
T.B. Skaali, Department of Physics, University of Oslo)

FYS 4220 / 9220 – 2011 / #7

Real Time and Embedded Data Systems and Computing

Scheduling of Real- Time processes, strategies and
analysis

T.B. Skaali, Department of Physics, University of Oslo 2FYS 4220/9220 - 2011 - Lecture #7

Some definitions to start with
• The scheduler is the component of the kernel that selects

which process to run next. The scheduler (or process
scheduler, as it is sometimes called) can be viewed as the code
that divides the finite resource of processor time between the
runnable processes on a system.

• Multitasking operating systems come in two flavors:
cooperative multitasking and preemptive multitasking.
Linux, like all Unix variants and most modern operating
systems, provides preemptive multitasking. In preemptive
multitasking, the scheduler decides when a process is to cease
running and a new process is to resume running. The act of
involuntarily suspending a running process is called
preemption. The time a process runs before it is preempted is
predetermined, and is called the timeslice of the process. The
timeslice, in effect, gives each process a slice of the
processor's time. Managing the timeslice enables the scheduler
to make global scheduling decisions for the system. It also
prevents any one process from monopolizing the system

– Conversely, in cooperative multitasking, a process does not stop running
until it voluntary decides to do so. This approach has many shortcomings

T.B. Skaali, Department of Physics, University of Oslo 3FYS 4220/9220 - 2011 - Lecture #7

The challenge of scheduling in Real-Time systems

• Scheduling is the problem of assigning a set of
processes (tasks) to a set of resources subject to a
set of constraints. Examples of scheduling
constraints for Real-Time processes include
deadlines (e.g., job i must be completed by a time T),
resource capacities (e.g., limited memory space),
precedence constraints on the order of tasks (e.g.,
sequencing of cooperating tasks according to their
activities), and priorities on tasks (e.g., finish job P as
soon as possible while meeting the other deadlines).
– There are zillions (well, may be a few less than that) of computer

science papers on scheduling

T.B. Skaali, Department of Physics, University of Oslo 4FYS 4220/9220 - 2011 - Lecture #7

Pick your own scheduling strategy …
• The following is a list of common scheduling practices and disciplines (ref Wikipedia):

– Borrowed-Virtual-Time Scheduling (BVT)
– Completely Fair Scheduler (CFS)
– Critical Path Method of Scheduling
– Deadline-monotonic scheduling (DMS)
– Deficit round robin (DRR)
– Earliest deadline first scheduling (EDF)
– Elastic Round Robin
– Fair-share scheduling
– First In, First Out (FIFO), also known as First Come First Served (FCFS)
– Gang scheduling
– Genetic Anticipatory
– Highest response ratio next (HRRN)
– Interval scheduling
– Last In, First Out (LIFO)
– Job Shop Scheduling
– Least-connection scheduling
– Least slack time scheduling (LST)
– List scheduling
– Lottery Scheduling
– Multilevel queue
– Multilevel Feedback Queue
– Never queue scheduling
– O(1) scheduler
– Proportional Share Scheduling
– Rate-monotonic scheduling (RMS)
– Round-robin scheduling (RR)
– Shortest expected delay scheduling
– Shortest job next (SJN)
– Shortest remaining time (SRT)
– Staircase Deadline scheduler (SD)
– "Take" Scheduling
– Two-level scheduling
– Weighted fair queuing (WFQ)
– Weighted least-connection scheduling
– Weighted round robin (WRR)
– Group Ratio Round-Robin: O(1)

We will discuss a
few of these in more
details

T.B. Skaali, Department of Physics, University of Oslo 5FYS 4220/9220 - 2011 - Lecture #7

Scheduling of RT processes
• An absolute requirement in hard Real-Time systems is

that deadlines are met! Missing a deadline may have
catastrophic consequences. This requirement is the
baseline for true Real-Time Operating Systems!
– Note that a RTOS should have guaranteed worst case reaction times.

However, this is obviously processor dependent.

• In soft Real-Time systems deadlines may however
occasionally be missed without leading to catastropy.
For such such applications standard OS’s can be used
(Windows, Linux, etc)
– Since Linux is popular in many embedded systems, let us have a quick

look at some of its characteristics

T.B. Skaali, Department of Physics, University of Oslo

Scheduling in Linux and Real-Time
• A web search on Linux scheduling will give numerous hits, not

least on hacker-type and/or Real-Time improvements of the
scheduler

– The following pages on Linux 2.6.8.1 have been copied from
http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf .
This web reference from 2007 is however no longer available and the
information may not be completely up-to-date.

