4 Some osmologial models 159of the density and vauum energy with about 70%. Suh a universe is welldesribed by the Friedmann-Lemaître universe model that have been presentedabove.However, this model is not quite without problems in explaining the observedproperties of the universe. In partiular there is now muh researh direted atsolving the so alled oinidene problem. As we have seen, the density of thevauum energy is onstant during the expansion, while the density of the mat-ter dereases inversely proportional to a volume omoving with the expandingmatter. Yet, one observes that the density of matter and the density of thevauum energy are of the same order of magnitude at the present time. Thisseems to be a strange and unexplained oinidene in the model. Also just atthe present time the ritial density is approahing the density of the vauumenergy. At earlier times the relative density was lose to zero, and now it hangesapproahing the onstant value 1 in the future. S. M. Carroll (Carroll 2001) hasillustrated this aspet of the oinidene problem by plotting Ω̇Λ as a funtionof ln(t/t0). Di�erentiating the expression (10.118) we get
tΛ
2

dΩΛ

dt
=

sinh(t/tΛ)

cosh3(t/tΛ)
(10.123)whih is plotted in �g. 10.15

Figure 10.15: Rate of hange of ΩΛ as funtion of ln( tt0 ). The value ln( tt0 ) = −40orresponds to the osmi point of time t0 ∼ 1s.Putting Ω̈Λ = 0 we �nd that the rate of hange of ΩΛ was maximal atthe point of time t1 when the deeleration of the osmi expansion turned intoaeleration. There is now a great ativity in order to try to explain these oini-denes by introduing more general forms of vauum energy alled quintessene,



160 Chapter 10. Cosmologyand with a density determined dynamially by the evolution of a salar �eld(Turner 2001).However, the simplest type of vauum energy is the LIVE. One may hopethat a future theory of quantum gravity may settle the matter and let us un-derstand the vauum energy. In the meantime we an learn muh about thedynamis of a vauum dominated universe by studying simple and beautifuluniverse models suh as the Friedmann-Lemaître model.10.5 In�ationary Cosmology10.5.1 Problems with the Big Bang ModelsThe Horizon ProblemThe Cosmi Mirowave Bakground (CMB) radiation from two points A and Bin opposite diretions has the same temperature. This means that it has beenradiated by soures of the same temperature in these points. Thus, the universemust have been in thermi equilibrium at the deoupling time, td = 3 ·105years.This implies that points A and B, �at opposite sides of the universe�, had beenin ausal ontat already at that time. I.e., a light signal must have had time tomove from A to B during the time from t = 0 to t = 3 · 105 years. The points
A and B must have been within eah other's horizons at the deoupling.Consider a photon moving radially in spae desibed by the Robertson-Walker metri (10.14) with k = 0. Light follows a null geodesi urve, i.e. theurve is de�ned by ds2 = 0. We get

dr =
dt

a(t)
. (10.124)The oordinate distane the photon has moved during the time t is

∆r =

∫ t

0

dt

a(t)
. (10.125)The physial distane the light has moved at the time t is alled the horizondistane, and is

lh = a(t)∆r = a(t)

∫ t

0

dt

a(t)
. (10.126)To �nd a quantitative expression for the �horizon problem�, we may onsidera model with ritial mass density (Eulidian spaelike geometry.) Using p = wρand Ω = 1, integration of equation (10.36) gives

a ∝ t
2

3+3w . (10.127)Inserting this into the expression for lh and integrating gives
lh =

3w + 3

3w + 1
t. (10.128)



10.5 In�ationary Cosmology 161Let us all the volume inside the horizon the �horizon volume� and denote it by
VH . From equation (10.128) follows that VH ∝ t3. At the deoupling time, thehorizon volume may therefore be written

(VH)d =

(
td
t0

)3

V0, (10.129)where V0 is the size of the present horizon volume. Events within this volumeare ausally onneted, and a volume of this size may be in thermal equilibriumat the deoupling time.Let (V0)d be the size, at the deoupling, of the part of the universe thatorresponds to the present horizon volume, i.e. the observable universe. For ourEulidean universe, the equation (10.127) holds, giving
(V0)d =

a3(td)

a3(t0)
V0 =

(
td
t0

) 2

w+1

V0. (10.130)From equations (10.129) and (10.130), we get
(V0)d
(VH)d

=

(
td
t0

) 3w+1

w+1

. (10.131)Using that td = 10−4t0 and inserting w = 0 for dust, we �nd V0)d

(VH)d
= 104.Thus, there was room for 104 ausally onneted areas at the deoupling timewithin what presently represents our observable universe. Points at oppositesides of our observable universe were therefore not ausally onneted at thedeoupling, aording to the Friedmann models of the universe. These modelsan therefore not explain that the temperature of the radiation from suh pointsis the same.The Flatness ProblemAording to eq. (10.42), the total mass parameter Ω = ρ

ρcr
is given by

Ω − 1 =
k

ȧ2
. (10.132)By using the expansion fator (10.127) for a universe near ritial massdensity, we get

