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   1
Introduction

1.1 About This Document 1

1.2 Supported Architectures 2

1.1  About This Document 

This document provides information specific to VxWorks development on all 
supported VxWorks target architectures. The following topics are discussed for 
each architecture:

■ Interface Variations

Information on changes or additions made to particular VxWorks features in 
order to support an architecture or processor.

■ Architecture Considerations

Special features and limitations of the target architecture, including a figure 
showing the VxWorks memory layout for the architecture.

■ Migrating Your BSP 

Architecture-specific information on how to migrate your BSP from an earlier 
version of VxWorks to VxWorks 6.x. (See the VxWorks Migration Guide for 
general migration information). 
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■ Reference Material

Sources for current development information on your target architecture.

In addition, this document includes an appendix that details architecture-specific 
information related to building VxWorks applications and libraries.

For general information on the Wind River Workbench development 
environment’s cross-development tools, see the Wind River Workbench User’s Guide 
or the VxWorks Command-Line Tools User’s Guide. For more information on the 
VxWorks operating system, see the VxWorks Kernel Programmer’s Guide or the 
VxWorks Application Programmer’s Guide. 

1.2  Supported Architectures

This document includes information for the following target architectures: 

■ ARM
■ Intel XScale
■ Intel Architecture (Pentium)
■ MIPS
■ PowerPC
■ Renesas SuperH

NOTE:  The product you have purchased may not include support for all 
architectures. For more information, refer to your release note. 
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   2
ARM

2.1 Introduction 3

2.2 Supported Processors 4

2.3 Interface Variations 4

2.4 Architecture Considerations 8

2.5 Migrating Your BSP 17

2.6 Reference Material 20

2.1  Introduction

VxWorks for ARM provides the Wind River Workbench development tools and 
the VxWorks operating system for the Advanced RISC Machines (ARM) family of 
architectures. ARM is a compact core that operates at a low power level.

NOTE:  This release of VxWorks for ARM supports the standard 32-bit instruction 
set only, in big-endian (ARM Architecture Version 5 processors only) and 
little-endian configurations. It does not support the 16-bit instruction set (the 
Thumb instruction set). 
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2.2  Supported Processors 

VxWorks for ARM supports the following ARM architectures:

■ ARM Architecture Version 5 CPUs running in ARM state, in big- or 
little-endian mode.

■ ARM Architecture Version 6 CPUs running in ARM state, in little-endian 
mode.

The following processor cores are supported:

2.3  Interface Variations

This section describes particular features and routines that are specific to ARM 
targets in one of the following ways:

■ They are available only on ARM targets.

■ They use parameters specific to ARM targets.

■ They have special restrictions or characteristics on ARM targets.

For more complete documentation on these routines, see the individual reference 
entries.

2.3.1  Restrictions on cret( ) and tt( )

The cret( ) and tt( ) routines make assumptions about the standard prolog for 
routines. If routines are written in assembly language, or in another language that 

ARM 926ej-s ARM Architecture Version 5 core, big- or little-endian. 
ARM 1136jf-s ARM Architecture Version 6 core, little-endian.

NOTE:  VxWorks for ARM is built around ARM processor cores rather than specific 
ARM-based chips. This allows VxWorks to support hundreds of ARM derivatives. 
If your chip is based on any of the above listed processor cores, it is supported by 
this release. 
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generates a different prolog, the cret( ) and tt( ) routines may generate unexpected 
results. 

The VxWorks kernel is built without a dedicated frame pointer. This is also the 
default build option for user application code. As such, cret( ) and tt( ) cannot 
provide backtrace information. To enable backtracing for user code using the GNU 
compiler, add -fno-omit-frame-pointer to the application’s compiler 
command-line options. (Backtracing for user code cannot be enabled using the 
Wind River Compiler.)

tt( ) does not report the parameters to C functions as it cannot determine these from 
the code generated by the compiler.

The tt( ) routine cannot be used for backtracing kernel code. 

2.3.2  cacheLib 

The cacheLock( ) and cacheUnlock( ) routines always return ERROR (see 
2.4.8 Caches, p.12). Use of the cache and use of the MMU are closely linked on ARM 
processors. Consequently, if cacheLib is used, vmLib is also required. In addition, 
cacheLib and vmLib calls must be coordinated. For more information, see 
2.4.9 Memory Management Unit (MMU), p.13.

The definition of the symbolic constant _CACHE_ALIGN_SIZE is not related to the 
defined CPU type (the latter now defines an architecture). Rather, it is related to the 
cache type of the specific CPU being used. Therefore, code (such as device drivers) 
for which it is necessary to know the cache line size should use the variable 
cacheArchAlignSize instead.

2.3.3  dbgLib 

In order to maintain compatibility with hardware-assisted debuggers, VxWorks 
for ARM uses only software breakpoints. When you set a software breakpoint, 
VxWorks replaces an instruction with a known undefined instruction. VxWorks 
restores the original code when the breakpoint is removed; if memory is examined 
or disassembled, the original code is shown.

! CAUTION:  The kernel is compiled without backtrace structures. For this reason, 
tt( ) does not work within the kernel routines, and cret( ) can sometimes work 
incorrectly. Breakpoints and single-stepping work, even if the code is compiled 
without backtrace structures. 
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2.3.4  dbgArchLib 

If you are using the target shell, the following additional architecture-specific 
routines are available: 

psrShow( ) 
Displays the symbolic meaning of a specified processor status register (PSR) 
value on the standard output.

cpsr( ) 
Returns the contents of the current processor status register (CPSR) of the 
specified task.

2.3.5  intALib 

intLock( ) and intUnlock( ) 
The routine intLock( ) returns the I bit from the CPSR as the lock-out key for 
the interrupt level prior to the call to intLock( ). The routine intUnlock( ) takes 
this value as a parameter. For ARM, these routines control the CPU interrupt 
mask directly. They do not manipulate the interrupt levels in the interrupt 
controller chip.

intIFLock( ) and intIFUnLock( ) 
The routine intIFLock( ) returns the I and F bits from the CPSR as the lock-out 
key in an analogous fashion, and the routine intIFUnlock( ) takes that value as 
a parameter. Like intLock( ) and intUnlock( ), these routines control the CPU 
interrupt mask directly. The intIFLock( ) routine is not a replacement for 
intLock( ); it should only be used by code (such as FIQ setup code) that 
requires that both the IRQ and the FIQ be disabled.

2.3.6  intArchLib 

ARM processors generally have no on-chip interrupt controllers to handle the 
interrupts multiplexed on the IRQ pin. Control of interrupts is a BSP-specific 
matter. All of these routines are connected by function pointers to routines that 
must be provided in ARM BSPs by a standard interrupt controller driver. For 
general information on interrupt controller drivers, see Wind River AppNote46, 
Standard Interrupt Controller Devices. (VxWorks application notes are available on 
the Wind River Online Support Web site at https://secure.windriver.com
/windsurf/knowledgebase.html.) For special requirements or limitations, see the 
appropriate interrupt controller device driver documents.



2  ARM
2.3  Interface Variations

7

2

intLibInit( ) 
This routine initializes the interrupt architecture library. It is usually called 
from sysHwInit2( ) in the BSP code. 

STATUS intLibInit(nLevels, nVecs, mode)

The mode argument specifies whether interrupts are handled in preemptive 
mode (INT_PREEMPT_MODEL) or non-preemptive mode 
(INT_NON_PREEMPT_MODEL). 

intEnable( ) and intDisable( ) 
The intEnable( ) and intDisable( ) routines affect the masking of interrupts in 
the BSP interrupt controller and do not affect the CPU interrupt mask.

intVecSet( ) and intVecGet( ) 
The intVecSet( ) and intVecGet( ) routines are not supported for ARM and are 
not present in this release.

intVecShow( ) 
The intVecShow( ) routine is not supported for ARM and is not present in this 
release. 

intLockLevelSet( ) and intLockLevelGet( ) 
The intLockLevelSet( ) and intLockLevelGet( ) routines are not supported for 
ARM. The routines are present in this release but are not functional.

intVecBaseSet( ) and intVecBaseGet( ) 
The intVecBaseSet( ) and intVecBaseGet( ) routines are not supported for 
ARM. The routines are present in this release but are not functional.

intUninitVecSet( ) 
You can use the intUninitVecSet( ) routine to install a default interrupt 
handler for all uninitialized interrupt vectors. The routine is called with the 
vector number as the only argument.

2.3.7  vmLib 

As mentioned for cacheLib, caching and virtual memory are linked on ARM 
processors. Use of vmLib requires that cacheLib be included as well, and that calls 
to the two libraries be coordinated. For more information, see 2.4.9 Memory 
Management Unit (MMU), p.13.
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2.3.8  vxALib 

mmuReadId( ) 
The mmuReadId( ) routine is provided to return the processor ID on 
processors with MMUs that provide such an ID. This routine should not be 
called on CPUs that do not have this type of MMU, doing so causes an 
undefined instruction exception.

vxTas( ) 
The test-and-set primitive vxTas( ) provides a C-callable interface to the ARM 
SWPB (swap byte) instruction. 

2.3.9  vxLib 

The vxMemProbe( ) routine, which probes an address for a bus error, is supported 
by trapping data aborts. If your BSP hardware does not generate data aborts when 
illegal addresses are accessed, vxMemProbe( ) does not return the expected 
results. The BSP can provide an alternative routine by inserting the address of the 
alternate routine in the global variable _func_vxMemProbeHook.

2.4  Architecture Considerations

This section describes characteristics of the ARM processor that you should keep 
in mind as you write a VxWorks application. The following topics are addressed:

■ processor mode 
■ byte order 
■ ARM and Thumb state 
■ unaligned accesses 
■ interrupts and exceptions 
■ divide-by-zero handling 
■ floating-point support 
■ caches 
■ memory management unit (MMU)
■ memory layout 
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For comprehensive documentation on the ARM architecture and on specific 
processors, see the ARM Architecture Reference Manual and the data sheets for your 
target processor.

2.4.1  Processor Mode 

VxWorks for ARM executes mainly in 32-bit supervisor mode (SVC32). When 
exceptions occur that cause the CPU to enter other modes, the kernel generally 
switches to SVC32 mode for most of the processing. Tasks running within a 
real-time process (RTP) run in user mode. 

2.4.2  Byte Order

ARM CPUs include support for both little-endian and big-endian byte order. 
However, this release of VxWorks for ARM provides support for big-endian byte 
order on ARM Architecture Version 5 processors only. Little-endian byte order 
support is included for all supported processors. 

2.4.3  ARM and Thumb State

VxWorks for ARM supports the 32-bit instruction set (ARM state) only. The 16-bit 
instruction set (Thumb state) is not supported. 

2.4.4  Unaligned Accesses

On ARM CPUs, unaligned 32-bit accesses have well-defined behavior and can 
often be used to improve performance. Many of the routines in the VxWorks 
libraries use such accesses. For this reason, unaligned access faults should not be 
enabled (on those CPUs with MMUs that support this functionality).

NOTE:  This release does not include support for the 26-bit processor modes, which 
are obsolete. 
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2.4.5  Interrupts and Exceptions

When an ARM interrupt or exception occurs, the CPU switches to one of several 
exception modes, each of which has a number of dedicated registers. In order to 
make the handlers reentrant, the stub routines that VxWorks installs to trap 
interrupts and exceptions switch from exception mode to SVC (supervisor) mode 
for further processing. The handler cannot be reentered while executing in an 
exception because reentry destroys the link register. When an exception or 
base-level interrupt handler is installed by a call to VxWorks, the address of the 
handler is stored for use by the stub when the mode switching is complete. The 
handler returns to the stub routine to restore the processor state to what it was 
before the exception occurred. Exception handlers (excluding interrupt handlers) 
can modify the state to be restored by changing the contents of the register set that 
is passed to the handler.

ARM processors do not, in general, have on-chip interrupt controllers. All 
interrupts except FIQs are multiplexed on the IRQ pin (see Fast Interrupt (FIQ), 
p.11). Therefore, routines must be provided within your BSP to enable and disable 
specific device interrupts, to install handlers for specific device interrupts, and to 
determine the cause of the interrupt and dispatch the correct handler when an 
interrupt occurs. These routines are installed by setting function pointers. (For 
examples, see the interrupt control modules in installDir/vxworks-6.2/target/
src/drv/intrCtl.) A device driver then installs an interrupt handler by calling 
intConnect( ). For more information on interrupt controllers, see Wind River 
AppNote46, Standard Interrupt Controller Devices.

Exceptions other than interrupts are handled in a similar fashion: the exception 
stub switches to SVC mode and then calls any installed handler. Handlers are 
installed through calls to excVecSet( ), and the addresses of installed handlers can 
be read through calls to excVecGet( ).

Interrupt Stacks

VxWorks for ARM uses a separate interrupt stack in order to avoid having to make 
task interrupt stacks big enough to accommodate the needs of interrupt handlers. 
The ARM architecture has a dedicated stack pointer for its IRQ interrupt mode. 
However, because the low-level interrupt handling code must be reentrant, IRQ 
mode is only used on entry to, and exit from, the handler; an interrupt destroys the 
IRQ mode link register. The majority of interrupt handling code runs in SVC mode 
on a dedicated SVC-mode interrupt stack.
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Fast Interrupt (FIQ) 

Fast interrupt (FIQ) is not handled by VxWorks. BSPs can use FIQ as they wish, but 
VxWorks code should not be called from FIQ handlers. If this functionality is 
required, the preferred mechanism is to downgrade the FIQ to an IRQ by software 
access to appropriately-designed hardware which generates an IRQ. The IRQ 
handler can then make such VxWorks calls as are normally allowed from interrupt 
context.

2.4.6  Divide-by-Zero Handling 

There is no native divide-by-zero exception on the ARM architecture. In keeping 
with this, neither the GNU compiler nor the Wind River Compiler toolchain 
synthesize a software interrupt for this event. 

2.4.7  Floating-Point Support

VxWorks for ARM is built using the assumption that there is no hardware 
floating-point support present on the target. To perform floating-point arithmetic, 
VxWorks instead relies on highly tuned software modules. These modules are 
automatically linked into the VxWorks kernel and are available to any application 
that requires floating-point support.

The floating-point library used by VxWorks for ARM is licensed from ARM Ltd. 
For more information on the floating-point library, see http://www.arm.com.

Return Status 

The floating-point math functions supplied with this release do not set errno. 
However, return status can be obtained by calling __ieee_status( ). 

The __ieee_status( ) prototype is as follows:

unsigned int __ieee_status (unsigned int mask, unsigned int flags);

For example: 

d = pow( 0,0 );
status = __ieee_status(FE_IEEE_ALL_EXCEPT, 0);
printf( "pow( 0, 0 )=%g, __ieee_status=%#x\n", d, status );
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2.4.8  Caches

ARM processor cores have a variety of cache configurations. This section discusses 
these configurations and their relation to the ARM memory management facilities. 
The following subsections augment the information in the VxWorks Kernel 
Programmer’s Guide: Memory Management.

ARM-based CPUs have one of three cache types: no cache, unified instruction and 
data caches, or separate instruction and data caches. Caches are also available in a 
variety of sizes. An in-depth discussion regarding ARM caches is beyond the scope 
of this document. For more detailed information, see the ARM Ltd. Web site.

In addition to the collection of caches, ARM cores can also have one of three types 
of memory management schemes: no memory management, a memory protection 
unit (MPU), or a full page-table-based memory management unit (MMU). 
Detailed information regarding these memory management schemes can also be 
found on the ARM Web site.

Table 2-1 summarizes supported ARM cache and MMU configurations. 

For all ARM caches, the cache capabilities must be used with the MMU to resolve 
cache coherency problems. When the MMU is enabled, the page descriptor for 
each page selects the cache mode, which can be cacheable or non-cacheable. This 
page descriptor is configured by filling in the sysPhysMemDesc[ ] structure 
defined in the BSP installDir/vxworks-6.2/target/config/bspname/sysLib.c file. 

For more information on cache coherency, see the cacheLib reference entry. For 
information on MMU support in VxWorks, see the VxWorks Kernel Programmer’s 
Guide: Memory Management. For MMU information specific to the ARM family, see 
2.4.9 Memory Management Unit (MMU), p.13.

NOTE:  This release does not support the use of a memory protection unit (MPU). 

Table 2-1 Supported ARM Cache and MMU Configurations

Core Cache Type Memory Management

ARM926e 32 KB instruction cache
32 KB data cache/write buffer

Page-table-based MMU

ARM1136jf-s Cache size ranges from 4 KB to 
36 KB and is detected 
automatically during VxWorks 
initialization 

Page-table-based MMU
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Not all ARM caches support cache locking and unlocking. Therefore, VxWorks for 
ARM does not support locking and unlocking of ARM caches. The cacheLock( ) 
and cacheUnlock( ) routines have no effect on ARM targets and always return 
ERROR.

The effects of the cacheClear( ) and cacheInvalidate( ) routines depend on the 
CPU type and on which cache is specified. 

ARM 926ej-s Cache

The ARM 926e has separate instruction and data caches. Both are enabled by 
default. The data cache, if enabled, must be set to copyback mode, as all writes 
from the cache are buffered. USER_D_CACHE_MODE must be set to 
CACHE_COPYBACK and not changed. The instruction cache is not coherent with 
stores to memory. USER_I_CACHE_MODE should be set to 
CACHE_WRITETHROUGH and not changed.