– A number of so-called Real-Time extensions to Linux have been made
over the years, some of them on commercial basis. Many of them have
however been made obsolete due to a continous development of Linux.

6FYS 4220/9220 - 2011 - Lecture #7

Real-Time Linux Fondation
web (active link)

See also Wind River
http://www.rtlinuxfree.com

T.B. Skaali, Department of Physics, University of Oslo 7FYS 4220/9220 - 2011 - Lecture #7

Linux 2.6.8.1 1/2

Linux 2.6.8.1 Scheduler – static priorities:
All tasks has a static priority, the nice value. The nice values range from -
20 to 19, the higher value being lower priority (nicer).

T.B. Skaali, Department of Physics, University of Oslo 8FYS 4220/9220 - 2011 - Lecture #7

Linux 2.6.8.1 2/2

T.B. Skaali, Department of Physics, University of Oslo 9FYS 4220/9220 - 2011 - Lecture #7

The Linux ”Completely Fair Scheduler”
• The Completely Fair Scheduler (CFS) was merged into the 2.6.23 release of

the Linux kernel. It aims to maximize overall CPU utilization while maximizing
interactive performance. It was written by Ingo Molnar.
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler

• In contrast to the scheduler used in older Linux 2.6 kernels, the CFS
scheduler implementation is not based on run queues.
– Instead a red-black tree, a type of selfbalancing binary search

(http://en.wikipedia.org/wiki/Red-black_tree) implements a 'timeline' of
future task execution. Additionally, the scheduler uses nanosecond
granularity accounting, the atomic units by which an individual process'
share of the CPU was allocated (thus making redundant the previous
notion of timeslices). This precise knowledge also means that no specific
heuristics (read “rule of thumb”) are required to determine the interactivity
of a process, for example.

• The Linux Brain Fuck Scheduler (BFS) was presented in 2009 as an
alternative to CFS. http://en.wikipedia.org/wiki/Brain_Fuck_Scheduler

• OK, so much about LINUX, over to the VxWorks RTOS

T.B. Skaali, Department of Physics, University of Oslo 10FYS 4220/9220 - 2011 - Lecture #7

VxWorks multitasking

• Multitasking provides the fundamental mechanism for an
application to control and react to multiple, discrete real-
world events. The VxWorks real-time kernel, wind,
provides the basic multitasking environment. Multitasking
creates the appearance of many threads of execution
running concurrently when, in fact, the kernel interleaves
their execution on the basis of a scheduling algorithm.
Each apparently independent program is called a task.
Each task has its own context, which is the CPU
environment and system resources that the task sees
each time it is scheduled to run by the kernel. On a
context switch, a task's context is saved in the task
control block (TCB)

– A TCB can be accessed through the taskTcb(task_ID) routine. However,
do not directly modify a TCB!

T.B. Skaali, Department of Physics, University of Oslo 11FYS 4220/9220 - 2011 - Lecture #7

VxWorks multitasking
• Each task has its own context, which is the CPU environment and

system resources that the task sees each time it is scheduled to run by
the kernel. On a context switch, a task's context is saved in the task
control block (TCB). A task's context includes:

– a thread of execution; that is, the task's program counter
– the tasks' virtual memory context (if process support is included)
– the CPU registers and (optionally) coprocessor registers
– stacks for dynamic variables and function calls
– I/O assignments for standard input, output, and error
– a delay timer
– a time-slice timer
– kernel control structures
– signal handlers
– task variables
– error status (errno)
– debugging and performance monitoring values

• Note that in conformance with the POSIX standard, all tasks in a
process share the same environment variables (unlike kernel tasks,
which each have their own set of environment variables).

• A VxWorks task will be in one of states listed on next page

T.B. Skaali, Department of Physics, University of Oslo 12FYS 4220/9220 - 2011 - Lecture #7

VxWorks Wind state transitions

T.B. Skaali, Department of Physics, University of Oslo 13FYS 4220/9220 - 2011 - Lecture #7

Wind task state diagram and task transitions

See taskLib for the task---() routines. Any system call
resulting in a transition may affect scheduling!