Ω − 1

Ω0 − 1
=

(
t

t0

)2( 3w+1

3w+3)
. (10.133)For a radiation dominated universe, we get

Ω − 1

Ω0 − 1
=

t

t0
. (10.134)Measurements indiate that Ω0 − 1 is of order of magnitude 1. The age ofthe universe is about t0 = 1017s. When we stipulate initial onditions for the



162 Chapter 10. Cosmologyuniverse, it is natural to onsider the Plank time, tP = 10−43s, sine this isthe limit to the validity of general relativity. At earlier time, quantum e�etswill be important, and one an not give a reliable desription without usingquantum gravitation. The stipulated initial ondition for the mass parameterthen beomes that Ω− 1 is of order 10−60 at the Plank time. Suh an extreme�ne tuning of the initial value of the universe's mass density an not be explainedwithin standard Big Bang osmology.Other ProblemsThe Friedman models an not explain questions about why the universe is nearlyhomogeneous and has an isotropi expansion, nor say anything about why theuniverse is expanding.10.5.2 Cosmi In�ationSpontaneous Symmetry Breaking and the Higgs MehanismThe partiles responsible for the eletroweak fore, W± and Z0 are massive(ausing the weak fore to only have short distane e�ets). This was originallya problem for the quantum �eld theory desribing this fore, sine it made itdi�ult to reate a renormalisable theory1. This was solved by Higgs and Kibblein 1964 by introduing the so-alled Higgs mehanism.The main idea is that the massive bosons W± and Z0 are given a mass byinterating with a Higgs �eld φ. The e�et auses the mass of the partiles to beproportional to the value of the Higgs �eld in vauum. It is therefore neessaryfor the mehanism that the Higgs �eld has a value di�erent from zero in thevauum (the vauum expetation value must be non-zero).Let us see how the Higgs �eld an get a non-zero vauum expetation value.The important thing for our purpose is that the potential for the Higgs �eldmay be temperature dependent. Let us assume that the potential for the Higgs�eld is desribed by the funtion
V (φ) =

1

2
µ2φ2 +

1

4
λφ4, (10.135)where the sign of µ2 depends on whether the temperature is above or below aritial temperature Tc. This sign has an important onsequene for the shapeof the potential V . The potential is shown in �gure 10.16 for two di�erenttemperatures. For T > Tc, µ2 > 0, and the shape is like in �g. 10.16(a), andthere is a stable minimum for φ = 0. However, for T < Tc, µ2 < 0, and theshape is like in �g. 10.16(b). In this ase the potential has stable minima for

φ = ±φ0 = ± |µ|√
λ
and an unstable maximum at φ = 0. For both ases, thepotential V (φ) is invariant under the symmetry transformation φ 7→ −φ (i.e.

V (φ) = V (−φ)).1The problem is that the Lagrangian for the gauge bosons an not inlude terms like m2W 2
µ ,whih are not gauge invariant



10.5 In�ationary Cosmology 163The �real� vauum state of the system is at a stable minimum of the poten-tial. For T > Tc, the minimum is in the �symmetri� state φ = 0. On the otherhand, for T < Tc this state is unstable. It is therefore alled a �false vauum�.The system will move into one of the stable minimas at φ = ±φ0. When thesystem is in one of these states, it is no longer symmetri under the hange ofsign of φ. Suh a symmetry, whih is not re�eted in the vauum state, is alledspontaneously broken. Note that from �gure 10.16(b) we see that the energy ofthe false vauum is larger than for the real vauum.

Figure 10.16: The shape of the potential depends on the sign of µ2.(a): Higher temperature than the ritial, with µ2 > 0.(b): Lower temperature than the ritial, with µ2 < 0.The entral idea, whih originated the �in�ationary osmology�, was to takeinto onsideration the onsequenes of the uni�ed quantum �eld theories, thegauge theories, at the onstrution of relativisti models for the early universe.Aording to the Friedmann models, the temperature was extremely high in theearly history of the universe. If one onsiders Higgs �elds assoiated with GUTmodels (grand uni�ed theories), one �nds a ritial temperature Tc orrespond-ing to the energy kTc = 1014GeV , where k is Boltzmann's onstant. Beforethe universe was about t1 = 10−35s old, the temperature was larger than this.Thus, the Higgs �eld was in the symmetri ground state. Aording to most ofthe in�ation models, the universe was dominated by radiation at this time.When the temperature dereases, the Higgs potential hanges. This ouldhappen as shown in �gure 10.17. Here, there is a potential barrier at the ritaltemperature, whih means that there an not be a lassial phase transition.The transition to the stable minimum must happen by quantum tunneling.This is alled a �rst order phase transition.Guth's In�ation ModelAlan Guth's original in�ation model (Guth 1981) was based on a �rst orderphase transition.Aording to most of the in�ationary models, the universe was dominated
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Figure 10.17: The temperature dependene of a Higgs potential with a �rstorder phase transition.by radiation during the time before 10−35s. The universe was then expanding sofast that there was no ausal ontat between the di�erent parts of the universethat beame our observable universe. Probably, the universe was rather homo-geneous, with onsiderable spaelike variations in temperature. There was alsoareas of false vauum, with energy densities harateristi of the GUT energysale, whih also ontrols it's ritial temperature. While the energy densityof the radiation dereased quikly, as a−4, the energy density of vauum wasonstant. At the time t = 10−35s, the energy density of the radiation beameless than that of the vauum.At the same time, the potential started to hange, suh that the vauum wentfrom being stable to being an unstable false vauum. Thus, there was a �rstorder phase transition to the real vauum. Beause of the inhomogeneouty ofthe universe's initial ondition, this happened with di�erent speed at di�eringplaes. The potential barrier slowed down the proess, whih happened bytunneling, and the universe was at several plaes onsiderably underooled, andthere appeared �bubbles� dominated by the energy of the false vauum. Theseareas ated on themselves with repulsive gravity.By integrating the equation of motion for the expansion fator in suh avauum dominated bubble, one gets
a = eHt, H =