On the ARM 926e, it is not possible to invalidate one part of the cache without 
invalidating others so, with the data cache specified, the cacheClear( ) routine 
pushes dirty data to memory and then invalidates the cache lines. For the 
cacheInvalidate( ) routine, unless the ENTIRE_CACHE option is specified, the 
entire data cache is invalidated.

ARM 1136jf-s Cache 

The ARM 1136jf-s has separate instruction and data caches. Both are enabled by 
default. The data cache can be set to copyback or write-through mode on a 
per-page basis. The instruction cache is not coherent with stores to memory. 
USER_I_CACHE_MODE should be set to CACHE_WRITETHROUGH and not 
changed.

2.4.9  Memory Management Unit (MMU)

On ARM CPUs, a specific configuration for each memory page can be set. The 
entire physical memory is described by sysPhysMemDesc[ ], which is defined in 
installDir/vxworks-6.2/target/config/bspname/sysLib.c. This data structure is made 
up of state flags for each page or group of pages. All of the page states defined in 
the VxWorks Kernel Programmer’s Guide: Memory Management are available for 
virtual memory pages.

All memory management is performed on small pages that are 4 KB in size. The 
ARM concepts of sections or large pages are not used.
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Cache and Memory Management Interaction

The caching and memory management functions for ARM processors are both 
provided on-chip and are very closely interlinked. In general, caching functions on 
ARM require the MMU to be enabled. Consequently, if cache support is configured 
into VxWorks, MMU support is also included by default. On some CPUs, the 
instruction cache can be enabled (in the hardware) without enabling the MMU. 
This is not a recommended configuration.

Only certain combinations of MMU and cache-enabling are valid, and there are no 
hardware interlocks to enforce this. In particular, enabling the data cache without 
enabling the MMU can lead to undefined results. Consequently, if an attempt is 
made to enable the data cache by means of the cacheEnable( ) routine before the 
MMU has been enabled, the data cache is not enabled immediately. Instead, flags 
are set internally so that if the MMU is enabled later, the data cache is enabled with 
it. Similarly, if the MMU is disabled, the data cache is also disabled until the MMU 
is reenabled.

Support is also included for CPUs that provide a special area in the address space 
to be read in order to flush the data cache. ARM BSPs must provide a virtual 
address (sysCacheFlushReadArea) for a readable, cached block of address space 
that is used for nothing else. If the BSP has an area of the address space that does 
not actually contain memory but is readable, it can set the pointer to point to that 
area. If it does not, it should allocate some RAM for this area. In either case, the area 
must be marked as readable and cacheable in the page tables. 

The declaration can be included in the BSP installDir/vxworks-6.2/target
/config/bspname/sysLib.c file. For example:

UINT32 sysCacheFlushReadArea[D_CACHE_SIZE/sizeof(UINT32)];

Alternatively, the declaration can appear in the BSP romInit.s and sysALib.s files. 
For example:

.globl _sysCacheFlushReadArea

.equ _sysCacheFlushReadArea, 0x50000000

A declaration in installDir/vxworks-6.2/target/config/bspname/sysLib.c of the 
following form cannot be used: 

UINT32 * sysCacheFlushReadArea = (UINT32 *) 0x50000000;

This form cannot be used because it introduces another level of indirection, 
causing the wrong address to be used for the cache flush buffer.

Some systems cannot provide an environment where virtual and physical 
addresses are the same. This is particularly important for those areas containing 
page tables. To support these systems, the BSP must provide mapping functions to 
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convert between virtual and physical addresses: these mapping functions are 
provided as parameters to the routines cachetypeLibInstall( ) and 
mmutypeLibInstall( ). For more information, see BSP Considerations for Cache and 
MMU, p.15.

BSP Considerations for Cache and MMU 

When building a BSP, the instruction set is selected by choosing the architecture 
(that is, by defining CPU to be ARMARCHx); the cache and MMU types are selected 
within the BSP by defining appropriate values for the macros ARMMMU and 
ARMCACHE and calling the appropriate routines (as shown in Table 2-2) to 
support the cache and MMU. 

The values definable for MMU include the following:

The values definable for cache include the following:

Defined types are in the header file installDir/vxworks-6.2/target/h/arch/arm/
arm.h. (Support for other caches and MMU types may be added from time to time.)

For example, to define the MMU type for an ARM 926e on the command line, 
specify the following option when you invoke the compiler:

-DARMMMU=ARMMMU_926E

To provide the same information in a header or source file, include the following 
line in the file:

#define ARMMMU ARMMMU_926E

Table 2-2 shows the MMU routines required for each processor type. 

ARMMMU_NONE
ARMMMU_926E 
ARMMMU_1136JF 

ARMCACHE_NONE
ARMCACHE_926E 
ARMCACHE_1136JF 

Table 2-2 Cache and MMU Routines for Individual Processor Types

Processor Cache Routine MMU Routine

ARM 926e cacheArm926eLibInstall( ) mmuArm926eLibInstall( ) 

ARM 1136jf cacheArm1136jfLibInstall( ) mmuArm1136jfLibInstall( ) 
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Each of these routines takes two parameters: function pointers to routines to 
translate between virtual and physical addresses and vice-versa. If the default 
address map in the BSP is such that virtual and physical addresses are identical 
(this is normally the case), the parameters to this routine can be NULL pointers. If 
the virtual-to-physical address mapping is such that the virtual and physical 
addresses are not the same, but the mapping is as described in the 
sysPhysMemDesc[ ] structure, the routines mmuPhysToVirt( ) and 
mmuVirtToPhys( ) can be used. If the mapping is different, translation routines 
must be provided within the BSP. For further details, see the reference entries for 
these routines. 

MMU and cache support installation routines must be called as early as possible in 
the BSP initialization (before cacheLibInit( ) and vmLibInit( )). This can most 
easily be achieved by putting them in a sysHwInit0( ) routine within sysLib.c and 
then defining macros in config.h as follows:

#define INCLUDE_SYS_HW_INIT_0
#define SYS_HW_INIT_0() sysHwInit0 ()

During certain cache and MMU operations (for example, cache flushing), 
interrupts must be disabled. You may want your BSP to have control over this 
procedure. The contents of the variable cacheArchIntMask determine which 
interrupts are disabled. This variable has the value I_BIT | F_BIT, indicating that 
both IRQs and FIQs are disabled during these operations. If a BSP requires that 
FIQs be left enabled, the contents of cacheArchIntMask should be changed to 
I_BIT. Use extreme caution when changing the contents of this variable from its 
default.

2.4.10  Memory Layout

The VxWorks memory layout (real or virtual, as appropriate) is the same for all 
ARM processors. Figure 2-1 shows memory layout, labeled as follows:

Vectors 
Table of exception/interrupt vectors.

FIQ Code 
Reserved for FIQ handling code.

Shared Memory Anchor 
Anchor for the shared memory network and VxMP shared memory objects (if 
there is shared memory on the board). 

Exception Pointers 
Pointers to exception routines, which are used by the vectors.
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Boot Line 
ASCII string of boot parameters.

Exception Message 
ASCII string of fatal exception message.

Initial Stack 
Initial stack for usrInit( ), until usrRoot( ) is allocated a stack.

System Image 
VxWorks itself (three sections: text, data, and bss). The entry point for 
VxWorks is at the start of this region.

WDB Memory Pool 
The size of this pool depends on the macro WDB_POOL_SIZE, which defaults 
to one-sixteenth of the system memory pool. The target server uses this space 
to support host-based tools. Modify WDB_POOL_SIZE under INCLUDE_WDB.

System Memory Pool 
Size depends on size of the system image. The sysMemTop( ) routine returns 
the end of the free memory pool.

All addresses shown in Figure 2-1 are relative to the start of memory for a 
particular target board. The start of memory (corresponding to 0x0 in the memory 
layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under 
INCLUDE_MEMORY_CONFIG for each target.

2.5  Migrating Your BSP 

In order to convert a VxWorks BSP from an earlier VxWorks release to 
VxWorks 6.x, you must make certain architecture-independent changes. This 
includes making changes to custom BSPs designed to work with a VxWorks 5.5 
release and not supported or distributed by Wind River. 

This section includes changes and usage caveats specifically related to migrating 
ARM BSPs to VxWorks 6.x. For more information on migrating BSPs to this release, 
see the VxWorks Migration Guide. 

NOTE:  The initial stack and system image addresses are configured within the BSP.
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Figure 2-1 VxWorks System Memory Layout (ARM)
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VxWorks 5.5 Compatibility 

The memory layout shown in Figure 2-1 differs from that used for VxWorks 5.5. 
The position of the boot line and exception message have been moved to allow 
memory page zero protection (kernel hardening). 

By default, all BSPs included with this release have the 
T2_BOOTROM_COMPATIBILITY option enabled in config.h. This retains 
compatibility with VxWorks 5.5 boot ROMs. In this configuration, the symbols are 
defined in config.h as follows: 

#define SM_ANCHOR_OFFSET 0x600 
#define BOOT_LINE_OFFSET 0x700 
#define EXC_MSG_OFFSET 0x800 

However, kernel hardening is not supported in this configuration. In order to 
enable kernel hardening, you must undefine T2_BOOTROM_COMPATIBILITY and 
use a VxWorks 6.x boot ROM. 

If you create a Workbench project based on a VxWorks 5.5-compatible BSP (that is, 
a BSP that has T2_BOOTROM_COMPATIBILITY enabled) and you wish to remove 
the compatibility and enable kernel hardening, you must do one of the following:

■ Update your BSP. Then, create a new project based on the modified BSP, and 
enable INCLUDE_KERNEL_HARDENING. 

or: 

■ Undefine T2_BOOTROM_COMPATIBILITY. Enable 
INCLUDE_KERNEL_HARDENING and update the values of 
SM_ANCHOR_OFFSET, BOOT_LINE_OFFSET, and EXC_MSG_OFFSET to 
0x1000, 0x1100, and 0x1200 respectively. 

NOTE:  VxWorks 5.5-compatible BSPs cannot support kernel hardening. 
T2_BOOTROM_COMPATIBILITY and INCLUDE_KERNEL_HARDENING are 
mutually exclusive. If both of these components are defined in your config.h file, 
Workbench issues a warning when you attempt to build your project. 
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2.6  Reference Material 

Comprehensive information regarding ARM hardware behavior and 
programming is beyond the scope of this document. ARM Ltd. provides several 
hardware and programming manuals for the ARM processor on its Web site:

http://www.arm.com/documentation/

Wind River recommends that you consult the hardware documentation for your 
processor or processor family as necessary during BSP development. 

ARM Development Reference Documents 

The information given in this section is current at the time of writing; should you 
decide to use these documents, you may wish to contact the manufacturer for the 
most current version.

■ Advanced RISC Machines, Architectural Reference Manual, Second Edition, 
ARM DDI 0100 E, ISBN 0-201-73719-1. 

■ ARM System Architecture, by Steve Furber. Addison-Wesley, 1996. 
ISBN 0-201-403352-8.

■ ARM Procedure Call Standard (APCS), a version of which is available on the 
Internet. Contact ARM for information on the latest version.

NOTE:  This document describes the architecture in general, including 
architectural standards for instruction bit fields. More specific information is 
found in the data sheets for individual processors, which conform to different 
architecture specification versions. 
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3.1  Introduction

VxWorks for Intel XScale provides the Wind River Workbench development tools 
and the VxWorks operating system for the Intel XScale family of processors. The 
XScale microarchitecture features an ARM-compatible compact core that operates 
at a low power level. The core design supports both big- and little-endian 
configurations.



VxWorks
Architecture Supplement, 6.2  

22

3.2  Supported Processors 

VxWorks for Intel XScale supports XScale architecture CPUs running in ARM 
state, in either big- or little-endian mode (for example, IXDP425 and IXDP465 
CPUs).

3.3  Interface Variations

This section describes particular features and routines that are specific to XScale 
targets in one of the following ways:

■ They are available only on XScale targets.

■ They use parameters specific to XScale targets.

■ They have special restrictions or characteristics on XScale targets.

For more complete documentation on these routines, see the individual reference 
entries.

3.3.1  Restrictions on cret( ) and tt( ) 

The cret( ) and tt( ) routines make assumptions about the standard prolog for 
routines. If routines are written in assembly language, or in another language that 
generates a different prolog, the cret( ) and tt( ) routines may generate unexpected 
results. 

The VxWorks kernel is built without a dedicated frame pointer. This is also the 
default build option for user application code. As such, cret( ) and tt( ) cannot 
provide backtrace information. To enable backtracing for user code using the GNU 
compiler, add -fno-omit-frame-pointer to the application’s compiler 
command-line options. (Backtracing for user code cannot be enabled using the 
Wind River Compiler.) 

NOTE:  VxWorks for Intel XScale provides support for the XScale architecture 
rather than for specific CPUs. If your chip is based on the XScale architecture, it 
should be supported by this release. 
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tt( ) does not report the parameters to C functions, as it cannot determine these 
from the code generated by the compiler.

The tt( ) routine cannot be used for backtracing kernel code. 

3.3.2  cacheLib 

The cacheLock( ) and cacheUnlock( ) routines always return ERROR (see 
3.4.8 Caches, p.29). Use of the cache and use of the MMU are closely linked on 
XScale processors. Consequently, if cacheLib is used, vmLib is also required. In 
addition, cacheLib and vmLib calls must be coordinated. For more information, 
see 3.4.9 Memory Management Unit (MMU), p.30.

The definition of the symbolic constant _CACHE_ALIGN_SIZE is not related to the 
defined CPU type (the latter now defines an architecture). Rather, it is related to the 
cache type of the specific CPU being used. Therefore, code (such as device drivers) 
in which it is necessary to know the cache line size should use the variable 
cacheArchAlignSize instead.

3.3.3  dbgLib 

In order to maintain compatibility with hardware-assisted debuggers, VxWorks 
for Intel XScale uses only software breakpoints. When you set a software 
breakpoint, VxWorks replaces an instruction with a known undefined instruction. 
VxWorks restores the original code when the breakpoint is removed; if memory is 
examined or disassembled, the original code is shown.

3.3.4  dbgArchLib 

If you are using the target shell, the following additional architecture-specific 
routines are available: 

psrShow( ) 
Displays the symbolic meaning of a specified processor status register (PSR) 
value on the standard output.

! CAUTION:  The kernel is compiled without backtrace structures. For this reason, 
tt( ) does not work within the kernel routines, and cret( ) can sometimes work 
incorrectly. Breakpoints and single-stepping should work, even if the code is 
compiled without backtrace structures. 
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cpsr( ) 
Returns the contents of the current processor status register (CPSR) of the 
specified task.

3.3.5  intALib 

intLock( ) and intUnlock( ) 
The routine intLock( ) returns the I bit from the CPSR as the lock-out key for 
the interrupt level prior to the call to intLock( ). The routine intUnlock( ) takes 
this value as a parameter. For XScale processors, these routines control the 
CPU interrupt mask directly. They do not manipulate the interrupt levels in 
the interrupt controller chip.

intIFLock( ) and intIFUnLock( ) 
The routine intIFLock( ) returns the I and F bits from the CPSR as the lock-out 
key in an analogous fashion, and the routine intIFUnlock( ) takes that value as 
a parameter. Like intLock( ) and intUnlock( ), these routines control the CPU 
interrupt mask directly. The intIFLock( ) is not a replacement for intLock( ); it 
should only be used by code (such as FIQ setup code) that requires that both 
IRQ and FIQ be disabled.

3.3.6  intArchLib 

XScale processors generally have no on-chip interrupt controllers to handle the 
interrupts multiplexed on the IRQ pin. Control of interrupts is a BSP-specific 
matter. All of these routines are connected by function pointers to routines that 
must be provided in the XScale BSPs by a standard interrupt controller driver. For 
general information on interrupt controller drivers, see Wind River AppNote46, 
Standard Interrupt Controller Devices. (VxWorks application notes are available on 
the Wind River Online Support Web site at https://secure.windriver.com
/windsurf/knowledgebase.html.) For special requirements or limitations, see the 
appropriate interrupt controller device driver documents.

intLibInit( ) 
This routine initializes the interrupt architecture library. It is usually called 
from sysHwInit2( ) in the BSP code. 

STATUS intLibInit(nLevels, nVecs, mode)

The mode argument specifies whether interrupts are handled in preemptive 
mode (INT_PREEMPT_MODEL) or non-preemptive mode 
(INT_NON_PREEMPT_MODEL).
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intEnable( ) and intDisable( ) 
The intEnable( ) and intDisable( ) routines affect the masking of interrupts in 
the BSP interrupt controller and do not affect the CPU interrupt mask.

intVecSet( ) and intVecGet( ) 
The intVecSet( ) and intVecGet( ) routines are not supported for XScale and 
are not present in this release.

intVecShow( ) 
The intVecShow( ) routine is not supported for XScale and is not present in 
this release. 

intLockLevelSet( ) and intLockLevelGet( ) 
The intLockLevelSet( ) and intLockLevelGet( ) routines are not supported for 
XScale. The routines are present in this release but are not functional.

intVecBaseSet( ) and intVecBaseGet( ) 
The intVecBaseSet( ) and intVecBaseGet( ) routines are not supported for 
XScale. The routines are present in this release but are not functional.

intUninitVecSet( )
You can use the intUninitVecSet( ) routine to install a default interrupt 
handler for all uninitialized interrupt vectors. The routine is called with the 
vector number as the only argument.

