Real Time and Emb

Scheduling of Ree

1147

Ly
1
7111l
1l
1
1111
111s

1t

Copyright 1995-1999 Wind River Systems, Inc.

/.
11

s
171,
1,

/7,

/7

/

i
LA
L
Il
UL
1"y 1l
1
L
e
17
11
1
1
1777
177

1

1t
1
/

115 i
15 141
15141
ol
e
e 1
s
11
1
11
1247
117

FYS

G
1

it

11

LA

117 1
117 11887
LR
LI
LR

117
1ir
e
i1
117
17
77

1°s
s
/"

/

t
/

I/

/"

11l

T 0ORMNWGADO

Development System

Host Based Shell

Version 2.0.2

T.B. Skaali, Department of Physics, University of Oslo)

UNIVERSITY
OF OSLO

_,-' %% UNIVERSITY
O ; or osLo

Some definitions to start Wlth”\

« The scheduler is the component of the kernel that selects
which process to run next. The scheduler (or process
scheduler, as it is sometimes called) can be viewed as the code
that divides the finite resource of processor time between the
runnable processes on a system.

e Multitasking operating systems come in two flavors:
cooperative multitasking and preemptive multitasking.
Linux, like all Unix variants and most modern operating
systems, provides preemptive multitasking. In preemptive
multitasking, the scheduler decides when a process is to cease
running and a new process is to resume running. The act of
involuntarily suspending a running process is called
preemption. The time a process runs before it is preempted is
predetermined, and is called the timeslice of the process. The
timeslice, in effect, gives each process a slice of the
processor's time. Managing the timeslice enables the scheduler
to make global scheduling decisions for the system. It also
prevents any one process from monopolizing the system

— Conversely, in cooperative multitasking, a process does not stop running
until it voluntary decides to do so. This approach has many shortcomings

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

£ 4#7% UNIVERSITY
.l oF osLo

The challenge of scheduling in Real-Time systems

« Scheduling is the problem of assigning a set of
processes (tasks) to a set of resources subject to a
set of constraints. Examples of scheduling
constraints for Real-Time processes include
deadlines (e.g., job | must be completed by a time T),
resource capacities (e.g., limited memory space),
precedence constraints on the order of tasks (e.g.,
sequencing of cooperating tasks according to their
activities), and priorities on tasks (e.g., finish job P as
soon as possible while meeting the other deadlines).

— There are zillions (well, may be a few less than that) of computer
science papers on scheduling

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

UNIVERSITY
OF OSLO

Pick your own scheduling strategy ...

. The following is a list of common scheduling practices and disciplines (ref Wikipedia):
- Borrowed-Virtual-Time Scheduling (BVT)
- Completely Fair Scheduler (CFS)
- Critical Path Method of Scheduling
- Deadline-monotonic scheduling (DMS)
- Deficit round robin (DRR)
- Earliest deadline first scheduling (EDF)
- Elastic Round Robin
- Fair-share scheduling
- First In, First Out (FIFO), also known as First Come First Served (FCFS)
- Gang scheduling
- Genetic Anticipatory
- Highest response ratio next (HRRN)
- Interval scheduling
- Last In, First Out (LIFO)

- Job Shop Scheduiing We will discuss a

- east-connection scheduling

- Least slack time scheduling (LST) -

" Lot scheduing few of these in more
- Lottery Scheduling -

- Multilevel queue deta| IS

- Multilevel Feedback Queue

- Never queue scheduling

- O(21) scheduler

- Proportional Share Scheduling

- Rate-monotonic scheduling (RMS)
- Round-robin scheduling (RR)

- Shortest expected delay scheduling
- Shortest job next (SIN)

- Shortest remaining time (SRT)

- Staircase Deadline scheduler (SD)
- "Take" Scheduling

- Two-level scheduling

- Weighted fair queuing (WFQ)

- Weighted least-connection scheduling
- Weighted round robin (WRR)

- Group Ratio Round-Robin: O(1)

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

£ 4#7% UNIVERSITY
.l oF osLo

Scheduling of RT processes

* An absolute requirement in hard Real-Time systems is
that deadlines are met! Missing a deadline may have
catastrophic consequences. This requirement is the
baseline for true Real-Time Operating Systems!

— Note that a RTOS should have guaranteed worst case reaction times.
However, this is obviously processor dependent.

* In soft Real-Time systems deadlines may however
occasionally be missed without leading to catastropy.
For such such applications standard OS’s can be used
(Windows, Linux, etc)

— Since Linux is popular in many embedded systems, let us have a quick
look at some of its characteristics

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

£ £9% UNIVERSITY
Ul / oF osLO

Scheduling in Linux and Real-Time

A web search on Linux scheduling will give numerous hits, not
least on hacker-type and/or Real-Time improvements of the

scheduler

— The following pages on Linux 2.6.8.1 have been copied from
http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf .
This web reference from 2007 is however no longer available and the
information may not be completely up-to-date.

— A number of so-called Real-Time extensions to Linux have been made
over the years, some of them on commercial basis. Many of them have
however been made obsolete due to a continous development of Linux.

Real-Time Linux Fondation
web (active link)

See also Wind River

T.B. Skaali, Department of Physics, University of Oslo

) Welcome to the Real Time Linux Foundation Web Site - Mozilla Firefox

Ele Edt Vew Hgtory Bookmarks Tooks Help

O -c

L] Most visted P Getting Started 3 Oppslagstavia (31 Latest Headines T Forsiden | www.tvede... | | Sport

| '] Welcome to the Real Time Linus Fou... |

1 hitp:{www, realtimelinuxfoundation.org/ - 129~ reakTime Linux I

Real Time Linux Foundation, Inc.