T.B. Skaali, Department of Physics, University of Oslo 14FYS 4220/9220 - 2011 - Lecture #7

VxWorks task scheduling

• The default algorithm is priority based pre-emptive
– With a preemptive priority-based scheduler, each task has a

priority and the kernel ensures that the CPU is allocated to the
highest priority task that is ready to run. This scheduling method is
preemptive in that if a task that has higher priority than the current
task becomes ready to run, the kernel immediately saves the
current task's context and switches to the context of the higher
priority task

– A round-robin scheduling algorithm attempts to share the CPU
fairly among all ready tasks of the same priority.

– Note: VxWorks provides the following kernel scheduler facilities:
• The VxWorks native scheduler, which provides options for preemptive priority-

based scheduling or round-robin scheduling.
• A POSIX thread scheduler that provides POSIX thread scheduling support in

user-space (processes) while keeping the VxWorks task scheduling.
• A kernel scheduler replacement framework that allows users to implement

customized schedulers. See documentation for more information

T.B. Skaali, Department of Physics, University of Oslo 15FYS 4220/9220 - 2011 - Lecture #7

VxWorks task scheduling (cont)
• The kernel has 256 priority levels, numbered 0 through 255.

Priority 0 is the highest and priority 255 is the lowest.
– All application tasks should be in the priority range from 100 to 255.
– Tasks are assigned a priority when created. One can also change a task's priority

level while it is executing by calling taskPrioritySet(). The ability to change task
priorities dynamically allows applications to track precedence changes in the real
world.

• Round-robin
– A round-robin scheduling algorithm attempts to share the CPU fairly among all ready

tasks of the same priority. Round-robin scheduling uses time slicing to achieve fair
allocation of the CPU to all tasks with the same priority. Each task, in a group of tasks
with the same priority, executes for a defined interval or time slice.

– It may be useful to use round-robin scheduling in systems that execute the same
application in more than one process. In this case, multiple tasks would be executing
the same code, and it is possible that a task might not relinquish the CPU to a task of
the same priority running in another process (running the same binary). Note that
round-robin scheduling is global, and controls all tasks in the system (kernel and
processes); it is not possible to implement round-robin scheduling for selected
processes. Round-robin scheduling is enabled by calling kernelTimeSlice(ticks),
which takes a parameter for a time slice, or interval. If ticks = 0 round-robin is
disabled. This interval is the amount of time each task is allowed to run before
relinquishing the processor to another equal-priority task. Thus, the tasks rotate, each
executing for an equal interval of time. No task gets a second slice of time before all
other tasks in the priority group have been allowed to run.

T.B. Skaali, Department of Physics, University of Oslo 16FYS 4220/9220 - 2011 - Lecture #7

VxWorks task scheduling (cont)
• Priority-bases preemtive

– VxWorks supply routines for pre-emption locks which prevent context switches .

• Round-Robin

T.B. Skaali, Department of Physics, University of Oslo 17FYS 4220/9220 - 2011 - Lecture #7

What follows are presentation on scheduling from the
book by Burns & Wellings , plus some add-ons.
The goal is to demonstrate numerical methods
for analysis of scheduling behaviour

Scheduling

 In general, a scheduling scheme provides two features:

– An algorithm for ordering the use of system resources (in
particular the CPUs)

– A means of predicting the worst-case behaviour of the system
when the scheduling algorithm is applied
• It is a good philosophy to assume worst-case behaviour.
The problem is to identfy it.

 The prediction can then be used to confirm the temporal
requirements of the application

Simple Process Model

 The application is assumed to consist of a fixed set of
processes

 All processes are periodic, with known periods
 The processes are completely independent of each

other
 All system's overheads, context-switching times and so

on are ignored (i.e, assumed to have zero cost)
 All processes have a deadline equal to their period (that

is, each process must complete before it is next
released)

 All processes have a fixed worst-case execution time

Notation

B
C
D
I
J
N
P
R

T
U
a-z

Worst-case blocking time for the process (if applicable)
Worst-case computation time (WCET) of the process
Deadline of the process (see also R)
The interference time of the process
Release jitter of the process
Number of processes in the system
Priority assigned to the process (if applicable)
Worst-case response time of the process. Stands for when process

terminates, that is, when the job is done!!