3.3.7  vmLib 

As mentioned for cacheLib, caching and virtual memory are linked on XScale 
processors. Use of vmLib requires that cacheLib be included as well, and that calls 
to the two libraries be coordinated. For more information, see 3.4.9 Memory 
Management Unit (MMU), p.30.

3.3.8  vxALib 

mmuReadId( ) 
The mmuReadId( ) routine is provided to return the processor ID on 
processors with MMUs that provide such an ID. This routine should not be 
called on CPUs that do not have this type of MMU, doing so causes an 
undefined instruction exception.

vxTas( ) 
The test-and-set primitive vxTas( ) provides a C-callable interface to the ARM 
SWPB (swap byte) instruction. 
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3.3.9  vxLib 

The vxMemProbe( ) routine, which probes an address for a bus error, is supported 
by trapping data aborts. If your BSP hardware does not generate data aborts when 
illegal addresses are accessed, vxMemProbe( ) does not return the expected 
results. The BSP can provide an alternative routine by inserting the address of the 
alternate routine in the global variable _func_vxMemProbeHook.

3.4  Architecture Considerations

This section describes characteristics of the XScale processor that you should keep 
in mind as you write a VxWorks application. The following topics are addressed:

■ processor mode 
■ byte order 
■ ARM and Thumb state 
■ unaligned accesses 
■ interrupts and exceptions 
■ divide-by-zero handling 
■ floating-point support 
■ caches 
■ memory management unit (MMU)
■ memory layout 

For comprehensive documentation on the XScale architecture and on specific 
processors, see the ARM Architecture Reference Manual and the data sheets for the 
appropriate processors.

3.4.1  Processor Mode 

VxWorks for Intel XScale executes mainly in 32-bit supervisor mode (SVC32). 
When exceptions occur that cause the CPU to enter other modes, the kernel 
generally switches to SVC32 mode for most of the processing. Tasks running 
within a real-time process (RTP) run in user mode. 

NOTE:  This release does not include support for the 26-bit processor modes, which 
are obsolete.
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3.4.2  Byte Order 

XScale CPUs include support for both little-endian and big-endian byte orders; 
libraries for both byte orders are included in this release. 

3.4.3  ARM and Thumb State 

VxWorks for Intel XScale supports 32-bit instructions (ARM state) only. The 16-bit 
instructions set (Thumb state) is not supported.

3.4.4  Unaligned Accesses

Unaligned accesses are not allowed on XScale CPUs and result in a data abort. 

3.4.5  Interrupts and Exceptions 

When an XScale interrupt or exception occurs, the CPU switches to one of several 
exception modes, each of which has a number of dedicated registers. In order to 
make the handlers reentrant, the stub routines that VxWorks installs to trap 
interrupts and exceptions switch from the exception mode to SVC (supervisor) 
mode for further processing. The handler cannot be reentered while executing in 
an exception because reentry destroys the link register. When an exception or 
base-level interrupt handler is installed by a call to VxWorks, the address of the 
handler is stored for use by the stub when the mode switching is complete. The 
handler returns to the stub routine to restore the processor state to what it was 
before the exception occurred. Exception handlers (excluding interrupt handlers) 
can modify the state to be restored by changing the contents of the register set that 
is passed to the handler.

XScale processors do not, in general, have on-chip interrupt controllers. All 
interrupts except FIQs are multiplexed on the IRQ pin (see Fast Interrupt (FIQ), 
p.28). Therefore, routines must be provided within your BSP to enable and disable 
specific device interrupts, to install handlers for specific device interrupts, and to 
determine the cause of the interrupt and dispatch the correct handler when an 
interrupt occurs. These routines are installed by setting function pointers. (For 
examples, see the interrupt control modules in installDir/vxworks-6.2/target/
src/drv/intrCtl.) A device driver then installs an interrupt handler by calling 
intConnect( ). For more information on interrupt controllers, see Wind River 
AppNote46, Standard Interrupt Controller Devices.
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Exceptions other than interrupts are handled in a similar fashion: the exception 
stub switches to SVC mode and then calls any installed handler. Handlers are 
installed by calls to excVecSet( ), and the addresses of installed handlers can be 
read through calls to excVecGet( ).

Interrupt Stacks

VxWorks for Intel XScale uses a separate interrupt stack in order to avoid having 
to make task interrupt stacks big enough to accommodate the needs of interrupt 
handlers. The XScale architecture has a dedicated stack pointer for its IRQ 
interrupt mode. However, because the low-level interrupt handling code must be 
reentrant, IRQ mode is only used on entry to, and exit from, the handler; an 
interrupt destroys the IRQ mode link register. The majority of interrupt handling 
code runs in SVC mode on a dedicated SVC-mode interrupt stack.

Fast Interrupt (FIQ)

Fast interrupt (FIQ) is not handled by VxWorks. BSPs can use FIQ as they wish, but 
VxWorks code should not be called from FIQ handlers. If this functionality is 
required, the preferred mechanism is to downgrade the FIQ to an IRQ by software 
access to appropriately-designed hardware which generates an IRQ. The IRQ 
handler can then make such VxWorks calls as are normally allowed from interrupt 
context.

3.4.6  Divide-by-Zero Handling 

There is no native divide-by-zero exception on the XScale architecture. In keeping 
with this, neither the GNU compiler nor the Wind River Compiler toolchain 
synthesize a software interrupt for this event. 

3.4.7  Floating-Point Support

VxWorks for Intel XScale is built using the assumption that there is no hardware 
floating-point support present on the target. To perform floating-point arithmetic, 
VxWorks instead relies on highly tuned software modules. These modules are 
automatically linked into the VxWorks kernel and are available to any application 
that requires floating-point support.
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The floating-point library used by VxWorks for Intel XScale is licensed from 
ARM Ltd. For more information on the floating-point library, see 
http://www.arm.com.

Return Status 

The floating-point math functions supplied with this release do not set errno. 
However, return status can be obtained by calling __ieee_status( ). 

The __ieee_status( ) prototype is as follows:

unsigned int __ieee_status (unsigned int mask, unsigned int flags);

For example: 

d = pow( 0,0 );
status = __ieee_status(FE_IEEE_ALL_EXCEPT, 0);
printf( "pow( 0, 0 )=%g, __ieee_status=%#x\n", d, status );

3.4.8  Caches

XScale processor cores have a variety of cache configurations. This section 
discusses these configurations and their relation to the XScale memory 
management facilities. The following subsections augment the information in the 
VxWorks Kernel Programmer’s Guide: Memory Management.

XScale-based CPUs have separate instruction and data caches, as well as write 
buffers. Caches are also available in a variety of sizes and may include minicaches. 
An in-depth discussion regarding XScale caches is beyond the scope of this 
document. For more detailed information, see the Intel Web site.

In addition to the collection of caches, XScale cores also implement a full 
page-table-based memory management unit (MMU). Detailed information 
regarding the memory management scheme can also be found on the Intel Web 
site.

Table 3-1 summarizes some of the common XScale cache and MMU 
configurations.

Table 3-1 Supported XScale Cache and MMU Configurations

Core Cache Type Memory Management

XScale 32 KB instruction cache
32 KB data cache/write buffer
2 KB mini data cache 

Page-table-based MMU 
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For all XScale caches, the cache capabilities must be used with the MMU to resolve 
cache coherency problems. When the MMU is enabled, the page descriptor for 
each page selects the cache mode, which can be cacheable or non-cacheable. This 
page descriptor is configured by filling in the sysPhysMemDesc[ ] structure 
defined in the BSP installDir/vxworks-6.2/target/config/bspname/sysLib.c file.

For more information on cache coherency, see the cacheLib reference entry. For 
information on MMU support in VxWorks, see the VxWorks Kernel Programmer’s 
Guide: Memory Management. For MMU information specific to the XScale family, 
see 3.4.9 Memory Management Unit (MMU), p.30.

Not all XScale caches support cache locking and unlocking. Therefore, VxWorks 
for Intel XScale does not support locking and unlocking of XScale caches. The 
cacheLock( ) and cacheUnlock( ) routines have no effect on XScale targets and 
always return ERROR.

The effects of the cacheClear( ) and cacheInvalidate( ) routines depend on the 
CPU type and on which cache is specified.

All XScale processors contain an instruction cache and a data cache. By default, 
VxWorks uses both caches; that is, both are enabled. To disable the instruction 
cache, highlight the USER_I_CACHE_ENABLE macro in the Params tab under 
INCLUDE_CACHE_ENABLE and remove the value TRUE; to disable the data cache, 
highlight the USER_D_CACHE_ENABLE macro and remove TRUE.

It is not appropriate to think of the mode of the instruction cache. The instruction 
cache is a read cache that is not coherent with stores to memory. Therefore, code 
that writes to cacheable instruction locations must ensure instruction cache 
validity. Set the USER_I_CACHE_MODE parameter in the Params tab under 
INCLUDE_CACHE_MODE to CACHE_WRITETHROUGH, and do not change it. 

With the data cache specified, the cacheClear( ) routine first pushes dirty data to 
memory and then invalidates the cache lines, while the cacheInvalidate( ) routine 
simply invalidates the lines (in which case, any dirty data contained in the lines is 
lost). With the instruction cache specified, both routines have the same result: they 
invalidate all of the instruction cache. Because the instruction cache is separate 
from the data cache, there can be no dirty entries in the instruction cache, so no 
dirty data can be lost.

3.4.9  Memory Management Unit (MMU)

On XScale CPUs, a specific configuration for each memory page can be set. The 
entire physical memory is described by sysPhysMemDesc[ ], which is defined in 
installDir/vxworks-6.2/target/config/bspname/sysLib.c. This data structure is made 
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up of state flags for each page or group of pages. All of the page states defined in 
the VxWorks Kernel Programmer’s Guide: Memory Management are available for 
virtual memory pages. In addition, XScale-based processors support the 
MMU_STATE_CACHEABLE_MINICACHE (or 
VM_STATE_CACHEABLE_MINICACHE) flag, allowing page-level control of the 
CPU minicache.

All memory management is performed on small pages that are 4 KB in size. The 
ARM concepts of sections or large pages are not used.

XScale Memory Management Extensions and VxWorks

The Intel XScale processor core introduces extensions to ARM Architecture 
Version 5. Among these extensions are the addition of the X bit and the P bit. This 
section describes VxWorks support for these extensions. 

The Intel XScale processor extends the page attributes defined by the C and B bits 
in the page descriptors with an additional X bit. This bit allows four more 
attributes to be encoded when X=1. These new encodings include allocating data 
for the mini-data cache and the write-allocate cache.

If you are using the MMU, the cache modes are controlled by the cache mode 
values set in the sysPhysMemDesc[ ] table defined in installDir/vxworks-6.2
/target/config/bspname/sysLib.c within the BSP directory.

The XScale processor retains the ARM definitions of the C and B encoding when 
X= 0, which differs from the behavior on the first generation Intel StrongARM 
processors. The memory attribute for the mini-data cache has been relocated and 
replaced with the write-through caching attribute. 

When write-allocate is enabled, a store operation that misses the data cache 
(cacheable data only) generates a line fill. If disabled, a line fill only occurs when a 
load operation misses the data cache (cacheable data only).

Write-through caching causes all store operations to be written to memory, 
whether they are cacheable or not cacheable. This feature is useful for maintaining 
data cache coherency.

NOTE:  This section supplements the documentation provided with the 
vmBaseLib and vmLib reference entries and in the VxWorks Kernel Programmer’s 
Guide: Memory Management. 
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The type extension (TEX) field is present in several of the descriptor types. In the 
XScale processor, only the least significant bit (LSB) of this field is used; this is 
called the X bit.

A small page descriptor does not have a TEX field. For this type of descriptor, TEX 
is implicitly zero; that is, this descriptor operates as if the X bit has a zero value.

The X bit, when set, modifies the meaning of the C and B bits.

When examining these bits in a descriptor, the instruction cache only utilizes the C 
bit. If the C bit is clear, the instruction cache considers a code fetch from that 
memory to be non-cacheable, and does not fill a cache entry. If the C bit is set, 
fetches from the associated memory region are cached.

If the X bit for a descriptor is zero, the C and B bits operate as mandated by the 
ARM architecture. If the X bit for a descriptor is one, the C and B bits meaning is 
extended.

If the MMU is disabled, all data accesses are non-cacheable and non-bufferable. 
This is the same behavior as when the MMU is enabled, and a data access uses a 
descriptor with X, C, and B all set to zero.

The X, C, and B bits determine when the processor should place new data into the 
data cache. The cache places data into the cache in lines (also called blocks). Thus, 
the basis for making a decision about placing new data into the cache is called a 
line allocation policy.

If the line allocation policy is read-allocate, all load operations that miss the cache 
request a 32-byte cache line from external memory and allocate it into either the 
data cache or mini-data cache (this assumes the cache is enabled). Store operations 
that miss the cache do not cause a line to be allocated.

If a read/write-allocate is in effect, and if cache is enabled, load or store operations 
that miss the cache request a 32-byte cache line from external memory.

The other policy determined by the X, C, and B bits is the write policy. A 
write-through policy instructs the data cache to keep external memory coherent by 
performing stores to both external memory and the cache. A write-back policy 
only updates external memory when a line in the cache is cleaned or needs to be 
replaced with a new line. Generally, write-back provides higher performance 
because it generates less data traffic to external memory.

The write buffer is always enabled which means stores to external memory are 
buffered. The K bit in the auxiliary control register (CP15, register 1) is a global 
enable/disable for allowing coalescing in the write buffer. When this bit disables 
coalescing, no coalescing occurs regardless of the value of the page attributes. If 
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this bit enables coalescing, the page attributes X, C, and B are examined to see if 
coalescing is enabled for each region of memory.

All reads and writes to external memory occur in program order when coalescing 
is disabled in the write buffer. If coalescing is enabled in the write buffer, writes 
may occur out of program order to external memory. In this case, program 
correctness is maintained by comparing all store requests with all valid entries in 
the fill buffer.

The write buffer and fill buffer support a drain operation such that before the next 
instruction executes, all XScale processor data requests to external memory—
including the write operations in the bus controller—are complete.

Writes to a region marked non-cacheable and non-bufferable (page attributes C, B, 
and X set to zero) cause execution to stall until the write completes.

If software is running in a privileged mode, it can explicitly drain all buffered 
writes.

Non-cache memory (X=0, C=0, and B=0) should only be used if required (as is 
often the case for I/O devices). Accessing non-cacheable memory is likely to cause 
the processor to stall frequently due to the long latency of memory reads.

VxWorks includes support for the X bit and there are now three new states 
supported in vmLib.h that allow you to set up buffers to use these extended states.

The following state flags have been added to vmLib.h: 

If MMU_STATE_CACHEABLE_MINICACHE (or 
VM_STATE_CACHEABLE_MINICACHE) is set, pages set to this state using 
vmStateSet( ) result in those pages being cached in the minicache, and not in the 
main data cache.

MMU_STATE_CACHEABLE_MINICACHE 
(VM_STATE_CACHEABLE_MINICACHE) 

cache policy is determined by the MD 
field of the auxiliary control register 

VM_STATE_EX_CACHEABLE write-back, read/write allocate

VM_STATE_EX_CACHEABLE_NOT

VM_STATE_MASK_EX_CACHEABLE

VM_STATE_EX_BUFFERABLE writes do not coalesce into buffers

VM_STATE_EX_BUFFERABLE_NOT

VM_STATE_MASK_EX_BUFFERABLE
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Calling cacheInvalidate(DATA_CACHE, ENTIRE_CACHE) also invalidates the 
minicache, but in all other aspects, no support is provided for the minicache, and 
you are entirely responsible for ensuring cache coherency.

If INCLUDE_MMU_BASIC and INCLUDE_SHOW_ROUTINES are defined, you may 
use vmContextShow( ) to display a virtual memory context on the standard 
output device. Extended bit states for vmContextShow( ) are defined as:

For more information on the extended page table and X bit support, see the Intel 
XScale Core Developer's Manual (available from Intel). 

Setting the XScale P Bit in VxWorks

The XScale architecture introduces the P bit in the MMU first level page 
descriptors, allowing an application specific standard product (ASSP) to identify a 
new memory attribute. The bi-endian version of the IXP42x processor implements 
the P bit to control address and data byte swapping and requires support for the P 
bit in the first level descriptor and in the auxiliary control register (CP15, Rn 1, 
O2 1). The setting of the P bit in a first level descriptor enables address or data byte 
swapping on a per-section (1 MB) basis. As page table walks are performed with 
the MMU disabled, bit 1 in the auxiliary control register enables byte swapping for 
the page table walks.

Because VxWorks MMU support operates on a 4 KB page basis rather than on 
1 MB regions, support for the P bit on a per region basis is best accomplished with 
a new interface that avoids excessive overhead during MMU initialization. An 
additional interface to the auxiliary control register is required as well.