A non-profit carporation for the real-time Linwx community

Copyleft 2009,
Peter
Wurmsdobler

Do

E]

o February 16, 2005
New page for the Seventh Real-Time Linux Workshop launched
© February 11, 2004
New page for the Steth Real-Time Linux Workshop launched.
o March 21, 2003
New page for the Fifth Real-Time Linux Workshop launched.
o February 1, 2003

The first workshop on Linusx in control on free software and technologies in control and automation annouced to take place on
May 9-10 2003 in Leuven, Belgnum

v

FYS 4220/9220 - 2011 - Lecture #7

5 #8% UNIVERSITY
wJf; OF osLO

Linux 2.6.8.1 12

Linux 2.6.8.1 Scheduler — static priorities:
All tasks has a static priority, the nice value. The nice values range from -
20 to 19, the higher value being lower priority (nicer).

4.8 Soft Real-Time Scheduling
The Linux scheduler supports soft real-time (RT') scheduling. This means that

it can effectively schedule tasks that have strict timing requirements. However,
while the Linux 2.6.x kernel is usually capable of meeting very strict RT schedul-
ing deadlines, it does not guarantee that deadlines will be met. RT tasks are
assigned special scheduling modes and the scheduler gives them priority over
any other task on the system. RT scheduling modes include a first-in-first-out
(FIFO) mode which allows RT tasks to run to completion on a first-come-first-
serve basis, and a round-robin scheduling mode that schedules RT tasks in a
round-robin fashion while essentially ignoring non-RT tasks on the system.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

2 UNIVERSITY
s OF OSLO

Linux 2.6.8.1 22

5.8 Soft RT Scheduling

The Linux 2.6.8.1 scheduler provides soft RT scheduling support. The “soft”
adjective comes from the fact that while it does a good job of meeting scheduling
deadlines, it does not guarantee that deadlines will be met.

5.8.1 Prioritizing Real-Time Tasks

RT tasks have priorities from 0 to 99 while non-RT task priorities map onto
the internal priority range 100-140. Because RT tasks have lower priorities than
non-RT tasks, they will always preempt non-RT tasks. As long as RT tasks
are runnable, no other tasks can run because RT tasks operate with differ-
ent scheduling schemes, namely SCHED_FIFO and SCHED_RR. Non-RT tasks are
marked SCHED_NORMAL, which is the default scheduling behavior.

5.8.2 SCHED_FIFO Scheduling

SCHED_FIFO tasks schedule in a first-in-first-out manner. If there is a SCHED_FIFO
task on a system it will preempt any other tasks and run for as long as it wants
to. SCHED_FIFO tasks do not have timeslices. Multiple SCHED_FIFQ tasks are
scheduled by priority - higher priority SCHED_FIFO tasks will preemt lower pri-
ority SCHED_FIFO tasks.

5.8.3 SCHED_RR Scheduling

SCHED_RR tasks are very similar to SCHED_FIFO tasks, except that they have
timeslices and are always preempted by SCHED_FIFO tasks. SCHED_RR tasks
are scheduled by priority, and within a certain priority they are scheduled in a
round-robin fashion. Each SCHED_RR task within a certain priority runs for its
allotted timeslice, and then returns to the bottom of the list in its priority array
queue.,

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

9% UNIVERSITY
U ; OF osLO

The Linux ”Completely Fair Scheduler”

« The Completely Fair Scheduler (CFS) was merged into the 2.6.23 release of
the Linux kernel. It aims to maximize overall CPU utilization while maximizing
interactive performance. It was written by Ingo Molnar.

* |n contrast to the scheduler used in older Linux 2.6 kernels, the CFS
scheduler implementation is not based on run queues.

— Instead a red-black tree, a type of selfbalancing binary search
() implements a 'timeline' of
future task execution. Additionally, the scheduler uses nanosecond
granularity accounting, the atomic units by which an individual process'
share of the CPU was allocated (thus making redundant the previous
notion of timeslices). This precise knowledge also means that no specific
heuristics (read “rule of thumb”) are required to determine the interactivity
of a process, for example.

 The Linux Brain Fuck Scheduler (BFS) was presented in 2009 as an
alternative to CFS.

e OK, so much about LINUX, over to the VxWorks RTOS

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

£ £9% UNIVERSITY
t Ul oF osLo

VxWorks multitasking

« Multitasking provides the fundamental mechanism for an
application to control and react to multiple, discrete real-
world events. The VxWorks real-time kernel, wind,
provides the basic multitasking environment. Multitasking
creates the appearance of many threads of execution
running concurrently when, in fact, the kernel interleaves
their execution on the basis of a scheduling algorithm.
Each apparently independent program is called a task.
Each task has its own context, which is the CPU
environment and system resources that the task sees
each time it is scheduled to run by the kernel. On a
context switch, a task's context is saved in the task
control block (TCB)

— A TCB can be accessed through the taskTcb(task_ID) routine. However,
do not directly modify a TCB!