Minimum time between process releases (process period)
The utilization of each process (equal to C/T)
The name of a process

Process-Based Scheduling

 Priority scheduling approaches discussed
here:

– Fixed-Priority Scheduling (FPS)
– Earliest Deadline First (EDF)
– Value-Based Scheduling (VBS)

Fixed-Priority Scheduling (FPS)

 This is the most widely used approach and is the main
focus of this course

 Each process has a fixed, static, priority which is
computer pre-run-time

 The runnable processes are executed in the order
determined by their priority

 In Real-Time systems, the “priority” of a process is
derived from its temporal requirements, not its
importance to the correct functioning of the system or its
integrity. (Well, there is some interdependency here!)

Earliest Deadline First (EDF) Scheduling

 The runnable processes are executed in the order
determined by the absolute deadlines of the processes

 The next process to run being the one with the shortest
(nearest) deadline

 Although it is usual to know the relative deadlines of
each process (e.g. 25ms after release, i.e. startup), the
absolute deadlines are computed at run time and hence
the scheme is described as dynamic

Value-Based Scheduling (VBS)

 If a system can become overloaded then the use of
simple static priorities or deadlines is not sufficient; a
more adaptive scheme is needed

 This often takes the form of assigning a value to each
process and employing an on-line value-based
scheduling algorithm to decide which process to run
next

Preemption and Non-preemption
 With priority-based scheduling, a high-priority process may

be released during the execution of a lower priority one
 In a preemptive scheme, there will be an immediate switch

to the higher-priority process
 With non-preemption, the lower-priority process will be

allowed to complete before the other executes
 Preemptive schemes enable higher-priority processes to be

more reactive, and hence they are preferred
 Alternative strategies allow a lower priority process to

continue to execute for a bounded time
 These schemes are known as deferred preemption or

cooperative dispatching
 Schemes such as EDF and VBS can also take on a pre-

emptive or non pre-emptive form

FPS and Rate Monotonic Priority Assignment

 Each process is assigned a (unique) priority based on
its period; the shorter the period, the higher the priority

 I.e, for two processes i and j,

 This assignment is optimal in the sense that if any
process set can be scheduled (using pre-emptive
priority-based scheduling) with a fixed-priority
assignment scheme, then the given process set can
also be scheduled with a rate monotonic assignment
scheme

 Note, priority 1 is here the lowest (least) priority.
For VxWorks Wind priorities the scale is inverted!

P jPiT jT i

FYS 4220/9220 - 2011 - Lecture #7 27

Rate-monotonic scheduling

 Theorem:
 Given a set of periodic tasks and preemptive

priority scheduling, then assigning priorities
such that the tasks with shorter periods have
higher priorities (rate-monotonic), yields an
optimal scheduling algorithm.
 Liu, C.L and Layland, J.W., ”Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment”,
journal of the ACM, Vol. 20, No. 1, 1973

Example Priority Assignment

Process Period, T Priority, P
a 25 5
b 60 3
c 42 4
d 105 1
e 75 2

Note, only relative priority values are relevant

Utilisation-Based Analysis

 For D=T task sets only
 A simple, sufficient but not necessary, schedulability test

exists:

)12(/1

1

N
N

i i

i N
T
CU

 NU as 69.0
Liu and Layland

Utilization Bounds

N Utilization bound
1 100.0%
2 82.8%
3 78.0%
4 75.7%
5 74.3%

10 71.8%

Approaches 69.3% asymptotically

Process Period ComputationTime Priority Utilization
T C P U

a 50 12 1 0.24
b 40 10 2 0.25
c 30 10 3 0.33

Process Set A

 The combined utilization is 0.82 (or 82%)
 This is above the threshold for three processes (0.78)

and, hence, this process set fails the utilization test

Time-line for Process Set A

0 10 20 30 40 50 60

Units of time

process - T

Process Release Time

Process Completion Time
Deadline Met
Process Completion Time
Deadline Missed

Executing

Preempted

Note! Process ”c” has the highest priority

a 50 10 of 12

c 30 10 of 10 10 of 10

b 40 10 of 10 10 of 10

Units of total

Process Period ComputationTime Priority Utilization
T C P U

a 80 32 1 0.400
b 40 5 2 0.125
c 16 4 3 0.250

Process Set B

 The combined utilization is 0.775
 This is below the threshold for three processes (0.78)

and, hence, this process set will meet all its deadlines

Process Period ComputationTime Priority Utilization
T C P U

a 80 40 1 0.50
b 40 10 2 0.25
c 20 5 3 0.25

Process Set C

 The combined utilization is 1.0
 This is above the threshold for three processes (0.78)

but the process set will meet all its deadlines. (Just a
lucky combination of C and T!)