The architecture-specific support code for the XScale MMU has been modified to 
support the P bit. A byte array of the size NUM_L1_DESCS (the number of first level 
descriptors) has been added. Each byte within the array represents the state of the 
P bit for the corresponding region; zero if the P bit is not to be set and one if it is. 
The default value is zero. For example: 

#if (ARMMMU == ARMMMU_XSCALE)
/*
* The array used to keep XSCALE mmu 'P' bit state for init purposes.
*/

XC- VM_STATE_EX_CACHEABLE_NOT 

XC+ VM_STATE_EX_CACHEABLE 

XB- VM_STATE_EX_BUFFERABLE_NOT 

XB+ VM_STATE_EX_BUFFERABLE 
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LOCAL UCHAR mmuArmXSCALEPBit[NUM_L1_DESCS] =
{
0,
};

#endif /* ARMMMU == ARMMMU_XSCALE */

Four subroutines have been implemented that enable the setting, clearing, and 
querying of the state of the P bit status on a per-region basis and within the CP15 
auxiliary control register. All of the implemented region-specific subroutines have 
two behaviors, one if the MMU is not yet initialized by the current instance of 
VxWorks, and another if it is already initialized.

In the case where the MMU is not yet initialized, the subroutines operate on the 
appropriate bytes within the mmuArmXSCALEPBit array only. When the MMU 
is initialized, the P bit is set on a per-region basis as determined by the state of the 
mmuArmXSCALEPBit array.

When the MMU is initialized, the subroutines operate on the current first level 
descriptor, providing interrupt lockout, cache flushing, and TLB cache invalidates 
as necessary. Additionally, the mmuArmXSCALEPBit array mirrors the state of 
the P bit on a per-region basis.

■ mmuArmXSCALEPBitSet( ) 

STATUS mmuArmXSCALEPBitSet /* Set the P bit in a region 
or regions */

(
void * virtAddr, /* The beginning virtual address */
UINT32 size /* The size in bytes */
)

The virtual address is converted into an index to a 1 MB region within 32 -bit 
virtual address space (rounded down).

The size is converted to the number of 1 MB regions to modify.

If the MMU is not yet initialized, modify only the appropriate areas in the 
mmuArmXSCALEPBit array. 

If the MMU is initialized:

a. Lockout IRQs and FIQs. 

b. Write-enable the pages containing the first level descriptors. 

NOTE:  A virtual address near the end of a 1 MB region and a size of less than 
or equal to 1 MB sets the P bit for the 1 MB region of the virtual address only.
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c. Modify the selected first level descriptors, mirroring each region's state in 
the mmuArmXSCALEPBit array, and flush the data cache for each 
region’s first level descriptor.

d. When all selected regions have been processed, flush and invalidate the 
TLB caches. 

e. Write-protect the pages containing the first level descriptors. 

f. Re-enable IRQs and FIQs. 

ERROR is returned if virtAddr + size overflows the 32-bit virtual address 
space. Otherwise, OK is returned.

■ mmuPArmXSCALEBitClear( ) 

STATUS mmuPArmXSCALEBitClear /* Clear the P bit in a region(s) */
(
void * virtAddr, /* The beginning virtual address */
UINT32 size /* The size in bytes */
) 

The virtual address is converted into an index to a 1 MB region within 32-bit 
virtual address space (rounded down).

The size is converted to the number of 1 MB regions to modify.

If the MMU is not yet initialized, modify only the appropriate bytes in the 
mmuArmXSCALEPBit array.

If the MMU is initialized

a. Lockout IRQs and FIQs. 

b. Write-enable the pages containing the first level descriptors. 

c. Modify the selected first level descriptors, mirroring each region's state in 
the mmuArmXSCALEPBit array, and flush the data cache for each regions 
first level descriptor. 

d. When all selected regions have been processed, flush and invalidate the 
TLB caches. 

e. Write-protect the pages containing the first level descriptors

f. Re-enable IRQs and FIQs. 

NOTE:  A virtual address near the end of a 1 MB region and a size of less than 
or equal to 1 MB clears the P bit for the 1 MB region of the virtual address only.
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ERROR is returned if virtAddr + size overflows 32-bit virtual address space. 
Otherwise, OK is returned.

■ mmuArmXSCALEPBitGet( ) 

STATUS mmuArmXSCALEPBitGet
(
void * virtAddr /* The beginning virtual address */
)

The virtual address is converted into an index to a 1 MB region within 32-bit 
virtual address space (rounded down).

If the MMU is not yet initialized, return the value of the selected byte in the 
mmuArmXSCALEPBit array.

If the MMU is initialized:

a. Return the state of the P bit in the selected first level descriptor.
STATUS mmuArmXSCALEAcrGet

(
void
)

b. Return the contents of the CP15 Auxiliary Control Register, (CP15, 0, r0, c1, 
c0, 1).
void mmuArmXSCALEAcrSet

(
UINT32 acr /@ value to load into ACR @/

)

c. Write the CP15 auxiliary control register with the contents of ACR. 

Setting the P Bit in Virtual Memory Regions 

There are two available methods to set the P bit in a region, or regions, of virtual 
memory. The first, and preferred method, is to modify the sysHwInit0( ) routine 
within installDir/vxworks-6.2/target/config/bspname/sysLib.c to call 
mmuPBitSet( ) prior to the initialization of the MMU.

The second is to modify the state through calls to mmuPBitSet( ) and 
mmuPBitClear( ) during run-time. This method is less desirable due to the impact 
that disabling IRQs and FIQs may have on the application.

An example of the preferred method follows (from installDir/vxworks-6.2
/target/config/bspname/sysLib.c). 

#ifdef INCLUDE_MMU
/* Install the appropriate MMU library and translation routines */
mmuArmXSCALELibInstall (mmuPhysToVirt, mmuVirtToPhys);

#ifdef IXP425_ENABLE_P_BITS
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{
int acrValue;

/* Set all DRAM regions with P bit */
mmuArmXSCALEPBitSet((void *)IXP425_SDRAM_BASE, LOCAL_MEM_SIZE);

#ifdef  INCLUDE_PCI

/* Set PCI regions with P bit */
mmuArmXSCALEPBitSet((void *)IXP425_PCI_BASE, IXP425_PCI_SP_SIZE);
#endif

/* Make table walks use P bit */
acrValue = mmuArmXSCALEAcrGet();
acrValue |= 0x2; /* Set the P bit in the ACR */
mmuArmXSCALEAcrSet( acrValue );
}

#endif /* IXP425_ENABLE_P_BITS */

#endif /* INCLUDE_MMU */

Cache and Memory Management Interaction

The caching and memory management functions on XScale processors are both 
provided on-chip and are very closely interlinked. In general, caching functions on 
XScale require the MMU to be enabled. Consequently, if cache support is 
configured into VxWorks, MMU support is also included by default. On some 
CPUs, the instruction cache can be enabled (in the hardware) without enabling the 
MMU; however, this is not a recommended configuration.

Only certain combinations of MMU and cache enabling are valid, and there are no 
hardware interlocks to enforce this. In particular, enabling the data cache without 
enabling the MMU can lead to undefined results. Consequently, if an attempt is 
made to enable the data cache by means of the cacheEnable( ) routine before the 
MMU has been enabled, the data cache is not enabled immediately. Instead, flags 
are set internally so that if the MMU is enabled later, the data cache is enabled with 
it. Similarly, if the MMU is disabled, the data cache is also disabled, until the MMU 
is reenabled.

Support is provided for BSPs that include separate static RAM for the MMU 
translation tables. This support requires the ability to specify an alternate source of 
memory other than the system memory partition. The BSP should set a global 
function pointer, _func_armPageSource, to point to a routine that returns a 
memory partition identifier describing memory to be used as the source for 
translation table memory. If this function pointer is NULL, the system memory 
partition is used. The BSP must modify the function pointer before calling 
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mmuLibInit( ). The initial memory partition must be large enough for all 
requirements; it does not expand dynamically or overflow into the system memory 
partition if it fills. 

Support is also included for CPUs that provide a special area in the address space 
to be read in order to flush the data cache. XScale BSPs must provide a virtual 
address (sysCacheFlushReadArea) of a readable, cached block of address space 
that is used for nothing else. If the BSP has an area of the address space that does 
not actually contain memory but is readable, it can set the pointer to point to that 
area. If it does not, it should allocate some RAM for this area. In either case, the area 
must be marked as readable and cacheable in the page tables. 

The declaration can be included in the BSP installDir/vxworks-6.2/target
/config/bspname/sysLib.c file. For example:

UINT32 sysCacheFlushReadArea[D_CACHE_SIZE/sizeof(UINT32)];

Alternatively, the declaration can appear in the BSP romInit.s and sysALib.s files. 
For example:

.globl _sysCacheFlushReadArea

.equ _sysCacheFlushReadArea, 0x50000000

A declaration in installDir/vxworks-6.2/target/config/bspname/sysLib.c of the 
following form cannot be used: 

UINT32 * sysCacheFlushReadArea = (UINT32 *) 0x50000000;

This form cannot be used because it introduces another level of indirection, 
causing the wrong address to be used for the cache flush buffer.

Some systems cannot provide an environment where virtual and physical 
addresses are the same. This is particularly important for those areas containing 
page tables. To support these systems, the BSP must provide mapping functions to 
convert between virtual and physical addresses: these mapping functions are 
provided as parameters to the routines cachetypeLibInstall( ) and 
mmutypeLibInstall( ). For more information, see BSP Considerations for Cache and 
MMU, p.40.

All XScale BSPs using CPUs with a minicache must provide a similar virtual 
address (sysMinicacheFlushReadArea) of an area used to flush the minicache. It 
must be marked as cacheable within the minicache (that is, it must have the 
MMU_STATE_CACHEABLE_MINICACHE (or 
VM_STATE_CACHEABLE_MINICACHE state).
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BSP Considerations for Cache and MMU

When building a BSP, the instruction set is selected by choosing the architecture 
(that is, by defining CPU to be XSCALE); the cache and MMU types are selected 
within the BSP by defining appropriate values for the macros ARMMMU and 
ARMCACHE and calling the appropriate routines (as shown in Table 3-2) to 
support the cache and MMU. Setting the preprocessor variables ARMMMU and 
ARMCACHE ensures that support for the appropriate cache and MMU type is 
enabled. 

The values definable for MMU include the following:

The values definable for cache include the following:

Defined types are in the header file installDir/vxworks-6.2/target/h/arch/arm/arm.h. 
(Support for other caches and MMU types may be added from time to time.) 

For example, to define the MMU type for an XScale processor on the command 
line, specify the following option when you invoke the compiler:

-DARMMMU=ARMMMU_XSCALE

To provide the same information in a header or source file, include the following 
line in the file:

#define ARMMMU ARMMMU_XSCALE

Table 3-2 shows the cache and MMU routines required for XScale processors.

Each of these routines take two parameters: function pointers to routines to 
translate between virtual and physical addresses and vice-versa. If the default 
address map in the BSP is such that virtual and physical addresses are identical 
(this is normally the case), the parameters to the routine can be NULL pointers. If 
the virtual-to-physical address mapping is such that the virtual and physical 
addresses are not the same, but the mapping is as described in the 
sysPhysMemDesc[ ] structure, the routines mmuPhysToVirt( ) and 

ARMMMU_NONE
ARMMMU_XSCALE

ARMCACHE_NONE
ARMCACHE_XSCALE

Table 3-2 Cache and MMU Routines for Individual Processor Types

Processor Cache Routine MMU Routine

XScale cacheArmXScaleLibInstall( ) mmuArmXScaleLibInstall( ) 
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mmuVirtToPhys( ) can be used. If the mapping is different, translation routines 
must be provided within the BSP. For further details, see the reference entries for 
the routines. 

MMU and cache support installation routines must be called as early as possible in 
the BSP initialization (before cacheLibInit( ) and vmLibInit( )). This can most 
easily be achieved by putting them in a sysHwInit0( ) routine within sysLib.c and 
then defining the macros in config.h as follows:

#define INCLUDE_SYS_HW_INIT_0
#define SYS_HW_INIT_0() sysHwInit0 ()

During certain cache and MMU operations (for example, cache flushing), 
interrupts must be disabled. You may want your BSP to have control over this 
procedure. The contents of the variable cacheArchIntMask determine which 
interrupts are disabled. This variable has the value I_BIT | F_BIT, indicating that 
both IRQs and FIQs are disabled during these operations. If a BSP requires that 
FIQs be left enabled, the contents of cacheArchIntMask should be changed to 
I_BIT. Use extreme caution when changing the contents of this variable from its 
default.

3.4.10  Memory Layout

The VxWorks memory layout (real or virtual, as appropriate) is the same for all 
XScale processors. Figure 3-1 shows memory layout, labeled as follows:

Vectors 
Table of exception/interrupt vectors.

FIQ Code 
Reserved for FIQ handling code.

Shared Memory Anchor 
Anchor for the shared memory network and VxMP shared memory objects (if 
there is shared memory on the board). 

Exception Pointers 
Pointers to exception routines, which are used by the vectors.

Boot Line 
ASCII string of boot parameters.

Exception Message 
ASCII string of fatal exception message.
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Initial Stack 
Initial stack for usrInit( ), until usrRoot( ) is allocated a stack.

System Image 
VxWorks itself (three sections: text, data, and bss). The entry point for 
VxWorks is at the start of this region.

WDB Memory Pool 
The size of this pool depends on the macro WDB_POOL_SIZE, which defaults 
to one-sixteenth of the system memory pool. The target server uses this space 
to support host-based tools. Modify WDB_POOL_SIZE under INCLUDE_WDB.

System Memory Pool 
Size depends on size of the system image. The sysMemTop( ) routine returns 
the end of the free memory pool.

All addresses shown in Figure 3-1 are relative to the start of memory for a 
particular target board. The start of memory (corresponding to 0x0 in the memory 
layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under 
INCLUDE_MEMORY_CONFIG for each target.

3.5  Migrating Your BSP 

In order to convert a VxWorks BSP from an earlier VxWorks release to 
VxWorks 6.2, you must make certain architecture-independent changes. This 
includes making changes to custom BSPs designed to work with a VxWorks 5.5 
release and not supported or distributed by Wind River. 

This section includes changes and usage caveats specifically related to migrating 
Intel XScale BSPs to VxWorks 6.2. For more information on migrating BSPs to 
VxWorks 6.2, see the VxWorks Migration Guide. 

VxWorks 5.5 Compatibility 

The memory layout shown in Figure 3-1 differs from that used for VxWorks 5.5. 
The position of the boot line and exception message have been moved to allow 
memory page zero protection (kernel hardening). 

NOTE:  The initial stack and system image addresses are configured within the BSP.
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Figure 3-1 VxWorks System Memory Layout (XScale)
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By default, all BSPs included with this release have the 
T2_BOOTROM_COMPATIBILITY option enabled in config.h. This retains 
compatibility with VxWorks 5.5 boot ROMs. In this configuration, the symbols are 
defined in config.h as follows: 

#define SM_ANCHOR_OFFSET 0x600 
#define BOOT_LINE_OFFSET 0x700 
#define EXC_MSG_OFFSET 0x800 

However, kernel hardening is not supported in this configuration. In order to 
enable kernel hardening, you must undefine T2_BOOTROM_COMPATIBILITY and 
use a VxWorks 6.x boot ROM. 

If you create a Workbench project based on a VxWorks 5.5-compatible BSP (that is, 
a BSP that has T2_BOOTROM_COMPATIBILITY enabled) and you wish to remove 
the compatibility and enable kernel hardening, you must do one of the following:

■ Update your BSP. Then, create a new project based on the modified BSP and 
enable INCLUDE_KERNEL_HARDENING. 

or: 

■ Undefine T2_BOOTROM_COMPATIBILITY. Enable 
INCLUDE_KERNEL_HARDENING and update the values of 
SM_ANCHOR_OFFSET, BOOT_LINE_OFFSET, and EXC_MSG_OFFSET to 
0x1000, 0x1100, and 0x1200 respectively. 

3.6  Reference Material 

Comprehensive information regarding Intel XScale hardware behavior and 
programming is beyond the scope of this document. Intel provides several 
hardware and programming manuals for the Intel XScale processor on its Web site:

http://www.intel.com/design/intelxscale

Wind River recommends that you consult the hardware documentation for your 
processor or processor family as necessary during BSP development. 

NOTE:  VxWorks 5.5-compatible BSPs cannot support kernel hardening. 
T2_BOOTROM_COMPATIBILITY and INCLUDE_KERNEL_HARDENING are 
mutually exclusive. If both of these components are defined in your config.h file, 
Workbench issues a warning when you attempt to build your project. 
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ARM Development Reference Documents

The information given in this section is current at the time of writing; should you 
decide to use these documents, you may wish to contact the manufacturer for the 
most current version.

■ Advanced RISC Machines, Architectural Reference Manual, Second Edition, 
ARM DDI 0100 E, ISBN 0-201-73719-1. This document describes the 
architecture in general, including architectural standards for instruction bit 
fields. More specific information is found in the data sheets for individual 
processors, which conform to different architecture specification versions.

■ ARM System Architecture, by Steve Furber. Addison-Wesley, 1996. 
ISBN 0-201-403352-8.

■ ARM Procedure Call Standard (APCS), a version of which is available on the 
Internet. Contact ARM for information on the latest version.
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4.1  Introduction 

This chapter provides information specific to VxWorks development on Intel 
Architecture P5 (Pentium), P6 (PentiumPro, II, III), P7 (Pentium 4), and Pentium M 
family processor targets including their Celeron and Xeon series variants. 

4.2  Supported Processors 

This release supports Intel P5, P6, P7, and Pentium M family processors. This 
section provides information on the characteristics of each of these families, 
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including their major differences. For more information, refer to your target 
hardware documentation. 