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7 10

)
%\.:5-9
pod %

(51‘ UNIVERSITY

(2 Ak

2 vjﬁwt 2
2 | 5/
O

VxWorks multitasking

 Each task has its own context, which is the CPU environment and

system resources that the task sees each time it is scheduled to run by
the kernel. On a context switch, a task's context is saved in the task
control block (TCB). A task's context includes:

— athread of execution; that is, the task's program counter

— the tasks' virtual memory context (if process support is included)

— the CPU registers and (optionally) coprocessor registers

— stacks for dynamic variables and function calls

— 1/0O assignments for standard input, output, and error

— adelay timer

— atime-slice timer

— kernel control structures

— signal handlers

— task variables

— error status (errno)

— debugging and performance monitoring values

* Note that in conformance with the POSIX standard, all tasks in a
process share the same environment variables (unlike kernel tasks,
which each have their own set of environment variables).

A VxWorks task will be in one of states listed on next page

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

11

% UNIVERSITY
% OF OSLO

VxWorks Wind state transitions

Task State Transition

The kernel maintains the current state of each task in the system. A task changes from one state to another as the result of kernel function
calls made by the application. When created, tasks enter the suspended state. Activation 1s necessary for a created task to enter the
ready state. The activation phase 1s extremely fast, enabling applications to pre-create tasks and activate them i a timely manner. An
alternative 1s the spawning primitive, which allows a task to be created and activated with a single function. Tasks can be deleted from
any state.

The wind kernel states are shown in the state transition diagram in Figure 2-1, and a summary of the corresponding state symbols you
will see when working with Tornado development tools 1s shown i Table 2-1.

Table 2-1: Task State Transitions

State Symbol Description

READY The state of a task that 1s not waiting for any resource other than the CPU.

PEND The state of a task that 1s blocked due to the unavalability of some resource.

DELAY The state of a task that is asleep for some duration.

SUSPEND The state of a task that 15 unavailable for execution. This state 15 used primanly for debugging. Suspension does not mhibit
state transition, only task execution. Thus perded-suspended tasks can still unblock and delayed-suspended tasks can still
awaken.

DELAY + S The state of a task that 15 both delayed and suspended.

PEND +S The state of a task that 1s both pended and suspended.

PEND + T The state of a task that 1s pended with a timeout value.

PEND + S + The state of a task that 1s both pended with a timeout value and suspended.

T

state +1 The state of task specified by state, plus an inherted priority.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7 “ %

% UNIVERSITY
;5 OF OSLO

Wind task state diagram and task transitions

The higheetprionty ready 1ask ie execuing.

ready ————
ready ——>n
ready —»
pended —uv-
pended
delaped —__»
delayed &
suspended &
suspended —m»
suspended —m»»

taskint()
pended seinTake() /[insgQ Recerve()
delayed tastDelay()
sux pended taskSuspend()
ready seinGive() [insg QSend()
sux pended taskSispend()
ready expired delay
sus pended taskSispend()
ready taskResiunel) [taskAcbvatel)
pended taskRenune()
delayed taskResinne()

 —

 —

See taskLib for the task---() routines. Any system call
resulting in a transition may affect scheduling!

FYS 4220/9220 - 2011 - Lecture #7

T.B. Skaali, Department of Physics, University of Oslo

\ UNIVERSITY

EI ‘ﬂm‘pd 8

b,

VxWorks task scheduling

« The default algorithm is priority based pre-emptive

— With a preemptive priority-based scheduler, each task has a
priority and the kernel ensures that the CPU is allocated to the
highest priority task that is ready to run. This scheduling method is
preemptive in that if a task that has higher priority than the current
task becomes ready to run, the kernel immediately saves the
current task's context and switches to the context of the higher
priority task

— A round-robin scheduling algorithm attempts to share the CPU
fairly among all ready tasks of the same priority.

— Note: VxWorks provides the following kernel scheduler facilities:

» The VxWorks native scheduler, which provides options for preemptive priority-
based scheduling or round-robin scheduling.

* A POSIX thread scheduler that provides POSIX thread scheduling support in
user-space (processes) while keeping the VxWorks task scheduling.

» A kernel scheduler replacement framework that allows users to implement
customized schedulers. See documentation for more information

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

14

)
%\.:5-9
pod %

i (‘

% UNIVERSITY

Sl

(8.2
2 5
O

VxWorks task scheduling (cont)

 The kernel has 256 priority levels, numbered 0 through 255.

Priority O is the highest and priority 255 is the lowest.
— All application tasks should be in the priority range from 100 to 255.

— Tasks are assigned a priority when created. One can also change a task's priority
level while it is executing by calling taskPrioritySet(). The ability to change task
priorities dynamically allows applications to track precedence changes in the real
world.

e Round-robin

— A round-robin scheduling algorithm attempts to share the CPU fairly among all ready
tasks of the same priority. Round-robin scheduling uses time slicing to achieve fair
allocation of the CPU to all tasks with the same priority. Each task, in a group of tasks
with the same priority, executes for a defined interval or time slice.

— It may be useful to use round-robin scheduling in systems that execute the same
application in more than one process. In this case, multiple tasks would be executing
the same code, and it is possible that a task might not relinquish the CPU to a task of
the same priority running in another process (running the same binary). Note that
round-robin scheduling is global, and controls all tasks in the system (kernel and
processes); it is not possible to implement round-robin scheduling for selected
processes. Round-robin scheduling is enabled by calling kernelTimeSlice(ticks),
which takes a parameter for a time slice, or interval. If ticks = 0 round-robin is
disabled. This interval is the amount of time each task is allowed to run before
relinquishing the processor to another equal-priority task. Thus, the tasks rotate, each
executing for an equal interval of time. No task gets a second slice of time before all

other tasks in the priority group have been allowed to run.
T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

15

5 #8% UNIVERSITY
wJf; OF osLO

VxWorks task scheduling (cont)

* Priority-bases preemtive

— VxWorks supply routines for pre-emption locks which prevent context switches .