√
8πGρc

3
. (10.136)By inserting the GUT value above, we get H = 6.6 · 1034s−1, i.e. H−1 =

1.5 · 10−35s. With referene to �eld theoretial works by Sindney Coleman andothers, Guth argumented that a realisti duration of the nuleation proess hap-pening during the phase transition is 10−33s. During this time, the expansion



10.5 In�ationary Cosmology 165fator inreases by a fator of 1028. This vauum dominated epoh is alled thein�ation era.Let us look loser at what happens with the energy of the universe in theourse of it's development, aording to the in�ationary models. To understandthis we �rst have to onsider what happens at the end of the in�ationary era.When the Higgs �eld reahes the minimum orresponding to the real vauum,it starts to osillate. Aording to the quantum desription of the osillating�eld, the energy of the false vauum is onverted into radiation and partiles. Inthis way the equation of state for the energy dominating the development of theexpansion fator hanges from p = −ρ, harateristi for vauum, to p = 1
3ρ,harateristi of radiation.The energy density and the temperature of the radiation is then inreasedenourmously. Before and after this short period around the time t = 10−33s theradiation energy inreases adiabatially, suh that ρa4 = onstant. Aording toStefan-Boltzmanns law of radiadion, ρ ∝ T 4. Therefore, aT = onstant duringadiabati expansion. This means that during the in�ationary era, while theexpansion fator inreases exponentially, the energy density and temperatureof radiation dereases exponentially. At the end of the in�ationary era, theradiation is reheated so that it returns to the energy it had when the in�ationaryera started.It may be interesting to note that the Newtonian theory of gravitation doesnot allow an in�ationary era, sine stress has no gravitational e�et aordingto it.The In�ation Models' Answers to the Problems of the FriedmannModelsThe horizon problem will here be investigated in the light of this model. Theproblem was that there was room for about 10000 ausally onneted areasinside the area spanned by our presently observable universe at the time. Let usalulate the horizon radius lh and the radius a of the region presently withinthe horizon, lh = 15 · 109ly = 1.5 · 1026cm, at the time t1 = 10−35s when thein�ation started. From equation (10.128) for the radiation dominated periodbefore the in�atinary era, one gets

lh = 2t1 = 6 · 10−25cm. (10.137)The radius, at time t1, of the region orresponding to our observable universe,is found by using that a ∝ eHt during the in�ation era from t1 = 10−35s to
t2 = 10−33s, a ∝ t

1
2 in the radiation dominated period from t2 to t3 = 1011s,and a ∝ t

2
3 in the matter dominated period from t3 until now, t0 = 1017s. Thisgives
a1 =

eHt1

eHt2

(
t2
t3

) 1

2
(
t3
t0

) 2

3

lh(t0) = 1.5 · 10−28cm. (10.138)We see that at the beginning of the in�ationary era the horizon radius,
lh, was larger than the radius a of the region orresponding to our observable



166 Chapter 10. Cosmologyuniverse. The whole of this region was then ausally onneted, and thermiequilibrium was established. This equilibrium has been kept sine then, andexplains the observed isotropy of the osmi bakground radiation.We will now onsider the �atness problem. This problem was the neessity,in the Friedmann models, of �ne tuning the initial density in order to obtainthe loseness of the observed mass density to the ritial density. Again, thein�ationary models give another result. Inserting the expansion fator (10.136)into equation (10.132), we get
Ω − 1 =

k

H2
e−2Ht, (10.139)where H is onstant and given in eq. (10.136). The ratio between Ω − 1 at theend of and the beginning of the in�ationary era beomes

Ω2 − 1

Ω1 − 1
= e−2H(t2−t1) = 10−56. (10.140)Contrary to in the Friedmann models, where the mass density moves awayfrom the ritial density as time is inreasing, the density approahes the ritialdensity exponentially during the in�ationary era. Within a large range of initialonditions, this means that aording to the in�ation models the universe shouldstill have almost ritial mass density.
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