The P5 (Pentium) architecture is a third-generation 32-bit CPU. It has a 64-bit data 
bus and a 32-bit address bus, separate 8 KB L1 instruction and data caches, 
superscalar dispatch/execution units, branch prediction, two execution pipelines, 
and a write-back data cache protocol. Some P5 family processors also include 
support for MMX technology. This technology uses the single-instruction, 
multiple-data (SIMD) execution model to perform parallel computations on 
packed integer data contained in the 64-bit MMX registers.

P6 micro-architecture family processors include PentiumPro, Pentium II, Pentium 
III, Pentium M, and their variant Xeon/Celeron processors. P6 is a three-way 
superscalar architecture that executes up to three instructions per clock cycle. It has 
micro-data flow analysis, out-of-order execution, superior branch prediction, and 
speculative execution. Three instruction decode units work in parallel to decode 
object code into smaller operations called micro-ops. These micro-ops can be 
executed out-of-order by the five parallel execution units. The retirement unit 
retires completed micro-ops in their original program order, taking into account 
any branches. The P6 architecture has separate 8 KB L1 instruction and data caches 
and a 256 KB L2 unified cache. The data cache uses the MESI protocol to support a 
more efficient write-back mode. The cache consistency is maintained with the 
MESI protocol and the bus snooping mechanism. Pentium II adds MMX 
technology, new packaging, 16 KB L1 instruction and data caches, and a 256 KB 
(512 KB or 1 MB) L2 unified cache. Pentium III introduces the Streaming SIMD 
Extensions (SSE) that extend the SIMD model with a new set of 128-bit registers 
and the ability to perform SIMD operations on packed single-precision 
floating-point values. Pentium M processors utilize a new micro-architecture in 
order to provide high performance and low power consumption. These processors 
include cache and processor bus power management and large L1 and L2 caches.

The P7 (Pentium 4) processor is based on the NetBurst micro-architecture that 
allows processors to operate at significantly higher clock speeds and performance 
levels. It has a rapid execution engine, hyper pipelined technology, advanced 
dynamic execution, a new cache subsystem, Streaming SIMD Extensions 2 (SSE2), 
and a 400 MHz system bus.

The x86 architecture supports three operating modes: protected mode, 
real-address mode, and virtual-8086 mode. Protected mode is the native operating 
mode of the 32-bit processor. All instructions and architectural features are 
available in this mode for the highest performance and capability. Real-address 
mode provides the programming environment of the Intel 8086 processor. 
Virtual-8086 mode lets the processor execute 8086 software in a protected mode, 



4  Intel Architecture
4.3  Interface Variations

49

4

multitasking environment. VxWorks uses 32-bit protected mode. For more 
information, see the VxWorks Kernel Programmer’s Guide.

4.3  Interface Variations

This section describes particular features and routines that are specific to Intel 
Architecture targets in any of the following ways:

■ available only for Intel Architecture targets 

■ parameters specific to Intel Architecture targets 

■ special restrictions or characteristics on Intel Architecture targets 

For complete documentation, see the reference entries for the libraries, routines, 
and tools discussed in the following sections.

4.3.1  Supported Routines in mathALib 

For Intel Architecture targets, the following double-precision floating-point 
routines are supported: 

The corresponding single-precision floating-point routines are not supported. In 
this release, hyperbolic cosine, sine, and tangent routines are supported. For more 
information, see the reference entry for mathALib and the individual reference 
entries for each routine.

4.3.2  Architecture-Specific Global Variables 

The files sysLib.c and sysALib.s contain the global variables shown in Table 4-1. 

acos( ) asin( ) atan( ) atan2( ) ceil( ) cos( ) 
cosh( ) exp( ) fabs( ) floor( ) fmod( ) infinity( ) 
irint( ) iround( ) log( ) log10( ) log2( ) pow( ) 
round( ) sin( ) sincos( ) sinh( ) sqrt( ) tan( ) 
tanh( ) trunc( ) 
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Table 4-1 Architecture-Specific Global Variables 

Global Variable Value Description

sysCsSuper 0x08 Code selector for the supervisor mode 
task. 

sysCsExc 0x18 Code selector for exceptions. 

sysCsInt 0x20 Code selector for interrupts. 

sysIntIdtType 0x0000fe00
(default)
= trap gate 

0x0000ee00 
= interrupt gate 

This variable is used when VxWorks 
initializes the interrupt vector table. 
The choice of trap gate versus 
interrupt gate affects all interrupts 
(vectors 0x20 through 0xff). 

sysGdt[ ] 0xffff limit (default) The global descriptor table begins 
with five entries. The first is a null 
descriptor. The second and third are 
for task-level routines. The fourth is 
for exceptions. The fifth is for 
interrupt-level routines. If kernel 
hardening is enabled, additional 
entries are added for task gate 
management of the OSM stack. 

sysProcessor 0 = i386
1 = i486
2 = P5/Pentium
4 = P6/PentiumPro, II, 
III, Pentium M
5 = P7/Pentium 4 

The processor type (set by the 
VxWorks sysCpuProbe( ) routine). 

sysCoprocessor 0 = no coprocessor 
1 = 387 coprocessor 
2 = 487 coprocessor 

The type of floating-point coprocessor 
(set by the VxWorks fppProbe( ) 
routine). 

sysCpuId CPUID structure Dynamically obtained processor 
identification and supported features 
(set by VxWorks sysCpuProbe( )). 
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4.3.3  Architecture-Specific Routines 

Table 4-2 provides information for a number of architecture-specific routines. 
Other architecture-specific routines are described throughout this section.

Table 4-2 Architecture-Specific Routines 

Routine Function Header Description

fppArchSwitchHookEnable( ) STATUS fppArchSwitchHookEnable
(BOOL enable) 

Enables or disables the 
architecture-specific FPU 
switch hook routine that 
detects illegal FPU/MMX 
usage. 

fppCtxShow( ) void fppCtxShow 
(FP_CONTEXT * f) 

Prints the contents of a task’s 
floating-point register. 

fppRegListShow( ) void fppRegListShow (void) Prints a list of available 
registers. 

intStackEnable( ) STATUS intStackEnable
(BOOL enable) 

Enables or disables the 
interrupt stack usage. TRUE to 
enable, FALSE to disable

pentiumBts( ) STATUS pentiumBts
(char * pFlag) 

Executes an atomic 
compare-and-exchange 
instruction to set a bit. (P5, P6, 
and P7) 

pentiumBtc( ) STATUS pentiumBtc
(char * pFlag) 

Executes an atomic 
compare-and-exchange 
instruction to clear a bit. (P5, P6, 
and P7) 

pentiumMcaEnable( ) void pentiumMcaEnable
(BOOL enable) 

Enables or disables the MCA 
(machine check architecture). 
(P5, P6, and P7)

pentiumMcaShow( ) void pentiumMcaShow (void) Shows machine check global 
control registers and error 
reporting register banks. (P5, 
P6, and P7) 
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pentiumMsrGet( ) void pentiumMsrGet
(
int address, 
long long int * pData
) 

Gets the contents of the 
specified model specific 
register (MSR). (P5, P6, and P7) 

pentiumMsrInit( ) STATUS pentiumMsrInit (void) Initializes all MSRs. (P5, P6, and 
P7)

pentiumMsrSet( ) void pentiumMsrSet
(
int address,
long long int * pData 
) 

Sets the value of the specified 
MSR. (P5, P6, and P7) 

pentiumMsrShow( ) void pentiumMsrShow (void) Shows all MSRs. (P5, P6, and 
P7)

pentiumMtrrEnable( ) void pentiumMtrrEnable (void) Enables the memory type range 
register (MTRR). (P6 and P7) 

pentiumMtrrDisable( ) void pentiumMtrrDisable (void) Disables the MTRR. (P6 and P7) 

pentiumMtrrGet( ) void pentiumMtrrGet
(MTRR * pMtrr) 

Gets MTRRs to the MTRR table 
specified by the pointer. (P6 
and P7) 

pentiumMtrrSet( ) void pentiumMtrrSet
(MTRR * pMtrr) 

Sets MTRRs from the MTRR 
table specified by the pointer. 
(P6 and P7) 

pentiumPmcStart( ) STATUS pentiumPmcStart
(
int pmcEvtSel0; 
int pmcEvtSel1; 
) 

Starts PMC0 and PMC1. (P5 
and P6) 

pentiumPmcStart0( ) STATUS pentiumPmcStart0
(int pmcEvtSel0) 

Starts PMC0 only. (P5)

pentiumPmcStart1( ) STATUS pentiumPmcStart1
(int pmcEvtSel1) 

Starts PMC1 only. (P5)

pentiumPmcStop( ) void pentiumPmcStop (void) Stops PMC0 and PMC1. (P5 
and P6) 

Table 4-2 Architecture-Specific Routines  (cont’d)

Routine Function Header Description
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pentiumPmcStop0( ) void pentiumPmcStop0 (void) Stops PMC0 only. (P5)

pentiumPmcStop1( ) void pentiumPmcStop1 (void) Stops PMC1 only. (P5 and P6) 

pentiumPmcGet( ) void pentiumPmcGet
(
long long int * pPmc0;
long long int * pPmc1;
) 

Gets the contents of PMC0 and 
PMC1. (P5 and P6) 

pentiumPmcGet0( ) void pentiumPmcGet0
(long long int * pPmc0) 

Gets the contents of PMC0. (P5 
and P6) 

pentiumPmcGet1( ) void pentiumPmcGet1
(long long int * pPmc1) 

Gets the contents of PMC1. (P5 
and P6) 

pentiumPmcReset( ) void pentiumPmcReset (void) Resets PMC0 and PMC1. (P5 
and P6) 

pentiumPmcReset0( ) void pentiumPmcReset0 (void) Resets PMC0. (P5 and P6) 

pentiumPmcReset1( ) void pentiumPmcReset1 (void) Resets PMC1. (P5 and P6) 

pentiumSerialize( ) void pentiumSerialize (void) Serializes by executing the 
CPUID instruction. (P5, P6, and 
P7) 

pentiumPmcShow( ) void pentiumPmcShow
(BOOL zap) 

Shows PMC0 and PMC1, and 
resets them if the parameter 
zap is TRUE. (P5 and P6) 

pentiumTlbFlush( ) void pentiumTlbFlush (void) Flushes the translation 
lookaside buffers (TLBs). (P5, 
P6, and P7) 

pentiumTscReset( ) void pentiumTscReset (void) Resets the timestamp counter 
(TSC). (P5, P6, and P7) 

pentiumTscGet32( ) UINT32 pentiumTscGet32 (void) Gets the lower half of the 64-bit 
TSC. (P5, P6, and P7) 

pentiumTscGet64( ) void pentiumTscGet64
(long long int * pTsc) 

Gets the 64-bit TSC. (P5, P6, and 
P7) 

Table 4-2 Architecture-Specific Routines  (cont’d)

Routine Function Header Description
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sysCpuProbe( ) UINT sysCpuProbe (void) Gets information about the 
CPU with CPUID. 

sysInByte( ) UCHAR sysInByte
(int port) 

Reads one byte from I/O. 

sysInWord( ) USHORT sysInWord
(int port) 

Reads one word (two bytes) 
from I/O. 

sysInLong( ) ULONG sysInLong
(int port) 

Reads one long word (four 
bytes) from I/O. 

sysOutByte( ) void sysOutByte
(int port, char data) 

Writes one byte to I/O. 

sysOutWord( ) void sysOutWord
(int port, short data) 

Writes one word (two bytes) to 
I/O. 

sysOutLong( ) void sysOutLong
(int port, long data) 

Writes one long word (four 
bytes) to I/O. 

sysInWordString( ) void sysInWordString
(
int port, 
short *address,
int count
) 

Reads a word string from I/O. 

sysInLongString( ) void sysInLongString
(
int port, 
short *address,
int count
) 

Reads a long string from I/O. 

sysOutWordString( ) void sysOutWordString
(
int port, 
short *address,
int count
) 

Writes a word string to I/O. 

sysOutLongString( ) void sysOutLongString
(
int port, 
short *address,
int count
) 

Writes a long string to I/O. 

Table 4-2 Architecture-Specific Routines  (cont’d)

Routine Function Header Description
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sysDelay( ) void sysDelay (void) Allows enough recovery time 
for port accesses. 

sysIntDisablePIC( ) STATUS sysIntDisablePIC
(int intLevel) 

Disables a programmable 
interrupt controller (PIC) 
interrupt level. 

sysIntEnablePIC( ) STATUS sysIntEnablePIC
(int intLevel) 

Enables a PIC interrupt level. 

sysOSMTaskGateInit( ) STATUS sysOSMtaskGateInit 
(void) 

Initializes the OSM stack. 

vxCpuShow( ) void vxCpuShow (void) Shows CPU type, family, 
model, and supported features. 

vxCr[0234]Get( ) int vxCr[0234]Get (void) Gets respective control register 
content. 

vxCr[0234]Set( ) void vxCr[0234]Set (int value) Sets a value to the respective 
control register. 

vxDrGet( ) void vxDrGet
(
int * pDr0,
int * pDr1,
int * pDr2,
int * pDr3,
int * pDr4,
int * pDr5,
int * pDr6,
int * pDr7
) 

Gets debug register content. 

vxDrSet( ) void vxDrSet
(
int dr0,
int dr1,
int dr2,
int dr3,
int dr4,
int dr5,
int dr6,
int dr7
) 

Sets debug register values. 

vxDrShow( ) void vxDrShow (void) Shows the debug registers. 

Table 4-2 Architecture-Specific Routines  (cont’d)

Routine Function Header Description
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Register Routines 

The following routines read Intel Architecture register values, and require one 
parameter, the task ID:

vxEflagsGet( ) int vxEflagsGet (void) Gets the EFLAGS register 
content. 

vxEflagsSet( ) void vxEflagsSet (int value) Sets the value of the EFLAGS 
register. 

vxPowerModeGet( ) UINT32 vxPowerModeGet (void) Gets the power management 
mode. 

This API is deprecated, see 
4.4.26 Power Management, p.79. 

vxPowerModeSet( ) STATUS vxPowerModeSet 
(UINT32 mode) 

Sets the power management 
mode. 

This API is deprecated, see 
4.4.26 Power Management, p.79. 

vxTssGet( ) int vxTssGet (void) Gets the task register content. 

vxTssSet( ) void vxTssSet (int value) Sets the task register value. This 
routine is deprecated and must 
not be used. 

vx[GIL]dtrGet( ) void vx[GIL]dtrGet
(long long int * pValue) 

Gets the GDTR, IDTR, and 
LDTR register content, 
respectively. 

vxSseShow( ) void vxSseShow (int taskId) Prints the contents of a task’s 
Streaming SIMD Extension 
(SSE) register context, if any, to 
the standard output device. 

Table 4-2 Architecture-Specific Routines  (cont’d)

Routine Function Header Description

eax( ) ebx( ) ecx( ) edx( ) edi( ) 
esi( ) ebp( ) esp( ) eflags( ) 
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Breakpoints and the bh( ) Routine 

VxWorks for Intel Architecture supports both software and hardware breakpoints. 
When you set a software breakpoint, VxWorks replaces an instruction with an int 3 
software interrupt instruction. VxWorks restores the original code when the 
breakpoint is removed. The instruction cache is purged each time VxWorks 
changes an instruction to a software break instruction. 

A hardware breakpoint uses the processor’s debug registers to set the breakpoint. 
The Pentium architectures have four breakpoint registers. If you are using the 
target shell, you can use the bh( ) routine to set hardware breakpoints. The routine 
is declared as follows: 

STATUS bh
(
INSTR *addr, /* where to set breakpoint, or */

 /* 0 = display all breakpoints  */
int type, /* breakpoint type; see below  */
int task, /* task to set breakpoint; */

/* 0 = set all tasks  */
int count, /* number of passes before hit */
BOOL quiet, /* TRUE = don’t print debug info */
   /* FALSE = print debug info  */
)

The bh( ) routine takes the following types in parameter type: 

A maximum number of hardware breakpoints can be set on the target system. This 
is a hardware limit and cannot be changed. For Intel Architecture targets, this limit 
is four hardware breakpoints. The address parameter of a hardware breakpoint 
command does not need to be 4-bytes aligned for data breakpoints on Intel 
Architecture. The address parameter is 1-byte aligned if width access is 1 byte, 2- 
bytes aligned if width access is 2 bytes, and 4-bytes aligned if width access is 4 
bytes.

For more information, see the reference entry for bh( ).

BRK_INST Instruction hardware breakpoint (0x00) 

BRK_DATAW1 Data write 1-byte breakpoint (0x01) 

BRK_DATAW2 Data write 2-byte breakpoint (0x05) 

BRK_DATAW4 Data write 4-byte breakpoint (0x0d) 

BRK_DATARW1 Data read-write 1-byte breakpoint (0x03) 

BRK_DATARW2 Data read-write 2-byte breakpoint (0x07) 

BRK_DATARW4 Data read-write 4-byte breakpoint (0x0f) 
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Disassembler: l( ) 

If you are using the target shell, the VxWorks disassembler l( ) routine does not 
support 16-bit code compiled for earlier generations of 80x86 processors. However, 
the disassembler does support 32-bit code for Intel Architecture processors.

Memory Probe: vxMemProbe( ) 

The vxMemProbe( ) routine, which probes an address for a bus error, is supported 
on the Intel Architecture (Pentium) architectures by trapping both general 
protection faults and page faults.