HIGH T B
s
3 7
ow | | | [a]
time >
KEY: ;‘ = preemption | =task completion
 Round-Robin
HIGH T | t4
= gtimesl'coé
5 I 7
ow | | [2 [8 [a [&] 2] B]
time >
KEY: f = preemption | = task completion

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

5 #8% UNIVERSITY
wJf; OF osLO

What follows are presentation on scheduling from the
book by Burns & Wellings , plus some add-ons.

The goal 1s to demonstrate numerical methods
for analysis of scheduling behaviour

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

Scheduling

e In general, a scheduling scheme provides two features:

— An algorithm for ordering the use of system resources (in
particular the CPUS)

— A means of predicting the worst-case behaviour of the system

when the scheduling algorithm is applied

e It 1s a good philosophy to assume worst-case behaviour.
The problem 1s to i1dentfy it.

e The prediction can then be used to confirm the temporal
requirements of the application

Slmple Process Model

The application is assumed to consist of a fixed set of
processes

All processes are periodic, with known periods

The processes are completely independent of each
other

All system's overheads, context-switching times and so
on are ignored (i.e, assumed to have zero cost)

All processes have a deadline equal to their period (that
IS, each process must complete before it is next
released)

All processes have a fixed worst-case execution time

O T =2 G == 0O O @

T
U

Notation

Worst-case blocking time for the process (if applicable)
Worst-case computation time (WCET) of the process
Deadline of the process (see also R)

The interference time of the process

Release jitter of the process

Number of processes in the system

Priority assigned to the process (if applicable)

Worst-case response time of the process. stands for when process

terminates, that is, when the job is done!!
Minimum time between process releases (process period)
The utilization of each process (equal to C/T)

a-z The name of a process

Process-Based Scheduling

e Priority scheduling approaches discussed
here:

— Fixed-Priority Scheduling (FPS)
— Earliest Deadline First (EDF)
— Value-Based Scheduling (VBS)

Fixed-Priority Scheduling (FPS)

e This is the most widely used approach and is the main
focus of this course

e Each process has a fixed, static, priority which is
computer pre-run-time

e The runnable processes are executed in the order
determined by their priority

e In Real-Time systems, the “priority” of a process Is
derived from its temporal requirements, not its
Importance to the correct functioning of the system or its
Integrity. (Well, there is some interdependency herel)

Earliest Deadline First (EDF) Scheduling

e The runnable processes are executed in the order
determined by the absolute deadlines of the processes

e The next process to run being the one with the shortest
(nearest) deadline

e Although it is usual to know the relative deadlines of
each process (e.g. 25ms after release, i.e. startup), the
absolute deadlines are computed at run time and hence
the scheme is described as dynamic

Value-Based Scheduling (VBS)

e If a system can become overloaded then the use of
simple static priorities or deadlines is not sufficient; a
more adaptive scheme is needed

e This often takes the form of assigning a value to each
process and employing an on-line value-based
scheduling algorithm to decide which process to run

next

Preemption and Non-preemption

With priority-based scheduling, a high-priority process may
be released during the execution of a lower priority one

In a preemptive scheme, there will be an immediate switch
to the higher-priority process

With non-preemption, the lower-priority process will be
allowed to complete before the other executes

Preemptive schemes enable higher-priority processes to be
more reactive, and hence they are preferred

Alternative strategies allow a lower priority process to
continue to execute for a bounded time

These schemes are known as deferred preemption or
cooperative dispatching

Schemes such as EDF and VBS can also take on a pre-
emptive or non pre-emptive form

FPS and Rate Monotonic Priority Assignment

e Each process is assigned a (unique) priority based on
Its period; the shorter the period, the higher the priority

e |.e, for two processes 1 and j,
Ti<Tj=Pi>Pj
e This assignment is optimal in the sense that if any
process set can be scheduled (using pre-emptive
priority-based scheduling) with a fixed-priority
assignment scheme, then the given process set can

also be scheduled with a rate monotonic assignment
scheme

® Note, priority 1 1s here the lowest (least) priority.
For VxWorks Wind priorities the scale 1s i1nverted!

ﬁh Rate-monotonic scheduling

s [heorem:

= Glven a set of periodic tasks and preemptive
priority scheduling, then assigning priorities
such that the tasks with shorter periods have
higher priorities (rate-monotonic), yields an
optimal scheduling algorithm.

« Liu, C.L and Layland, J.W., "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”,
journal of the ACM, Vol. 20, No. 1, 1973

FYS 4220/9220 - 2011 - Lecture #7 27

Example Priority Assignment

Process Period, T Priority, P
a 25 S
b 60 3
C 42 4
d 105 1
e 75 2

Note, only relative priority values are relevant

Utilisation-Based Analysis

e For D=T task sets only

e A simple, sufficient but not necessary, schedulabllity test
exists:

U =i&< N (21N 1)
=3 2

=1

Liu and Layland

U <0.69 as N 5> w

Utilization Bounds

Utilization bound
100.0%
82.8%
78.0%
75.7%
74.3%
71.8%

OCUTR WNPF =

Approaches 69.3% asymptotically

Process Set A

Process Period ComputationTime Priority Utilization

T C P U
a 50 12 1 0.24
b 40 10 2 0.25
C 30 10 3 0.33

e The combined utilization is 0.82 (or 82%)

e This is above the threshold for three processes (0.78)
and, hence, this process set fails the utilization test