– Well, the overhead (context switching, clock interrupt handling
etc) has been assumed to be zero, which is not true!!

Time-line for Process Set C

Time

Process

0 10 20 30 40 50 60 70 80

c 5 of 5 5 of 5 5 of 5 5 of 5

b 10 of 10 10 of 10

a 5 of 40 20 of 40 25 of 40 40 of 40

Note! Process ”c” has the highest priority

Process Release Time

Process Completion Time
Deadline Met

Preempted

Executing

1
1

N

i
i

i

T
C

Utilization-based Test for EDF

 Superior to FPS; it can support high utilizations. However
 FPS is easier to implement as priorities are static
 EDF is dynamic and requires a more complex run-time

system which will have higher overhead
 It is easier to incorporate processes without deadlines into

FPS; giving a process an arbitrary deadline is more artificial
 It is easier to incorporate other factors into the notion of

priority than it is into the notion of deadline
 During overload situations

– FPS is more predictable; Low priority process miss their deadlines first
– EDF is unpredictable; a domino effect can occur in which a large

number of processes miss deadlines

A much simpler test

Response-Time Analysis

 Here task i's worst-case response time, R, is calculated first and
then checked (trivially) with its deadline

where I is the interference (CPU utilization) from higher priority tasks

R D

iii ICR

0 10 20 30 40 50 60 70 80

c 5 of 5 5 of 5 5 of 5 5 of 5

b 10 of 10 10 of 10

Note! Process ”c” has the highest priority

a 5 of 40 20 of 40 25 of 40 40 of 40interferenceinterference

For a detailed presentation, see file Scheduling_BW_ResponseTimeAnalysis.pdf

Calculating R

During R, each higher priority task j will execute a number of
times:

j

i

T
R ReleasesofNumber

Total interference is given by:

j
j

i C
T
R

The ceiling function gives the smallest integer greater than the fractional
number on which it acts. So the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2.

Response Time Equation

j
ihpj

j

i
ii C

T
RCR

)(

Where hp(i) is the set of tasks with priority higher than task i

Can be solved by forming a recurrence relationship:

j
ihpj

j

n
i

i
n
i C

T
wCw

)(

1

The set of values is monotonically non decreasing
When the solution to the equation has been found,
must not be greater that (e.g. 0 or)

1 n
i

n
i ww

,..,...,,, 210 n
iiii wwww

0
iw

iR iC

Response Time Algorithm
for i in 1..N loop -- for each process in turn

n := 0

loop
calculate new
if then

exit value found
end if
if then

exit value not found
end if
n := n + 1

end loop
end loop

i
n
i Cw :

1n
iw

n
i

n
i ww 1

n
ii wR

i
n
i Tw 1

Implemented in the FYS4220 VxWorks program FPS_analysis.c

/* Fixed Priority Analysis, ref B & W */
/* The process parameters are organized from highest

|to lowest priorities, i.e. from shortest periods */
int FPS()
{

int T[3] = {T1,T2,T3}; % defined elsewhere */
int C[3] = {C1,C2,C3}; % defined elsewhere */
int R[3], W[3][10];
int i, j, n, k, q, N = 3, converge = 1;

/* loop over the processes, cf. algorithm in 13.5 */
for (i = 0; i < N; i++)
{

n = 0;
W[i][n] = C[i];

/* max 10 iterations, cf. array W */
for (k = 0; k < 10; k++)
{

W[i][n+1] = C[i];

/* summa over higher priority processes, (13.5) */
for (j = i-1; j >= 0; j--)

{
q = W[i][n]/T[j];
if (W[i][n] > q*T[j]) q = q+1;
W[i][n+1] = W[i][n+1] + q*C[j];
}

#ifdef DEBUG
printf("- i,n,Wn,Wn+1 = %d %d %d %d\n",

i,n,W[i][n],W[i][n+1]);
#endif

/* test for convergence */
if (W[i][n+1] == W[i][n])