Interrupt Lock Level: intLock( ) and intUnlock( ) 

The Intel Architecture (Pentium) architecture includes a single interrupt signal for 
external interrupts, and is able to enable and disable external interrupts to the 
CPU. The Intel Architecture (Pentium) architecture does not have an on-chip 
interrupt controller, and therefore does not have the capability of controlling the 
interrupt mask/lock level. The global variable intLockMask is set to 1 and is not 
used by intLock( ). The intLock( ) routine simply disables the external interrupt, 
while the intUnlock( ) routine restores the previous state of the signal (that is, 
enables it if it was previously enabled). Locking the individual external interrupt 
line or masking the interrupt level is done by a companion interrupt controller 
device driver such as the i8259Intr.c or ioApicIntr.c. These drivers are provided as 
source code in installDir/vxworks-6.2/target/src/drv/intrCtl.

IntArchLib: intVecSet2( ) and intVecGet2( ) 

The routines intVecSet2( ) and intVecGet2( ) replace intVecSet( ) and 
intVecGet( ), respectively. (intVecSet( ) and intVecGet( ) are kept only for 
backward compatibility.) The routines intVecSet2( ) and intVecGet2( ) include two 
additional parameters: gate and selector. intVecSet2( ) also includes task gate 
support. The gate is either IDT_TRAP_GATE, IDT_INT_GATE, or IDT_TASK_GATE; 
and the selector is either sysCsExc or sysCsInt. 

pentiumLib, pentiumALib, and pentiumShow: pentiumXXX( )

Routines that manipulate the memory type range registers (MTRR), performance 
monitoring counter (PMC), timestamp counter (TSC), machine check architecture 
(MCA), and model specific registers (MSR) are included. The routines are listed in 
Table 4-2.
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vxLib, vxALib, and vxShow: vxXXX( )

The routine vxCpuShow( ) shows the CPU type, family, model, and supported 
features.

The routines vxCr0Get( ), vxCr2Get( ), vxCr3Get( ), and vxCr4Get( ) get the 
current values from the respective control registers, while the routines vxCr0Set( ), 
vxCr2Set( ), vxCr3Set( ), and vxCr4Set( ) assign values to the respective control 
registers.

The routines vxEflagsGet( ) and vxEflagsSet( ) respectively get and set the 
EFLAGS register.

The routines vxDrGet( ) and vxDrSet( ) respectively get and set the debug 
registers. vxDrShow( ) shows the content of the debug registers. These routines are 
intended to be primitive and generate exceptions if they are not claimed by WDB 
or the debug library.

The routines vxTssGet( ) and vxTssSet( ) respectively get and set the task register.

The routines vxGdtrGet( ), vxIdtrGet( ), and vxLdtrGet( ) get the current value of 
the respective system registers: GDTR, IDTR, and LDTR.

The routine vxLdtrSet( ) sets the content of the local descriptor table. 

The routines vxPowerModeGet( ) and vxPowerModeSet( ) respectively get and 
set the power management mode. 

The vxCsGet( ), vxDsGet( ), and vxSsGet( ) routines get the current value of the 
code segment, data segment, and stack segment, respectively. 

taskSRSet( )

The routine taskSRSet( ) sets its second parameter to the EFLAGS register of the 
specified task.

4.3.4  a.out/ELF-Specific Tools for Intel Architecture 

The following tools are specific to the a.out format for x86 and Pentium processors, 
as well as the PC simulator that was used in earlier VxWorks releases. In the 
current release, the object module format has been changed to ELF. Therefore, 

NOTE:  The vxPowerModeGet( ) and vxPowerModeSet( ) routines are deprecated, 
see 4.4.26 Power Management, p.79.
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these tools are replaced with objcopypentium and no longer supported. For more 
information, see the reference entries for each tool.

hexDec 
converts an a.out-format object file into a Motorola hex record.

aoutToBinDec 
extracts text and data segments from an a.out file and writes them to standard 
output as a simple binary image.

xsymDec 
extracts the symbol table from an a.out file.

4.4  Architecture Considerations 

This section describes characteristics of the Intel Architecture that you should keep 
in mind as you write a VxWorks application:

■ boot disks 
■ operating mode and byte order 
■ Celeron processors 
■ cache issues 
■ FPU, MMX, SSE, and SSE2 support 
■ segmentation 
■ paging with MMU 
■ ring level protection 
■ interrupts 
■ exceptions 
■ stack management 
■ context switching 
■ machine check architecture (MCA) 
■ registers 
■ counters 
■ advanced programmable interrupt controller (APIC) 
■ I/O mapped devices 
■ memory-mapped devices 
■ memory considerations for VME 
■ ISA/EISA bus 
■ PC104 bus 
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■ PCI bus 
■ software floating-point emulation 
■ VxWorks memory layout 

For more information on the Intel Architecture, consult the Intel Architecture 
Software Developer’s Manual.

4.4.1  Boot Floppies 

Information regarding the creation and use of a boot floppy for booting VxWorks 
on Intel Architecture targets is included in the BSP reference documentation (the 
BSP target.ref file). 

4.4.2  Operating Mode and Byte Order 

VxWorks for Intel Architecture runs in the 32-bit flat protected mode. If real-time 
processes (RTPs) are not enabled, no privilege protection is used, thus there are no 
call gates. The privilege level is always 0, which is the most privileged level 
(supervisor mode). If RTPs are enabled, both level 0 and level 3 (user mode) are 
used, with the RTP task(s) running at level 3. A call gate is established and used as 
a system call mechanism to allow RTP task(s) to communicate with the kernel.

The Intel Architecture byte order is little-endian, but network applications must 
convert some data to a standard network order, which is big-endian. In particular, 
in network applications, be sure to convert the port number to network byte order 
using htons( ).

4.4.3  Celeron Processors 

If your target is a Celeron processor, you must determine what type of Celeron 
processor your are using in order to take advantage of certain features and 
optimizations. Celeron processors based on the Pentium II (such as the Celeron 
model 5) belong to the pcPentium2 BSP which is optimized to take advantage of 
the Pentium II processor. Celeron processors based on the Pentium III (such as 
Celeron model 8) belong to the pcPentium3 BSP which is optimized for the 
Pentium III. The Pentium III optimized toolchain supports Streaming SIMD 
Extensions (SSE). To detect whether a particular CPU supports SSE, in Application 
Note AP-485, Intel recommends using the CPUID instruction (vxCpuShow( ) in 
VxWorks) rather than the CPU family or model, stating as follows:
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■ Do not assume that a given family or model has any specific feature. For 
example, do not assume that family value 5 (that is, a P5 family processor) 
implies a floating-point unit on-chip; use the feature flags to make this 
determination.

■ Do not assume processors with higher family or model numbers have all the 
features of a processor with a lower family or model number. For example, a 
processor with a family value 6 (that is, a P6 family processor) may not 
necessarily have all the features of a processor with a family value of 5.

4.4.4  Pentium M Processors 

In general, Pentium M is not considered a new family of processors. The family 
code in the CPU signature for a Pentium M processor is Intel Architecture P6. 
However, certain P7 features (such as SSE2) are also supported. Therefore, if your 
target is a Pentium M processor, you can use either the pcPentium3 or pcPentium4 
BSP. 

In Application Note AP-485, Intel recommends using the CPUID instruction 
(vxCpuShow( ) in VxWorks) to determine which features are supported by a given 
CPU instead of relying on the CPU family code or model number. The application 
note recommends the following:

■ Do not assume that a given family or model includes a specific feature. For 
example, do not assume that a P5 family processor always includes a 
floating-point unit. You can use the feature flags to determine what features 
are available on your chip. 

■ Do not assume that processors with a higher family or model number include 
all of the features included in a processor with a lower family number. For 
example, a P6 family processor may not include all of the features available for 
a P5 family processor. 

For more information on Pentium M processors, see the Intel Web site. For 
information on identifying your CPU and its features, see the Intel Application Note 
AP-485. 

NOTE:  BSPs released with this release of VxWorks for Intel Architecture support 
Pentium M processors with the Intel 855 chipset only. Additional BSP support may 
be added in the future, see the Wind River Online Support Web site for a complete 
list of supported devices. 
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4.4.5  Caches

The CD and NW flags in CR0 control the overall caching of system memory. The 
PCD and PWT flags in CR3 control the caching of the page directory. The PCD and 
PWT flags in the page directory or page table entry control page-level caching. In 
cacheLib, the WBINVD instruction is used to flush the cache if the CLFLUSH 
instruction is not supported by the processor.

P5 (Pentium) family processors have separate L1 instruction and data on-chip 
caches. Each cache is 8 KB. The P5 family data cache supports both write-through 
and write-back update policies. The PWT flag in the page table entry controls the 
write-back policy for that page of memory. 

P6 (PentiumPro, II, III) family processors include separate L1 instruction and data 
caches, and a unified internal L2 cache. The P6 processor MESI data cache protocol 
maintains consistency with internal L1 and L2 caches, caches of other processors, 
and with an external cache in both update policies. The operation of the MESI 
protocol is transparent to software. 

P7 (Pentium 4) family processors include a trace cache that caches decoded 
instructions, as well as an L1 data cache and an L2 unified cache. The CLFLUSH 
instruction allows the selected cache line to be flushed from memory.

4.4.6  FPU, MMX, SSE, and SSE2 Support 

The x87 math coprocessor and on-chip FPU are software compatible, and are 
supported by VxWorks using the INCLUDE_HW_FP configuration macro.

There are two types of floating-point contexts and a set of routines associated with 
each type. The first type is 108 bytes and is used for older FPUs (i80387, i80487, 
Pentium) and older MMX technology. The routines fppSave( ), fppRestore( ), 
fppRegsToCtx( ),and fppCtxToRegs( ) are used to save and restore the context and 
to convert to or from FPPREG_SET. The second type is 512 bytes and is used for 
newer FPUs, newer MMX technology, and SSE technology (Pentium II, III, 4). The 
routines fppXsave( ), fppXrestore( ), fppXregsToCtx( ), and fppXctxToRegs( ) are 
used to save and restore the context and to convert to or from FPPREG_SET. The 
type of floating-point context used is automatically detected by checking the 
CPUID information in fppArchInit( ). The routines coprocTaskRegsSet( ) and 
coprocTaskRegsGet( ) then access the appropriate floating-point context. The bit 
interrogated for the automatic detection is the “Fast Save and Restore” feature flag.
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Saving and restoring floating-point registers adds to the context switch time of a 
task. Therefore, floating-point registers are not saved and restored for every task. 
Only those tasks spawned with the task option VX_FP_TASK will have 
floating-point state, MMX technology state, and streaming SIMD state saved and 
restored. If a task executes any floating-point operations, MMX operations, or 
streaming SIMD operations, it must be spawned with VX_FP_TASK.

Executing floating-point operations from a task spawned without the VX_FP_TASK 
option results in serious and difficult to find errors. To detect this type of illegal, 
unintentional, or accidental floating-point operation, a new API and a new 
mechanism have been added to this release. The mechanism involves enabling or 
disabling the FPU by toggling the TS flag in the CR0 register of the new task switch 
hook routine, fppArchSwitchHook( ), respecting the VX_FP_TASK option. If the 
VX_FP_TASK option is not set in the switching-in task, the FPU is disabled. Thus, 
the device-not-available exception is raised if the task attempts to execute any 
floating-point operations. This mechanism is disabled in the default VxWorks 
configuration. To enable the mechanism, call the enabler, 
fppArchSwitchHookEnable( ), with a parameter TRUE (1). The mechanism is 
disabled using the FALSE (0) parameter. 

There are six FPU exceptions that can send an exception to the CPU. They are 
controlled by the exception mask bits of the control word register. VxWorks 
disables these exceptions in the default configuration. The exceptions are as 
follows:

■ Precision
■ Overflow
■ Underflow
■ Division by zero
■ Denormalized operand
■ Invalid operation

NOTE:  The routines fppTaskRegsSet( ) and fppTaskRegsGet( ) are obsolete and 
should no longer be used. These routines are replaced by coprocTaskRegsSet( ) 
and coprocTaskRegsGet( ), respectively. 

NOTE:  The value of VX_FP_TASK changed from 0x0008 (VxWorks 5.5) to 
0x01000000 (VxWorks 6.x). However, its meaning and usage remain unchanged. 
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4.4.7  Mixing MMX and FPU Instructions 

A task with the VX_FP_TASK option enabled saves and restores the FPU and MMX 
state when performing a context switch. Therefore, the application does not need 
to save or restore the FPU and MMX state if the FPU and MMX instructions are not 
mixed within the task. Because the MMX registers are aliased to the FPU registers, 
care must be taken to prevent the loss of data in the FPU and MMX registers, and 
to prevent incoherent or unexpected results, when making transitions between 
FPU instructions and MMX instructions. When mixing MMX and FPU instructions 
within a task, Intel recommends the following guidelines:

■ Keep the code in separate modules, procedures, or routines.

■ Do not rely on register contents across transitions between FPU and MMX 
code modules.

■ When transitioning between MMX code and FPU code, save the MMX register 
state (if it will be needed in the future) and execute an EMMS instruction to 
empty the MMX state.

■ When transitioning between FPU and MMX code, save the FPU state, if it will 
be needed in the future.

Mixing SSE/SSE2 and FPU/MMX Instructions

The XMM registers and the FPU/MMX registers represent separate execution 
environments. This has certain ramifications when executing SSE, SSE2, MMX and 
FPU instructions in the same task context:

■ Those SSE and SSE2 instructions that operate only on the XMM registers (such 
as the packed and scalar floating-point instructions and the 128-bit SIMD 
integer instructions) can be executed without any restrictions in the same 
instruction stream with 64-bit SIMD integer or FPU instructions. For example, 
an application can perform the majority of its floating-point computations in 
the XMM registers using the packed and scalar floating-point instructions, and 
at the same time use the FPU to perform trigonometric and other 
transcendental computations. Likewise, an application can perform packed 
64-bit and 128-bit SIMD integer operations simultaneously without 
restrictions. 

■ Those SSE and SSE2 instructions that operate on MMX registers (such as the 
CVTPS2PI, CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD, 
MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be 
executed in the same instruction stream as 64-bit SIMD integer or FPU 
instructions. However, these instructions are subject to the restrictions on the 
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simultaneous use of MMX and FPU instructions, as mentioned in the previous 
section.

4.4.8  Segmentation 

In the default configuration—that is, error detection and reporting and RTPs 
disabled—three code segments and one data segment are defined in the global 
descriptor table (GDT). The GDT is defined as table sysGdt[ ] in sysALib.s, and is 
copied to the destination address at (LOCAL_MEM_LOCAL_ADRS + 
GDT_BASE_OFFSET). The defined code and data segments are:

■ supervisor code/data segment with privilege level 0 (PL0)
■ interrupt/exception code segment with privilege level 0 (PL0)

They are fully overlapped in the 4 GB, 32-bit address space (flat model). These 
segments are used when a task changes its execution mode during its lifetime.

When RTPs are enabled, an additional three segments, a call gate, and a TSS 
descriptor are added to the GDT. The three segments are level 3 (PL3) for use by 
user-mode RTP tasks. The segments include one data, one code, and one stack 
segment. The call gate and TSS descriptor are used by the system call mechanism 
to allow a mode switch to occur when a system call is made. 

When error detection and reporting is enabled, the IDT gets a task gate entry for 
page fault management. The GDT gets two TSS entries (one for OSM save 
information and one for OSM restore information) and one task gate entry. An LDT 
entry is also established for context switching through TSS. 

4.4.9  Paging with MMU 

When paging is used, the linear address space is divided into fixed-size pages 
(4 KB in the default configuration). Entries in the page directory point to page 
tables and entries in the page table point to pages in physical memory. Bits 22 
through 31 of the linear address space provide an offset to an entry in the page 
directory. Bits 12 through 21 of the linear address space provide an offset to an 
entry in the selected page table. Bits 0 through 11 provide an offset to a physical 
address in the page.

If INCLUDE_MMU_BASIC component is enabled, VxWorks enables the MMU with 
the mmuPhysDesc[ ] table which includes PCI memory mapping information. 
This is the default VxWorks configuration.
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If you have other memory-mapped devices, and if INCLUDE_MMU_BASIC is 
included (the default), you may need to add your device address space into the 
MMU table by manually editing the MMU configuration structure 
sysPhysMemDesc[ ] in sysLib.c. For information on editing this structure, see the 
VxWorks Kernel Programmer’s Guide: Memory Management. Do not overlap any 
existing MMU entries and be sure all entries are page aligned. Wind River 
recommends that you also maintain a 1:1 correlation between virtual and physical 
memory because VxWorks and all tasks use a common address space.

Attempts to access areas not mapped as valid in the MMU result in page faults.

P6 (PentiumPro, II, III, Pentium M) and P7 (Pentium 4) MMU

The enhanced MMU on P6 and P7 family processors supports two additional page 
attribute bits. 

The global bit (G) indicates a global page when set. When a page is marked global, 
and the page global enable (PGE) bit in register CR4 is set, the page-table or 
page-directory entry for the page is not invalidated in the TLB when register CR3 
is loaded. This bit is provided to prevent frequently used pages (such as pages that 
contain kernel or other operating system or executive code) from being flushed 
from the TLB.

The page-level write-through/write-back bit (PWT) controls the write-through or 
write- back caching policy of individual pages or page tables. When the PWT bit is 
set, write-through caching is enabled for the associated page or page table. When 
the bit is clear, write-back caching is enabled for the associated page and page 
table.

The following macros describe these attribute bits in the physical memory 
descriptor table sysPhysMemDesc[ ] in sysLib.c.