Time-line for Process Set A

Units of total

process - T
¢ 30| 10 of 10 10 of 10
—<L ——O
b 40 10 of 10 J} 10 of 10
——O
a 50 10 of 12 .J
0 10 20 30 40 50

Units of time ——

T Process Release Time

o Process Completion Time
Deadline Met

Process Completion Time
Deadline Missed

Preempted

Executing

60

Note! Process ”’c” has the highest priority

Process Set B

Process Period ComputationTime Priority Utilization

T C P U
a 80 32 1 0.400
b 40 S 2 0.125
C 16 4 3 0.250

e The combined utilization is 0.775

e This is below the threshold for three processes (0.78)
and, hence, this process set will meet all its deadlines

Process Set C

Process Period ComputationTime Priority Utilization

T C P U
a 80 40 1 0.50
b 40 10 2 0.25
C 20 S 3 0.25

e The combined utilization is 1.0

e This is above the threshold for three processes (0.78)

but the process set will meet all its deadlines. (ust a
lucky combination of C and T1!)

— Well, the overhead (context switching, clock interrupt handling
etc) has been assumed to be zero, which is not true!!

Process

a
C |5of5 |

Time-line for Process Set C

A
50f5 |

A
50f5 |

A
50f5 ‘

T Process Release Time

Process Completion Time
O Deadline Met

Preempted
A 4
Executing
10 of 10 10 of 10
O O
5 of 40 20 of 40 2b of 40 40 of 40 i

10

20

Time ———

30

40 50

60

70 80

Note! Process ”’c” has the highest priority

Utilization-based Test for EDF

N :
3 C_I < 1 A much simpler test

i-1 T .
Superior to FPS; it can support high utilizations. However
FPS is easier to implement as priorities are static

EDF is dynamic and requires a more complex run-time
system which will have higher overhead

It is easier to incorporate processes without deadlines into
FPS; giving a process an arbitrary deadline is more artificial

It IS easier to incorporate other factors into the notion of
priority than it is into the notion of deadline

During overload situations

— FPS is more predictable; Low priority process miss their deadlines first

— EDF is unpredictable; a domino effect can occur in which a large
number of processes miss deadlines

Response-Time Analysis

For a detailed presentation, see file Scheduling BW ResponseTimeAnalysis.pdf

e Here task i's worst-case response time, R, is calculated first and
then checked (trivially) with its deadline

R <D
R.=C. + |

where | is the interference (CPU utilization) from higher priority tasks
1 1 4 4
C [sofs | 5 of 5 1 50f5!> é;fél

b 10 0f 10 (ID 10.0f 10 <L

a. interference 5 of 40 20 of 40 interference 45 of 40 40 of 40 J)

0 10 20 30 40 50 60 70 80

Note! Process ”’c” has the highest priority

Calculating

During R, each higher priority task j will execute a number of
times:

Number of Releases =| —

The ceiling function |_ _|gives the smallest integer greater than the fractional
number on which it acts. So the ceiling of 1/3is 1, of 6/5 is 2, and of 6/3 is 2.

Total interference is given by:

J

Response Time Equation

| | jethl(i) T |

Where hp(i) is the set of tasks with priority higher than task i

Can be solved by forming a recurrence relationship:

+ W .
w''t=C. .+ X _|IC
jehp (i) | T

j

The set of valuesw;, w;, W’ ,..., W .. is monotonically non decreasing
Whenw' =w™* the solution to the equation has been found, w;
must not be greater that R (e.g. 0 orC,)

Response Time Algorithm

for 1 1n 1._.N loop
o)
Ci

r
n

W'
loop
calculate new W
= i
lf n+1 — Win then
R

W'
ex

II =

value found

'T then
alue not found

end loop

for each process 1n turn

/* Fixed Priority Analysis, ref B & W */

/* The process parameters are organized from highest
|to lowest priorities, i.e. from shortest periods */

int FPSQ

{

% defined elsewhere */

int T[3] = {T1,72,T3};
% defined elsewhere */

int C[3] = {C1,C2,C3};
int R[3]. W[31[101;
int i, j, n, k, g, N = 3, converge = 1;

/* loop over the processes, cf. algorithm in 13.5 */
for (i = 0; 1 <N; i++)

n = 0;
WLilLn] = C[i];

/* max 10 iterations, cf. array W */
for (k = 0; k < 10; k++)

{
WLi][n+1] = C[i];

/* summa over hlgher priority processes, (13.5) */
for G = i-1; j >=0; j--)

{

q = WLil[n]/TLil;

it (WLil[n] > g*T0) g = g+1;
WLil[n+1] = WLil[n+1] + g*CLil;
3

#ifdef DEBUG
printf("- i,n,Wn,Wn+1 = %d %d %d %d\n",
1,0, W[N], WEi1[n+11);
#endif

/* test for convergence */
it (WLil[n+1] == WLi1[nD)
{
R[] = WLiT[n];
printf("'- converged R[%d] = %d\n", i, R[i]);
break;

3
if (WLil[n+1] > TLiDD
{

printf(""- R[i] > T[i] for i = %d, abort\n", i);
converge = 0;
break;

]

n++;
by
3
if (converge == 0)

printf(’- response analysis did not converge\n™);
return (ERROR);
b

/* compare worst-case response with period */
for (i = 0; 1 <N; i++)
{
printf("- proc %d, T = %3d, worst-case response %3d",
(i+1), TLi], RLID:
if (R[i] <= T[i]) printf(" OK\n");
else printf("" FAILURE\N");

b
return (OK);