{
R[i] = W[i][n];
printf("- converged R[%d] = %d\n", i, R[i]);
break;
};

if (W[i][n+1] > T[i])
{
printf("- R[i] > T[i] for i = %d, abort\n", i);
converge = 0;
break;
}

n++;
}

}
if (converge == 0)

{
printf("- response analysis did not converge\n");
return (ERROR);
}

/* compare worst-case response with period */
for (i = 0; i < N; i++)

{
printf("- proc %d, T = %3d, worst-case response %3d",

(i+1), T[i], R[i]);
if (R[i] <= T[i]) printf(" OK\n");
else printf(" FAILURE\n");
}

return (OK);
}

Process Period ComputationTime Priority
T C P

a 7 3 3
b 12 3 2
c 20 5 1

Process Set D

3aR

6

63
7
63

63
7
33

3

2

1

0

b

b

b

b

R

w

w

w

173
12
143

7
145

143
12
113

7
115

113
12
53

7
55

5

3

2

1

0

c

c

c

c

w

w

w

w

20

203
12
203

7
205

203
12
173

7
175

5

4

c

c

c

R

w

w

T.B. Skaali, Department of Physics, University of Oslo 43FYS 4220/9220 - 2011 - Lecture #7

Demo: Response Time Analysis FPS_analysis.c coded for VxWorks

• Running the program on process set D
– Code not shown here, only printouts

T.B. Skaali, Department of Physics, University of Oslo 44FYS 4220/9220 - 2011 - Lecture #7

Response Time Analysis - VxWorks
• P1 – P2 – P3 scheduling according to set D: all deadlines met

T.B. Skaali, Department of Physics, University of Oslo 45FYS 4220/9220 - 2011 - Lecture #7

Response Time Analysis (cont)

• What happens when P2 computation time is increased from 3 to 4?

Process Period ComputationTime Priority Response time
T C P R

a 80 40 1 80
b 40 10 2 15
c 20 5 3 5

Revisiting: Process Set C

 The combined utilization is 1.0
 This was above the ulilization threshold for three processes (0.78),

therefore it failed the test
 However, a response time analysis shows that the process set will just

meet its deadlines. FPS_analysis.c shows two marginal overruns.
 RTA Is sufficient and necessary . If the process set passes the test

they will meet all their deadlines; if they fail the test then, at run-time, a
process will miss its deadline (unless the computation time
estimations themselves turn out to be pessimistic)

Worst-Case Execution Time - WCET

 Obtained by either measurement or analysis

 The problem with measurement is that it is difficult to be
sure when the worst case has been observed

 The drawback of analysis is that an effective model of
the processor (including caches, pipelines, memory wait
states and so on) must be available. In real life this
is simply not feasible.

WCET— Finding C

Most analysis techniques involve two distinct activities.

 The first takes the process and decomposes its code
into a directed graph of basic blocks

 These basic blocks represent straight-line code.
 The second component of the analysis takes the

machine code corresponding to a basic block and uses
the processor model to estimate its worst-case
execution time

 Once the times for all the basic blocks are known, the
directed graph can be collapsed

 Experimental approaches: see following pages

T.B. Skaali, Department of Physics, University of Oslo 49FYS 4220/9220 - 2011 - Lecture #7

VxWorks timexLib
• timexLib – execution timer facilities
 ROUTINES

timexInit() - include the execution timer library
timexClear() - clear the list of function calls to be timed
timexFunc() - specify functions to be timed
timexHelp() - display synopsis of execution timer facilities
timex() - time a single execution of a function or functions
timexN() - time repeated executions of a function or group of functions
timexPost() - specify functions to be called after timing
timexPre() - specify functions to be called prior to timing
timexShow() - display the list of function calls to be timed

 DESCRIPTION
 This library contains routines for timing the execution of programs, individual

functions, and groups of functions. The VxWorks system clock is used as a
time base. Functions that have a short execution time relative to this time base
can be called repeatedly to establish an average execution time with an
acceptable percentage of error.

 Comment: quite useful!

T.B. Skaali, Department of Physics, University of Oslo

Using the Real-Time clock

• If a routine can be executed a large number of times, a 60 Hz
Real-Time clock can give a good estimate
– To obtain a good accuracy the number of loops must be large such

that rounding-off errors is acceptable.
– However, one can easily get fooled by such repetitive execution!