Support is provided for two page sizes, 4 KB and 4 MB. The linear address for 4 KB 
pages is divided into three sections. These sections are as follows:

MMU_ATTR_CACHE_COPYBACK 
(or VM_STATE_WBACK) 

Use write-back cache policy for the page. 

MMU_ATTR_CACHE_OFF 
(or VM_STATE_CACHEABLE_NOT) 

Use write-through cache policy for the page. 

VM_STATE_GLOBAL Set page global bit.
VM_STATE_GLOBAL_NOT Do not set page global bit.

Page directory entry bits 22 through 31 
Page table entry bits 12 through 21 
Page offset bits 0 through 11 
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The linear address for 4 MB pages is divided into two sections. These sections are 
as follows:

The page size is configured using VM_PAGE_SIZE. The default configuration is 
4 KB pages. If you wish to reconfigure for 4 MB pages, you must change 
VM_PAGE_SIZE in config.h. (For more information, see the VxWorks Kernel 
Programmer’s Guide: Memory Management.) 

Global Descriptor Table (GDT) 

The GDT is defined as the table sysGdt[ ] in sysALib.s. The table begins with five 
entries: a null entry, an entry for program code, an entry for program data, an entry 
for exceptions, and an entry for interrupts. If error detection and reporting is 
enabled, an additional entry is added for task gate management of the OSM stack 
as well as two TSS entries (one for OSM save information and one for OSM restore 
information). If RTPs are enabled, an entry is provided for level 3 (user-mode) 
support. The table is initially set to have an available memory range of 
0x0-0xffffffff. For boards that support PCI, INCLUDE_PCI is defined in config.h 
and VxWorks does not alter the pre-set memory range. This memory range is 
available at run-time with the MMU configuration.

If INCLUDE_PCI is not defined (the default for boards that do not support PCI), 
VxWorks adjusts the GDT using the sysMemTop( ) routine to check the actual 
memory size during system initialization and set the table to have an available 
memory range of 0x0-sysMemTop( ). This causes a general protection fault to be 
generated for any memory access outside the memory range 0x0-sysMemTop( ).

4.4.10  Ring Level Protection

The processor’s segment protection mechanism recognizes four privilege levels 
numbered 0 to 3. The greater numbers have fewer privileges. VxWorks uses 
privilege level 0 (PL0) when executing kernel exceptions and interrupt code. 
Privilege level 3 (PL3) is used when executing RTP task code. 

4.4.11  Interrupts

Interrupt service routines (ISRs) are executed in supervisor mode (PL0) with the 
task’s supervisor stack or the dedicated interrupt stack. 

Page directory entry bits 22 through 31 
Page offset bits 0 through 21 
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The task supervisor stack is the default stack, and its use does not require the OS 
to perform any software intervention. Whereas, the dedicated interrupt stack does 
require software manipulation. That is, you can control the trade-off between 
performance and memory consumption by selecting the stack used with an ISR. If 
you want faster interrupt response time, use the task stack; if you want to save on 
memory consumption, use the dedicated interrupt stack. To use the dedicated 
interrupt stack, perform intStackEnable(TRUE) in the task level.

Interrupt Handling

Exceptions and the NMI interrupt are assigned vectors in the range of 0 through 
31. Unassigned vectors in this range are reserved for possible future use. The 
vectors in the range 32 to 255 are provided for maskable interrupts. 

The Intel Architecture (Pentium) architecture enables or disables all maskable 
interrupts with the IF flag in the EFLAGS register. An external interrupt controller 
handles multi-level priority interrupts. The most popular interrupt controller is the 
Intel 8259 PIC (programmable interrupt controller) which is supported by 
VxWorks as an interrupt controller driver.

The Fully Nested Mode and the Special Fully Nested Mode are supported and 
configurable in the BSP. In the Special Fully Nested Mode, when an interrupt 
request from a slave PIC is in service, the slave is not locked out from the master’s 
priority logic and further interrupt requests from higher-priority IRQs within the 
slave are recognized by the master and initiate interrupts to the processor. 

The PIC (8259A) IRQ0 is hard-wired to the PIT (8253) channel 0 in a PC 
motherboard. IRQ0 is the highest priority in the 8259A interrupt controller. Thus, 
the system clock interrupt handler blocks all lower-level interrupts. This may 
cause a delay of the lower-level interrupts in some situations even though the 
system clock interrupt handler finishes its job without any delay. This is quite 
natural from the hardware point of view, but may not be ideal from the application 
software standpoint. The following modes are supplied to mitigate this situation 
by providing the corresponding configuration macros in the BSP. The three 
mutually exclusive modes are Early EOI Issue in IRQ0 ISR, Special Mask Mode in 
IRQ0 ISR, and Automatic EOI Mode. For more information, see your BSP 
documentation. 

The intLock( ) and intUnlock( ) routines control the IF flag in the EFLAGS register. 
The sysIntEnablePIC( ) and sysIntDisablePIC( ) routines control a specified PIC 
interrupt level. 
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Interrupt Descriptor Table 

The interrupt descriptor table (IDT) occupies the address range from 0x0 to 0x800, 
starting from LOCAL_MEM_LOCAL_ADRS (also called the interrupt vector table, 
see Figure 4-1). Vector numbers 0x0 to 0x1f are handled by the default exception 
handler. Vector numbers 0x20 to 0xff are handled by the default interrupt handler.

The trap gate is used for exceptions (vector numbers 0x0 - 0x1f). The configurable 
global variable sysIntIdtType, which can be set to either trap gate or interrupt gate 
in the BSP, is used for interrupts (vector numbers 0x20 - 0xff). The difference 
between an interrupt gate and a trap gate is its effect on the IF flag: using an 
interrupt gate clears the IF flag, which prevents other interrupts from interfering 
with the current interrupt handler.

Each vector entry in the IDT contains the following information:

■ offset (offset to the interrupt handler)

■ selectors (sysCsExc(0x0018), fourth descriptor (code) in GDT for exceptions; or 
sysCsInt(0x0020), fifth descriptor (code) in GDT for interrupts)

■ descriptor privilege level (3)

■ descriptor present bit (1)

OSM 

The OSM stack is needed for handling and recovery of stack overflow/underflow 
conditions and is triggered immediately following a page fault (stack 
overflow/underflow conditions are seen as a page fault). Issues that exist when 
possible stack overflow/underflow occurs are passed to the OSM stack. A task 
gate is used for the page fault. This allows VxWorks to jump to the OSM task 
routine. The task routine then establishes an OSM task, reconfigures both OSM TSS 
entries and the segment descriptors to their proper states before the exception 
occurs, and then enters the excStub as if handling a standard page fault. By using 
a new “safe” stack, the OSM allows the user to attempt a recovery and to debug 
the issue that caused the stack problem. 

BOI and EOI 

The interrupt handler calls intEnt( ) and saves the volatile registers (eax, edx, and 
ecx). It then calls the ISR, which is usually written in C. Finally, the handler restores 
the saved registers and calls intExit( ).

The beginning-of-interrupt (BOI) and end-of-interrupt (EOI) routines are called 
before and after the ISR. The BOI routine ascertains whether or not the interrupt is 
stray; if it is stray, the BOI routine jumps to intExit( ). If the interrupt is not stray, 
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the BOI routine returns to the caller. The EOI routine issues an EOI signal to the 
interrupt controller, if necessary.

Some device drivers (depending on the manufacturer, the configuration, and so 
on) generate a stray interrupt on IRQ7 (which is used by the parallel driver), and 
on IRQ15. The global variable sysStrayIntCount is incremented each time such an 
interrupt occurs, and a dummy ISR is connected to handle these interrupts. For 
more information about sysStrayIntCount, see your BSP documentation.

Interrupt Mode 

Three interrupt modes are supported. The PIC Mode is the default interrupt mode. 
This mode uses the popular i8259A interrupt controller. The Virtual Wire Mode 
uses local APIC and i8259A. The Symmetric I/O Mode uses local APIC and I/O 
APIC. For more information, see your BSP documentation and 4.4.18 Advanced 
Programmable Interrupt Controller (APIC), p.74. 

4.4.12  Exceptions 

Exception handlers are executed in supervisor mode (PL0) with the task 
supervisor stack. All exceptions are expected to use the exception stack. 

Exceptions differ from interrupts, with regard to the operating system, because 
interrupts are executed at the interrupt level and exceptions are executed at the 
task level.

After saving all registers on the supervisor stack, the task prints out the exception 
messages and then suspends itself. Execution can be resumed with the information 
stored in the supervisor stack.

The processor generates an exception stack frame in one of two formats, 
depending on the exception type. The types are as follows:

(EIP + CS + EFLAGS) or (ERROR + EIP + CS + EFLAGS)

The CS (Code Selector) register is taken from the vector table entry. That entry is 
the sysCsExc global variable defined in the BSP. 

4.4.13  Stack Management 

The task stack is used for task-level execution. The intEnt( ) and intExit( ) routines 
are used to switch to and from the interrupt stack. The size of the interrupt stack is 
determined by the ISR_STACK_SIZE macro (the default value is 1000). 
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4.4.14  Context Switching

Context switching is handled in software by the VxWorks kernel. Hardware 
multitasking through task gates and TSS descriptors is not used for normal context 
switching. The switch is accomplished by building a dummy exception stack 
frame and then using the IRET instruction to make the contents of the stack frame 
the new processor state. 

4.4.15  Machine Check Architecture (MCA) 

The P5 (Pentium) family processor introduced a new exception called the machine 
check exception (interrupt -18). This exception is used to signal hardware-related 
errors, such as a parity error on a read cycle. The P6 (PentiumPro, II, III) and P7 
(Pentium 4) family processors extend the type of errors that can be detected and 
allowed to generate a machine check exception. These architectures also provide a 
new machine check architecture that records information about the machine check 
errors and provides the basis for extended error logging capability.

MCA is enabled by default and its status registers are set to zero in 
pentiumMcaEnable( ) in sysHwInit( ). These registers are accessed by 
pentiumMsrSet( ) and pentiumMsrGet( ).

4.4.16  Registers 

Memory Type Range Register (MTRR) 

MTRRs are a feature of P6 (PentiumPro, II, III) and P7 (Pentium 4) family 
processors that allow the processor to optimize memory operations for different 
types of memory, such as RAM, ROM, frame buffer memory, and 
memory-mapped I/O. MTRRs configure an internal map of how physical address 
ranges are mapped to various types of memory. The processor uses this internal 
map to determine the cache ability of various physical memory locations and the 
optimal method of accessing memory locations. 

For example, if a memory location is specified in an MTRR as write-through 
memory, the processor handles accesses to this location either by reading data from 
that location in lines and caching the read data or by mapping all writes to that 
location to the bus and updating the cache to maintain cache coherency. In 
mapping the physical address space with MTRRs, the processor recognizes five 
types of memory: uncacheable (UC), write-combining (WC), write-through (WT), 
write-protected (WP), and write-back (WB).
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The MTRR table is defined as follows:

typedef struct mtrr_fix /* MTRR - fixed range register */
{
char type[8]; /* address range: [0]=0-7 ... [7]=56-63 */
} MTRR_FIX;

typedef struct mtrr_var /* MTRR - variable range register */
{
long long int base; /* base register */
long long int mask; /* mask register */
} MTRR_VAR;
typedef struct mtrr /* MTRR */
{
int cap[2]; /* MTRR cap register */
int deftype[2]; /* MTRR defType register */
MTRR_FIX fix[11]; /* MTRR fixed range registers */
MTRR_VAR var[8]; /* MTRR variable range registers */
} MTRR;

Model-Specific Register (MSR) 

The P5 (Pentium), P6 (PentiumPro, II, III), and P7 (Pentium 4) families of 
processors implement the concept of model specific registers (MSRs) to control 
hardware functions in the processor or to monitor processor activity. The new 
registers control the debug extensions, the performance counters, the 
machine-check exception capability, the machine check architecture, and the 
MTRRs. The MSRs can be read from and written to using the RDMSR and WRMSR 
instructions, respectively. 

4.4.17  Counters

Performance Monitoring Counters (PMCs) 

The P5 (Pentium) and P6 (PentiumPro, II, III) families of processors have two 
performance-monitoring counters for use in monitoring internal hardware 
operations. These counters are duration or event counters that can be programmed 
to count any of approximately 100 different types of events, such as the number of 
instructions decoded, number of interrupts received, or number of cache loads. 

PMCs are initialized in sysHwInit( ). 

NOTE:  Pentium M processors include their own set of MSRs. For more 
information, see the Model-Specific Registers appendix of the Intel Architecture 
Software Developer’s Manual. 
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Timestamp Counter (TSC) 

The P5 (Pentium), P6 (PentiumPro, II, III), and P7 (Pentium 4) families of 
processors provide a 64-bit timestamp counter that is incremented every processor 
clock cycle. The counter is incremented even when the processor is halted by the 
HLT instruction or the external STPCLK# pin. The timestamp counter is set to 0 
following a hardware reset of the processor. The RDTSC instruction reads the 
timestamp counter and is guaranteed to return a monotonically increasing unique 
value whenever executed, except for 64-bit counter wraparound. Intel guarantees, 
architecturally, that the timestamp counter frequency and configuration will be 
such that it will not wraparound within 10 years after being reset to 0. The period 
for counter wrap is several thousands of years in these processors.

4.4.18  Advanced Programmable Interrupt Controller (APIC) 

Local APIC/xAPIC 

The local APIC/xAPIC module is a driver for the local advanced programmable 
interrupt controller in the P6 (PentiumPro, II, III) and P7 (Pentium 4) families of 
processors. The local APIC/xAPIC is included in selected P6 and P7 processors. 
On P6 and P7 family processors, the presence or absence of an on-chip local APIC 
can be detected using the CPUID instruction. When the CPUID instruction is 
executed, bit 9 of the feature flags returned in the EDX register indicates the 
presence (set) or absence (clear) of an on-chip local APIC. 

The local APIC performs two main functions for the processor:

■ It processes local external interrupts that the processor receives at its interrupt 
pins as well as local internal interrupts generated by software.

■ In multiple-processor systems, it communicates with an external I/O APIC 
chip. The external I/O APIC receives external interrupt events from the system 
as well as interprocessor interrupts from the processors on the system bus and 
distributes them to the processors on the system bus. The I/O APIC is part of 
Intel’s system chip set.

The local APIC controls the dispatching of interrupts (to its associated processor) 
that it receives either locally or from the I/O APIC. It provides facilities for 
queuing, nesting, and masking interrupts. The local APIC handles the interrupt 
delivery protocol with its local processors as well as accesses to APIC registers. In 
addition, it manages interprocessor interrupts and remote APIC register reads. A 
timer on the local APIC allows local generation of interrupts, and local interrupt 
pins permit local reception of processor-specific interrupts. 



4  Intel Architecture
4.4  Architecture Considerations

75

4

The local APIC can be disabled and used in conjunction with a standard 
8259A-style interrupt controller. Disabling the local APIC can be done in hardware 
for Pentium (P5) processors or in software for P6 and P7 family processors.

The local APIC in P7 (Pentium 4) processors (called the xAPIC) is an extension of 
the local APIC found in P6 family processors. The primary difference between the 
APIC architecture and xAPIC architecture is that with Pentium 4 processors, the 
local xAPICs and I/O xAPIC communicate with one another through the 
processor’s system bus; whereas, with P6 family processors, communication 
between the local APICs and the I/O APIC is handled through a dedicated 3-wire 
APIC bus. Also, some of the architectural features of the local APIC have been 
extended and/or modified in the local xAPIC.

The base address of the local APIC and I/O APIC is taken from the MP 
configuration table (for more information, see Intel MP Specification Version 1.4) or 
the IA32_APIC_BASE MSR. If the local APIC driver is unable to find the addresses, 
it uses LOAPIC_BASE and IOAPIC_BASE as defined in the BSP. This driver contains 
three routines for use. The routines are: 

■ loApicInit( ) initializes the local APIC for the interrupt mode chosen.
■ loApicShow( ) shows the local APIC registers. 
■ loApicMpShow( ) shows the MP configuration table.

The MP specification defines three interrupt modes: virtual wire mode, symmetric 
I/O mode, and PIC mode. Local APIC is used in the virtual wire mode (define 
VIRTUAL_WIRE_MODE in the BSP) and the symmetric I/O mode (define 
SYMMETRIC_IO_MODE in the BSP). However, it is not used in PIC mode (the 
default interrupt mode) which uses the 8259A PIC.

In the virtual wire mode, interrupts are generated by the 8259A equivalent PICs, 
but delivered to the boot strap processor by the local APIC. The local APIC is 
programmed to act as a “virtual wire”; that is, it is logically indistinguishable from 
a hardware connection. This is a uniprocessor compatibility mode.

In symmetric I/O mode, the local and I/O APICs are fully functional, and 
interrupts are generated and delivered to the processors by the APICs. Any 
interrupt can be delivered to any processor. This is the only multiprocessor 
interrupt mode. 

The local and I/O APICs support interrupts in the range of 32 to 255. Interrupt 
priority is implied by its vector, according to the following relationship: priority = 
vector / 16. Here the quotient is rounded down to the nearest integer value to 
determine the priority, with 1 being the lowest and 15 the highest. Because vectors 
0 through 31 are reserved for exclusive use by the processor, the priority of user 
defined interrupts range from 2 to 15. A value of 15 in the interrupt class field of 
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the task priority register (TPR) masks off all interrupts that require interrupt 
service. A P6 family processor’s local APIC includes an in-service entry and a 
holding entry for each priority level. To avoid losing interrupts, software should 
allocate no more than 2 interrupt vectors per priority. P7 (Pentium 4) family 
processors expand this support by allowing two interrupts per vector rather than 
per priority level.