Implemented in the FYS4220 VxWorks program FPS_analysis.c

Process Set D

Process Period ComputationTime Priority

T C P
a 7 3 3
b 12 3 2
C 20 S 1
w, = 3
1 3 |5 _
R =3 Wb—3+{73—6
Wb2=3—l—[g—|3=6
7

5 +

5+

20

Bk

{—3+ £3=14
7 12

{£3+ &3=17
7 12

E—3+ H_3:20
I 12
g)—3+ E)—3=20
I 12

. UNIVERSITY
5 OF OSLO

Demo: Response Time Analysis FPS_analysis.c coded for VxWorks

* Running the program on process set D
— Code not shown here, only printouts

i3 VxWorks Simulator for Windows

—> Current scheduling is FIFO (Preemptive Priority)
CLOCK_REALTIME resolution = 16666666 ns

Rate Monotonic Scheduling

WIND priorites for Pl P2 P3 = 17 22 30

Calibrating Busy loop., takes some time
CalBusy: 30 iterations to TickCalScale = 3864096
CalBusy: CPU ticks set., measured 20 19

137: Pl e=xit
233: P2 exit
389: P3 e=xit

<

= Tornado - [Shell vxsim@FYSPC-ELG045]
Fle Edt View Project Buld Debug Tools Window Help

| visim@FYSPCELGO4S | 0|->i|n¥|@|@|ﬁ| H g|,§|cc|®|§§|

> result
Response time simulation for configuration:
Periods T T2 13 7 12 28
Comp. time C1 C2 C3 3 3 5
<5 il

Wind River Systems

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

UNIVERSITY
OF OSLO

Response Time Analysis - VxWorks

« P1-P2-P3scheduling according to set D: all deadlines met

= Tornado - [Shell vxsim@FYSPC-ELG045] = Tornado - [Shell vxsim@FYSPC-ELG045] = Tornado - [Shell vxsim@FYSPC-ELG045]
File Edit Yiew Project Build Debug Tools Window File Edit Yiew Project Build Debug Tools Window File Edit Yiew Project Build Debug Tools Window Help '
[wsim@FYSPCELGOMS ~| @i | @|EB|@| | [wsimervsrcecos -] 0| @ E|@| | [wineFrsrcecos <] o)sil @ EA | & alc
[P1 scheduled real release termination P2 scheduled real release termination |P3 scheduled real release termination .
1 2 4 1 4 7 1 7 20
8 8 11 13 14 19 21 25 1
15 15 17 25 26 31 1 46 56
22 23 25 37 38 41 61 68 81
29 29 31 49 52 55 81 83 96
36 36 38 61 63 68 101 104 117
43 43 46 73 7y 76 121 126 133
58 58 52 85 87 20 141 143 150 Il
57 58 61 97 161 104 161 163 167
64 64 66 109 110 112 181 187 192
71 71 73 121 123 126 201 203 219
78 78 81 133 137 140 221 222 229
85 85 87 145 146 148 211 243 247
92 92 94 157 159 161 261 263 270
99 29 101 169 171 175 281 282 286
1086 186 108 181 183 187 301 303 309
113 113 116 193 195 197 321 323 327
120 121 123 205 2086 208 311 343 358
127 127 129 217 219 222 361 362 366
134 135 137 229 231 233 381 383 389
< < <
‘Wind River Systems Wind River Systems Wind River Systems N

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

wl
3
|

UNIVERSITY
OF OSLO

Response Time Analysis (cont)

 What happens when P2 computation time is increased from 3 to 47

Z Tornado - [Shell vxsim@fyspc-elg045]

File Edit View Project Buid Debug Tools Window WYL LI R ERYG S (AR TR LY | m@m
File Edit View Project Build Debug Tools ‘Window JRESEETEE TR 1T LRSS) Tnl 47 T I L |
Dlﬁiﬂl J |Wf“‘| é] ? Ik"l |vxsim@!yspc-elg File Edt View Project Build Debug Tools Window =
24 B . e) 2 7 .
gl&lul@lml E’ il il _] J| | i] Bl&w}l J |E¥="| Ql ?lk?l vasm@fyspc-e DlDI!g-ll ' | |@§=‘| é] ?l*?] vasnm@lyspc-elg ;] ﬂl-}l'.ﬁ?l
Response time simulation for configurati o 3 1Ly Aalee T ({f 2hy W Bl ElmlE
Periods T1 T2 T3 = 7 12 20 Jof| # 2| 0] B BUY alafclel=] | 3 x| o Bl Bls\¢ 2|@|=|5]
JComp. time C1 C2 C3 = 3 4 § P2 scheduled real release termination |3 scheduled real release termination \ A
Pl scheduled real release termination 1 S 1 11 25 next release overrun
1 2 5 13 14 20 21 25 45 next release overrun
8 8 10 25 26 32 41 45 56
15 15 17 37 38 42 61 68 82 next release overrun
2z Bz : s E
101 1 11
36 36 38 % gi 33 121 130 141
43 43 45 as 87 91 141 143 151
50 50 52 97 101 105 161 162 167
57 58 60 109 i10 116 181 188 193
64 64 66 121 123 130 201 202 210
71 71 73 133 136 140 221 222 227
78 78 80 145 146 149 241 242 248
85 85 87 157 159 162 261 263 267
32 32 95 281 283 290
39 39 101 163 171 176 301 302 309
106 106 108 181 182 168 321 323 327
113 113 115 193 195 198 341 343 349
120 121 123 205 206 209 361 363 367
127 127 130 217 219 222 381 383 387
134 134 136 229 231 236 v
£ < < | >