After the first loop the code and data will probably be cached,
which means that one will basically measure a cache based
timing. To get a worst-case value: disable the caches!

.
time_t starttime, stoptime, timer;

starttime = time(&timer); /* calendar time in seconds */
/* Execute many_loops os whatever it may be*/

.
stoptime = time(&timer);
microseconds_per_loop = 1000000*(stoptime-starttime)/many_loops;
.

50FYS 4220/9220 - 2011 - Lecture #7

T.B. Skaali, Department of Physics, University of Oslo

Using instrumentation – state / bus analyzers

• A logic state or a bus analyzer can be used to accurately time
the execution of a routine if the processor can access for
instance VMEbus or PCI bus. One inserts identifiable bus
transactions at the entry and exit of the routine, and the time
difference between these transactions can be accurately
measured.
– This method is more suitable for periods up to a few millisec

• The VxWorks WindView for Tornado and Stethoscope for
Workbench are a very useful tools, but requires a high precision
timer on the processor board in order to make time
measurements in the microsecond range
– We will take a closer look at Stethoscope in a later lecture

51FYS 4220/9220 - 2011 - Lecture #7

T.B. Skaali, Department of Physics, University of Oslo

Characteristics of Periodic and Sporadic processes

• Periodic:
– Activate regularly between fixed time intervals
– Used for polling, monitoring and sampling

• However, do not try to use periodic pro cesses for sampling say audio at 44 kHz!

– Predetermined amount of work (execution time) every period

• Sporadic
– Event driven – some external signal or change
– Used for fault detection, change of operating modes, etc
– Sporadic processes can be handled as equivalent periodic

processes if they take little time to execute

• Aperiodic processes:
– Sporadic which do not have a minimum inter-arrival time.

The distinction between Sporadic and Aperiodic is mainly an issue for computer
scientists, ref numerous papers one can find on scheduling

52FYS 4220/9220 - 2011 - Lecture #7

Sporadic Processes

 Sporadic processes have a minimum inter-arrival time
 They also require D<T

 The response time algorithm for fixed priority scheduling
works perfectly for values of D less than T as long as
the stopping criteria becomes

 It also works perfectly well with any priority ordering —
hp(i) always gives the set of higher-priority processes

i
n

i DW 1

Aperiodic Processes
 These do not have minimum inter-arrival times
 Can run aperiodic processes at a priority below the priorities

assigned to hard processes, therefore, they cannot steal, in a pre-
emptive system, resources from the hard processes

 This does not provide adequate support to soft processes which will
often miss their deadlines

 To improve the situation for soft processes, a server can be
employed.

 Servers protect the processing resources needed by hard
processes but otherwise allow soft processes to run as soon as
possible.

 POSIX supports Sporadic Servers
http://faculty.cs.tamu.edu/bettati/Courses/663/2007C/Slides/aperiodic_sporadic.pdf
http://www.usenix.org/publications/login/standards/22.posix.html

Hard and Soft Processes

 In many situations the worst-case figures for sporadic
processes are considerably higher than the averages

 Interrupts often arrive in bursts and an abnormal sensor
reading may lead to significant additional computation
 How to handle hardware malfunction is a key issue in

Real-Time systems, more about that in a later
lecture

 Measuring schedulability with worst-case figures may
lead to very low processor utilizations being observed in
the actual running system

General Guidelines

Rule 1 — all processes should be schedulable using
average execution times and average arrival rates

Rule 2 — all hard real-time processes should be
schedulable using worst-case execution times and
worst-case arrival rates of all processes (including soft)

 A consequent of Rule 1 is that there may be situations in
which it is not possible to meet all current deadlines

 This condition is known as a transient overload
 Rule 2 ensures that no hard real-time process will miss

its deadline
 If Rule 2 gives rise to unacceptably low utilizations for

“normal execution” then action must be taken to reduce
the worst-case execution times (or arrival rates)

Process Interactions and Blocking

 If a process is suspended waiting for a lower-priority
process to complete some required computation then
the priority model is, in some sense, being undermined

 It is said to suffer priority inversion

 If a process is waiting for a lower-priority process, it is
said to be blocked

Priority Inversion

 To illustrate an extreme example of priority inversion,
consider the executions of four periodic processes: a, b, c
and d; and two resources: Q and V