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

Revisiting: Process Set C

Process Period ComputationTime Priority Response time

T C P R
a 80 40 1 80
b 40 10 2 15
C 20 S 3 S

e The combined utilization is 1.0

e This was above the ulilization threshold for three processes (0.78),
therefore it failed the test

e However, a response time analysis shows that the process set will just
meet its deadlines. FPS_analysis.c shows two marginal overruns.

e RTA Is sufficient and necessary . If the process set passes the test
they will meet all their deadlines; if they fail the test then, at run-time, a
process will miss its deadline (unless the computation time
estimations themselves turn out to be pessimistic)

Worst-Case Execution Time - WCET

e Obtained by either measurement or analysis

e The problem with measurement is that it is difficult to be
sure when the worst case has been observed

. The drawback of analysis is that an effective model of
the processor (including caches, pipelines, memory wait

states and so on) must be available. In real life this
1Is simply not feasible.

WCET— Finding C

Most analysis techniques involve two distinct activities.

e The first takes the process and decomposes its code
Into a directed graph of basic blocks

e These basic blocks represent straight-line code.

e The second component of the analysis takes the
machine code corresponding to a basic block and uses
the processor model to estimate its worst-case
execution time

e Once the times for all the basic blocks are known, the
directed graph can be collapsed
e EXxperimental approaches: see following pages

\ UNIVERSITY

VxWorks timexLib

timexLib — execution timer facilities

ROUTINES

() - include the execution timer library
() - clear the list of function calls to be timed
() - specify functions to be timed
() - display synopsis of execution timer facilities
() - time a single execution of a function or functions
() - time repeated executions of a function or group of functions
() - specify functions to be called after timing
() - specify functions to be called prior to timing
() - display the list of function calls to be timed

DESCRIPTION

This library contains routines for timing the execution of programs, individual
functions, and groups of functions. The VxWorks system clock is used as a
time base. Functions that have a short execution time relative to this time base
can be called repeatedly to establish an average execution time with an
acceptable percentage of error.

Comment: quite useful!

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

49

§49% UNIVERSITY

Using the Real-Time clock

« |f a routine can be executed a large number of times, a 60 Hz
Real-Time clock can give a good estimate

— To obtain a good accuracy the number of loops must be large such
that rounding-off errors is acceptable.

— However, one can easily get fooled by such repetitive execution!
After the first loop the code and data will probably be cached,
which means that one will basically measure a cache based
timing. To get a worst-case value: disable the caches!

time_t starttime, stoptime, timer;
starttime = time(&timer); /* calendar time iIn seconds */
/* Execute many_loops os whatever i1t may be*/
stoptime = time(&timer);
microseconds_per_loop = 1000000*(stoptime-starttime)/many_loops;

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7 50

£ £9% UNIVERSITY
t Ul oF osLo

Using instrumentation — state / bus analyzers

* Alogic state or a bus analyzer can be used to accurately time
the execution of a routine if the processor can access for
instance VMEDbus or PCI bus. One inserts identifiable bus
transactions at the entry and exit of the routine, and the time
difference between these transactions can be accurately
measured.

— This method is more suitable for periods up to a few millisec

 The VxWorks WindView for Tornado and Stethoscope for
Workbench are a very useful tools, but requires a high precision
timer on the processor board in order to make time
measurements in the microsecond range

— We will take a closer look at Stethoscope in a later lecture

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

51

£ 4#7% UNIVERSITY
“0p/ orosro

Characteristics of Periodic and Sporadic processes

* Periodic:
— Activate regularly between fixed time intervals

— Used for polling, monitoring and sampling
However, do not try to use periodic pro cesses for sampling say audio at 44 kHz!

— Predetermined amount of work (execution time) every period

e Sporadic
— Event driven — some external signal or change
— Used for fault detection, change of operating modes, etc

— Sporadic processes can be handled as equivalent periodic
processes if they take little time to execute

« Aperiodic processes:
— Sporadic which do not have a minimum inter-arrival time.

The distinction between Sporadic and Aperiodic is mainly an issue for computer
scientists, ref numerous papers one can find on scheduling

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7 52

Sporadic Processes

Sporadic processes have a minimum inter-arrival time
They also require D<T

The response time algorithm for fixed priority scheduling
works perfectly for values of D less than T as long as
the stopping criteria becomes W > D,

It also works perfectly well with any priority ordering —
hp(i) always gives the set of higher-priority processes

Aperiodic Processes

These do not have minimum inter-arrival times

Can run aperiodic processes at a priority below the priorities
assigned to hard processes, therefore, they cannot steal, in a pre-
emptive system, resources from the hard processes

This does not provide adequate support to soft processes which will
often miss their deadlines

To improve the situation for soft processes, a server can be
employed.

Servers protect the processing resources needed by hard
processes but otherwise allow soft processes to run as soon as
possible.

POSIX supports Sporadic Servers

Hard and Soft Processes

¢ In many situations the worst-case figures for sporadic
processes are considerably higher than the averages

. Interrupts often arrive in bursts and an abnormal sensor

reading may lead to significant additional computation

e How to handle hardware malfunction 1s a key i1ssue 1In
Real-Time systems, more about that in a later
lecture

e Measuring schedulability with worst-case figures may
lead to very low processor utilizations being observed In
the actual running system

General Guidelines

Rule 1 — all processes should be schedulable using
average execution times and average arrival rates

Rule 2 — all hard real-time processes should be
schedulable using worst-case execution times and
worst-case arrival rates of all processes (including soft)

e A consequent of Rule 1 is that there may be situations in
which it is not possible to meet all current deadlines

e This condition Is known as a transient overload

e Rule 2 ensures that no hard real-time process will miss
its deadline

e If Rule 2 gives rise to unacceptably low utilizations for
“normal execution” then action must be taken to reduce
the worst-case execution times (or arrival rates)

Process Interactions and Blocking

e If a process is suspended waiting for a lower-priority
process to complete some required computation then
the priority model is, in some sense, being undermined

e |t is said to suffer priority inversion

e If a process is waiting for a lower-priority process, it is
said to be blocked

Priority Inversion

e To illustrate an extreme example of priority inversion,
consider the executions of four periodic processes: a, b, C

and d; and two resources: Q and V

Process Priority Execution Sequence Release Time

a 1 EQQQQE 0
b 2 EE 2
C 3 EVVE 2
d 4 EEQVE 4

Example of Priority Inversion

I —
Process

d Y s

0 2 4 6 8 10 12 14 16 18

Executing Preempted

Executing with Q locked [Blocked
] Executing with V locked

Process d has the highest priority

Priority Inheritance

e If process p is blocking process q, then p runs with g's
priority. In the diagram below, g corresponds to d, while
both a and c can be p

Process

d(a)

S e)
S s R W]
T

£43% UNIVERSITY

‘M orosLo
VxWorks Mutual-Exclusion semaphores and Priority

inversion

 The mutual-exclusion semaphore is a specialized binary semaphore
designed to address issues inherent in mutual exclusion, including
priority inversion, deletion safety, and recursive access to resources.

 The fundamental behavior of the mutual-exclusion semaphore is

identical to the binary semaphore, with the following exceptions:

— It can be used only for mutual exclusion.
— It can be given only by the task that took it.
— The semFlush() operation is illegal.

e Priority inversion problem:

A
\j

o | . E

= v S

/ [e . |

a A Y
Low 3 | B3 |/ L8

time

KEY: Y =take sesmaphare /7 = preemption

vV =qgive semaphore |y = priofty inheritance/releass

=own semaphore I = block

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7 61

§ 9% UNIVERSITY
Ul / oF osLO

VxWorks Priority inheritance

* In the figure below, priority inheritance solves the problem of priority
inversion by elevating the priority of t3 to the priority of t1 during the time
t1 is blocked on the semaphore. This protects t3, and indirectly t1, from
preemption by t2. The following example creates a mutual-exclusion
semaphore that uses the priority inheritance algorithm:

— semld = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE):

» Other VxWorks facilities which implement priority inheritance: next page

—->

\J Vv

HIGH T | s | a |

= A A

7 e

= \J v
LOW t3

- time >
KEY: ¥ =take semaphore f = preemption
v =aqive semaphare | = Pprionity inheritance/release
=own semaphare I = block
FYS 4220/9220 - 2011 - Lecture #7 62

T.B. Skaali, Department of Physics, University of Oslo

VxWorks POSIX Mutexes and Condition Variable

£ £9% UNIVERSITY
t Ul oF osLo

Thread mutexes (mutual exclusion variables) and condition variables
provide compatibility with the POSIX 1003.1c standard. They perform
essentially the same role as VxWorks mutual exclusion and binary
semaphores (and are in fact implemented using them). They are available
with pthreadLib. Like POSIX threads, mutexes and condition variables
have attributes associated with them. Mutex attributes are held in a data
type called pthread _mutexattr_t, which contains two attributes, protocol
and prioceiling.
The protocol mutex attribute describes how the mutex variable deals with
the priority inversion problem described in the section for VxWorks mutual-
exclusion semaphores.

— Attribute Name: protocol

— Possible Values: PTHREAD PRIO_INHERIT (default) and PTHREAD_PRIO_PROTECT

— Access Routines: pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol()
Because it might not be desirable to elevate a lower-priority thread to a
too-high priority, POSIX defines the notion of priority ceiling. Mutual-
exclusion variables created with priority protection use the
PTHREAD PRIO_PROTECT value.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #7

63

Priority Ceiling Protocols

Two other protocol to minimize blocking:

e QOriginal celling priority protocol
e Immediate celling priority protocol

Will not be discussed further here

POSIX

POSIX supports priority-based scheduling, and has options
to support priority inheritance and ceiling protocols

Priorities may be set dynamically

Within the priority-based facilities, there are four policies:
— FIFQO: a process/thread runs until it completes or it is blocked

— Round-Robin: a process/thread runs until it completes or it is blocked
or its time quantum has expired

— Sporadic Server: a process/thread runs as a sporadic server
— OTHER: an implementation-defined

For each policy, there is a minimum range of priorities that
must be supported; 32 for FIFO and round-robin

The scheduling policy can be set on a per process and a per
thread basis

POSIX

e Threads may be created with a system contention
option, in which case they compete with other system
threads according to their policy and priority

e Alternatively, threads can be created with a process
contention option where they must compete with other
threads (created with a process contention) in the
parent process

— It is unspecified how such threads are scheduled relative to
threads in other processes or to threads with global contention

e A specific implementation must decide which to support

Other POSIX Facilities

POSIX allows:

e priority inheritance to be associated with mutexes
(priority protected protocol= ICPP)

e Mmessage gueues to be priority ordered

e functions for dynamically getting and setting a thread's
priority

e threads to indicate whether their attributes should be
Inherited by any child thread they create