Process Priority Execution Sequence Release Time
a 1 EQQQQE 0
b 2 EE 2
c 3 EVVE 2
d 4 EEQVE 4

Example of Priority Inversion
Process

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Executing

Executing with Q locked

Preempted

Executing with V locked

Blocked

Process d has the highest priority

Priority Inheritance
 If process p is blocking process q, then p runs with q's

priority. In the diagram below, q corresponds to d, while
both a and c can be p

a

b

c

d(q)

0 2 4 6 8 10 12 14 16 18

Process

T.B. Skaali, Department of Physics, University of Oslo

VxWorks Mutual-Exclusion semaphores and Priority inversion

• The mutual-exclusion semaphore is a specialized binary semaphore
designed to address issues inherent in mutual exclusion, including
priority inversion, deletion safety, and recursive access to resources.

• The fundamental behavior of the mutual-exclusion semaphore is
identical to the binary semaphore, with the following exceptions:

– It can be used only for mutual exclusion.
– It can be given only by the task that took it.
– The semFlush() operation is illegal.

• Priority inversion problem:

61FYS 4220/9220 - 2011 - Lecture #7

T.B. Skaali, Department of Physics, University of Oslo

VxWorks Priority inheritance

• In the figure below, priority inheritance solves the problem of priority
inversion by elevating the priority of t3 to the priority of t1 during the time
t1 is blocked on the semaphore. This protects t3, and indirectly t1, from
preemption by t2. The following example creates a mutual-exclusion
semaphore that uses the priority inheritance algorithm:

– semId = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);
• Other VxWorks facilities which implement priority inheritance: next page

62FYS 4220/9220 - 2011 - Lecture #7

T.B. Skaali, Department of Physics, University of Oslo

VxWorks POSIX Mutexes and Condition Variable

• Thread mutexes (mutual exclusion variables) and condition variables
provide compatibility with the POSIX 1003.1c standard. They perform
essentially the same role as VxWorks mutual exclusion and binary
semaphores (and are in fact implemented using them). They are available
with pthreadLib. Like POSIX threads, mutexes and condition variables
have attributes associated with them. Mutex attributes are held in a data
type called pthread_mutexattr_t, which contains two attributes, protocol
and prioceiling.

• The protocol mutex attribute describes how the mutex variable deals with
the priority inversion problem described in the section for VxWorks mutual-
exclusion semaphores.

– Attribute Name: protocol
– Possible Values: PTHREAD_PRIO_INHERIT (default) and PTHREAD_PRIO_PROTECT
– Access Routines: pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol()

• Because it might not be desirable to elevate a lower-priority thread to a
too-high priority, POSIX defines the notion of priority ceiling. Mutual-
exclusion variables created with priority protection use the
PTHREAD_PRIO_PROTECT value.

63FYS 4220/9220 - 2011 - Lecture #7

Priority Ceiling Protocols

Two other protocol to minimize blocking:

 Original ceiling priority protocol
 Immediate ceiling priority protocol

Will not be discussed further here

POSIX

 POSIX supports priority-based scheduling, and has options
to support priority inheritance and ceiling protocols

 Priorities may be set dynamically
 Within the priority-based facilities, there are four policies:

– FIFO: a process/thread runs until it completes or it is blocked
– Round-Robin: a process/thread runs until it completes or it is blocked

or its time quantum has expired
– Sporadic Server: a process/thread runs as a sporadic server
– OTHER: an implementation-defined

 For each policy, there is a minimum range of priorities that
must be supported; 32 for FIFO and round-robin

 The scheduling policy can be set on a per process and a per
thread basis

POSIX

 Threads may be created with a system contention
option, in which case they compete with other system
threads according to their policy and priority

 Alternatively, threads can be created with a process
contention option where they must compete with other
threads (created with a process contention) in the
parent process
– It is unspecified how such threads are scheduled relative to

threads in other processes or to threads with global contention

 A specific implementation must decide which to support

Other POSIX Facilities

POSIX allows:

 priority inheritance to be associated with mutexes
(priority protected protocol= ICPP)

 message queues to be priority ordered
 functions for dynamically getting and setting a thread's

priority
 threads to indicate whether their attributes should be

inherited by any child thread they create