I/O APIC/xAPIC 

The I/O APIC/xAPIC module is a driver for the I/O advanced programmable 
interrupt controller for P6 (PentiumPro, II, III) and P7 (Pentium 4) family 
processors. The I/O APIC/xAPIC is included in some Intel system chip sets, such 
as ICH2. Software intervention may be required to enable the I/O APIC/xAPIC on 
some chip sets.

The 8259A interrupt controller is intended for use in uniprocessor systems; I/O 
APIC can be used in either uniprocessor or multiprocessor systems. The I/O APIC 
handles interrupts very differently than the 8259A. Briefly, these differences are:

■ Method of Interrupt Transmission. The I/O APIC transmits interrupts through 
a 3-wire bus and interrupts are handled without the need for the processor to 
run an interrupt acknowledge cycle.

■ Interrupt Priority. The priority of interrupts in the I/O APIC is independent of 
the interrupt number. For example, interrupt 10 can be given a higher priority 
than interrupt 3.

■ More Interrupts. The I/O APIC supports a total of 24 interrupts.

The I/O APIC unit consists of a set of interrupt input signals, a 24-entry by 64-bit 
interrupt redirection table, programmable registers, and a message unit for 
sending and receiving APIC messages over the APIC bus or the front-side (system) 
bus. I/O devices inject interrupts into the system using one of the I/O APIC 
interrupt lines. The I/O APIC selects the corresponding entry in the redirection 
table and uses the information in that entry to format an interrupt request message. 
Each entry in the redirection table can be individually programmed to indicate 
edge/level sensitive interrupt signals, the interrupt vector and priority, the 
destination processor, and how the processor is selected (statically and 
dynamically). The information in the table is used to transmit a message to other 
APIC units (via the APIC bus or the front-side (system) bus).

I/O APIC is used in the symmetric I/O mode (define SYMMETRIC_IO_MODE in 
the BSP). The base address of the I/O APIC is determined in loApicInit( ) and 
stored in the global variables ioApicBase and ioApicData. The ioApicInit( ) 
routine initializes the I/O APIC with information stored in ioApicRed0_15 and 
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ioApicRed16_23. ioApicRed0_15 is the default lower 32-bit value of the 
redirection table entries for IRQ 0 to IRQ 15 which are edge triggered positive high, 
ioApicRed16_23 is the default value for IRQ 16 to IRQ 23 which are level triggered 
positive low. The ioApicRedSet( ) and ioApicRedGet( ) routines are used to access 
the redirection table. The ioApicEnable( ) routine enables the I/O APIC or xAPIC. 
The ioApicIrqSet( ) routine sets the specific IRQ to be delivered to the specific local 
APIC. The ioApicShow( ) routine shows the I/O APIC registers. This 
implementation does not support a multiple I/O APIC configuration.

Local APIC Timer

The local APIC timer library contains routines for the timer in the Intel local 
APIC/xAPIC in P6 (PentiumPro, II, III) and P7 (Pentium 4) family processors.

The local APIC contains a 32-bit programmable timer for use by the local processor. 
This timer is configured through the timer register in the local vector table. The 
time base is derived from the processor’s bus clock, divided by a value specified in 
the divide configuration register. After reset, the timer is initialized to zero. The 
timer supports one-shot and periodic modes. The timer can be configured to 
interrupt the local processor with an arbitrary vector.

The library gets the system clock from the local APIC timer and auxiliary clock 
from either RTC or PIT channel 0 (define PIT0_FOR_AUX in the BSP). The macro 
APIC_TIMER_CLOCK_HZ must also be defined to indicate the clock frequency of 
the local APIC timer. The parameters SYS_CLK_RATE_MIN, SYS_CLK_RATE_MAX, 
AUX_CLK_RATE_MIN, and AUX_CLK_RATE_MAX must be defined to provide 
parameter checking for the sysClkRateSet( ) and sysAuxClkRateSet( ) routines.

The timer driver uses the processor’s on-chip TSC (timestamp counter) for the 
timestamp driver. The TSC is a 64-bit timestamp counter that is incremented every 
processor clock cycle. The counter is incremented even when the processor is 
halted by the HLT instruction or the external STPCLK# pin. The timestamp counter 
is set to 0 following a hardware reset of the processor. The RDTSC instruction reads 
the timestamp counter and is guaranteed to return a monotonically increasing 
unique value whenever executed, except for 64-bit counter wraparound. Intel 
guarantees, architecturally, that the timestamp counter frequency and 
configuration will be such that it will not wraparound within 10 years after being 
reset to 0. The period for counter wrap is several thousands of years in P6 
(PentiumPro, II, III) and P7 (Pentium 4) family processors.
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4.4.19  I/O Mapped Devices

For I/O mapped devices, use the following routines from 
installDir/vxworks-6.2/target/config/bspName/sysALib.s: 

4.4.20  Memory-Mapped Devices

For memory-mapped devices, there are two kinds of memory protection provided 
by VxWorks: paging with the memory management unit (MMU) and 
segmentation with the global descriptor table. Because VxWorks operates at the 
highest processor privilege level, no “protection rings” exist.

Intel Architecture processors allow you to configure memory space into valid and 
invalid areas, even under supervisor mode. Thus, you receive a page fault only if 
the processor attempts to access addresses mapped as invalid, or addresses that 
have not been mapped. Conversely, if the processor attempts to access a 
nonexistent address space that has been mapped as valid, no page fault occurs.

4.4.21  Memory Considerations for VME 

The global descriptors for Intel Architecture targets are configured for a flat 4 GB 
memory space. 

If you are running VxWorks for Intel Architecture on a VME board, be aware that 
addressing nonexistent memory or peripherals does not generate a bus error or 
fault.

sysInByte( ) Input one byte from I/O space. 
sysOutByte( ) Output one byte to I/O space. 
sysInWord( ) Input one word from I/O space. 
sysOutWord( ) Output one word to I/O space. 
sysInLong( ) Input one long word from I/O space. 
sysOutLong( ) Output one long word to I/O space. 
sysInWordString( ) Input a word string from I/O space.
sysOutWordString( ) Output a word string to I/O space. 
sysInLongString( ) Input a long string from I/O space. 
sysOutLongString( ) Output a long string to I/O space. 
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4.4.22  ISA/EISA Bus

The optional PC-compatible hardware cards supported in this release (the Ethernet 
adapter cards and the Blunk Microsystems ROM card) use the ISA/EISA bus 
architecture.

4.4.23  PC104 Bus

The PC104 bus is supported and tested with the NE2000-compatible Ethernet card 
(4I29: Mesa Electronics). The Ampro Ethernet card (Ethernet-II) is also supported.

4.4.24  PCI Bus

The PCI bus is supported and tested with the Intel EtherExpress PRO100B Ethernet 
card (Intel 8255[789]). Several routines to access PCI configuration space are 
supported. Functions addressed here include:

■ Locate the device by deviceID and vendorID. 

■ Locate the device by classCode. 

■ Generate the special cycle. 

■ Access its configuration registers. 

For more information, see the reference entry for pciConfigLib.

4.4.25  Software Floating-Point Emulation

The software floating-point library is supported for Intel Architecture (Pentium) 
architectures that do not have on-chip FPUs; select INCLUDE_SW_FP for inclusion 
in the project facility VxWorks view to include the library in your system image. 
This library emulates each floating point instruction by using the exception 
“Device Not Available.” For other floating-point support information, see 
4.3.1 Supported Routines in mathALib, p.49.

4.4.26  Power Management

CPU power management for the Intel Architecture is no longer an 
architecture-specific function. As such, kernel applications using the 
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vxPowerModeGet( ) and vxPowerModeSet( ) routines must migrate to the API 
provided by the light power manager. (For more information, see the reference 
entry for cpuPwrLightMgr.) 

To perform this migration, do the following:

■ Replace calls to vxPowerModeSet(VX_POWER_MODE_DISABLE) with 
cpuPwrMgrEnable(FALSE).

■ Replace calls to vxPowerModeSet(VX_POWER_MODE_AUTOHALT) with 
cpuPwrMgrEnable(TRUE).

■ Replace calls to vxPowerModeGet( ) with cpuPwrMgrIsEnabled( ). 

For the cpuPwrLightMgr API to be present in a VxWorks image, the VxWorks 
kernel must be configured with the INCLUDE_CPU_LIGHT_PWR_MGR 
component. This component is included by default so the API is present unless the 
component is explicitly removed. 

For more information on available power management facilities, see the VxWorks 
Kernel Programmer's Guide.

4.4.27  VxWorks Memory Layout

Two memory layouts for Intel Architecture (Pentium) architectures are described 
in this section. The figures contain the following labels:

Interrupt Vector Table (IDT) 
Table of exception/interrupt vectors (IDT).

Global Descriptor Table (GDT) 
Anchor for the shared memory network (if there is shared memory on the 
board). 

Boot Line 
ASCII string of boot parameters.

Exception Message 
ASCII string of the fatal exception message.

FD DMA Area 
Diskette (floppy device) direct memory access area.

NOTE:  The return types for the vxPowerModeGet( ) and 
cpuPwrMgrIsEnabled( ) routines are not the same. 
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Initial Stack 
Initial stack for usrInit( ), until usrRoot( ) gets allocated stack.

System Image 
Entry point for VxWorks.

WDB Memory Pool 
Size depends on the macro WDB_POOL_SIZE which defaults to one-sixteenth 
of the system memory pool. This space is used by the target server to support 
host-based tools. Modify WDB_POOL_SIZE under INCLUDE_WDB.

Interrupt Stack 
Size is defined by ISR_STACK_SIZE under INCLUDE_KERNEL. Location 
depends on system image size.

System Memory Pool 
size depends on size of system image and interrupt stack. The end of the free 
memory pool for this board is returned by sysMemTop( ). 

Figure 4-1 shows a lower memory option. 

Figure 4-2 illustrates the typical upper memory configuration. 

All addresses shown in Figure 4-2 are relative to the start of memory for a 
particular target board. The start of memory (corresponding to 0x0 in the 
memory-layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under 
INCLUDE_MEMORY_CONFIG for each target.

In general, the boot image is placed in lower memory and the VxWorks image is 
placed in upper memory, leaving a gap between lower and upper memory. Some 
BSPs have additional configurations which must fit within their hardware 
constraints. For details, see the reference entry for each BSP. 
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Figure 4-1 VxWorks System Memory Layout (x86 Lower Memory) 
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Figure 4-2 VxWorks System Memory Layout (x86 Upper Memory)
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4.5  Reference Material 

Comprehensive information regarding Intel Architecture hardware behavior and 
programming is beyond the scope of this document. Intel Corporation provides 
several hardware and programming manuals for the Intel Architecture processor 
families on its Web site:

http://developer.intel.com/

Wind River recommends that you consult the hardware documentation for your 
processor or processor family as necessary during BSP development. 
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5.1  Introduction

This chapter provides information specific to VxWorks development on MIPS 
processors. 

5.2  Supported Processors 

VxWorks supports a number of MIPS microprocessors, which can be categorized 
by the libraries that support them.
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MIPS32sf 
This category includes both big- and little-endian versions of the library. The 
32-bit R4000-style processors are represented here.

MIPS64 
This category includes both big- and little-endian versions of the library. The 
64-bit R4000 and later processors are represented here.

The VxWorks 6.2 libraries support a wide range of MIPS CPUs, including MIPS32 
and MIPS64 implementations. Because of the wide range of MIPS processors 
available, it is beyond the scope of this document to provide a complete listing of 
supported CPUs. However, Table 5-1 provides information for a representative 
group of CPUs supported by VxWorks.

When reviewing the information in the table, you should note that the cache 
support for a particular processor is independent of the library.

Each MIPS ISA level contains a superset of the instructions in the preceding level. 
Normally, this means that processors implementing ISA III (for example, MIPS64) 
are supported by both the ISA II MIPS32 libraries and the ISA III MIPS64 libraries. 
However, processors implementing the ISA II (for example, MIPS32) are only 
supported by the ISA II MIPS32 libraries. 

NOTE:  Table 5-1 is accurate at the time of this writing. However, support for 
additional CPUs and libraries may be added at any time. For a complete and 
updated list of supported MIPS devices, libraries, and BSPs, see the Wind River 
Online Support Web site. 

Table 5-1 Summary of Supported MIPS Devices and Libraries

CPU CPU Variant ISA Level Library 

Broadcom Devices 

bcm1250 _bcm125x MIPS64 MIPS64xxx 

bcm1250e _bcm125x MIPS64 MIPS64xxx

MIPS Technologies, Inc. Devices 

4kc _mti4kx MIPS32 MIPS32sfxxx 
MIPS32sfxxxle 

4kec _mti4kx MIPS32 MIPS32sfxxx 
MIPS32sfxxxle 
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5kc _mti5kx MIPS32 a MIPS32sfxxx 
MIPS32sfxxxle 

5kf _mti5kx MIPS64 MIPS32sfxxx 
MIPS32sfxxxle 
MIPS64xxx 
MIPS64xxxle 

24kc _mti24kx MIPS32b MIPS32sfxxx 
MIPS32sfxxxle 

24kec _mti24kx MIPS32 MIPS32sfxxx
MIPS32sfxxxle 

NEC Devices 

vr5500 _vr55xx IV MIPS32sfxxx 
MIPS32sfxxxle 
MIPS64xxx 
MIPS64xxxle 

PMC Sierra Devices 

rm9000 _rm9xxx MIPS64 MIPS64xxx 

Toshiba Corporation Devices 

tx4938 _tx49xx MIPS32 MIPS32sfxxx 
MIPS32sfxxxle 

tx4938 _tx49xx MIPS64 MIPS64xxx 
MIPS64xxxle 

a. The 5kc is a MIPS64 device with an optional floating-point unit. However, because 
VxWorks does not provide MIPS64 support for software floating-point operations, it is 
listed as a MIPS32 device. 

b. Toolchain support for the Revision 2 instruction set implemented in 4kec and 24kc 
processors is not available at this time. However, in the _mti24kx variant kernel 
libraries, the use of a series of nop or ssnop instructions used to handle hazards has 
been replaced by the ehb instruction by using a .word 0x000000c0 directive. 

Table 5-1 Summary of Supported MIPS Devices and Libraries (cont’d)

CPU CPU Variant ISA Level Library 
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Keep in mind that MIPS CPUs are organized by CPU variant. This allows the 
VxWorks kernel to take advantage of the specific architecture characteristics of one 
variant without negatively impacting another variant. As shown in Table 5-1, this 
organization leads to certain library-to-CPU variant mappings. For example, the 
MIPS32sfxxx, MIPS32sfxxxle, MIPS64xxx, and MIPS64xxxle libraries are 
supplied for all CPUs with the _mti5kx variant. However, the 5kc processor, a 
member of the _mti5kx variant family, is only supported in MIPS32 mode. Also, 
available libraries are sometimes subject to individual processor and board 
limitations. For example, although both big- and little-endian libraries are 
provided for the _bcm125x CPU variant, only the big-endian bcm1250 BSP is 
provided.

5.3  Interface Variations

This section describes particular routines and tools that are specific to MIPS targets 
in any of the following ways:

■ available only on MIPS targets
■ parameters specific to MIPS targets
■ special restrictions or characteristics on MIPS targets

For complete documentation, see the reference entries for the libraries, 
subroutines, and tools discussed in the following sections.

NOTE:  The library support examples provided in Table 5-1 represent both 
Wind River Compiler- and GNU-compiled libraries. For example, MIPS32sfxxx 
represents both MIPS32sfdiab (the Wind River Compiler-compiled library) and 
MIPS32sfgnu (the GNU-compiled library). You should substitute the appropriate 
option (diab or gnu) based on your chosen compiler. 



5  MIPS
5.3  Interface Variations

89

5

5.3.1  dbgArchLib 

tt( ) Routine 

In VxWorks for MIPS, the tt( ) routine does not currently display parameter 
information. A more complete stack trace, including function call parameter 
information, may be available through the use of a host-based debugger.

Hardware Breakpoints and the bh( ) Routine

Support for the bh( ) debugger command is provided for those MIPS processor 
cores that are MIPS32 and MIPS64 compliant in VxWorks 6.2 and newer releases. 
The MIPS32/MIPS64 specification provides a mechanism to support up to eight 
hardware breakpoints (also referred to as watchpoints). Currently, only the 
following MIPS32/MIPS64 compliant processor cores are supported:

■ Malta4kc (1 hardware breakpoint available)
■ Malta5kx (1 hardware breakpoint available)
■ Malta20kc (1 hardware breakpoint available)
■ Malta24kx (4 hardware breakpoints available; 2 for instruction access and 2 for 

data access)

Known issues with Hardware Breakpoints 

Watchpoint exceptions can be configured to occur on data read, data write, or 
instruction execution. Which mode the watchpoint is configured for is determined 
by bits 2..0 of the WatchLo register. 

Watchpoints set on instructions that reside in branch delay slots are not available 
as valid watchpoint addresses. However, nothing prevents you from setting these 

Bit 0 Data write 
Bit 1 Data read
Bit 2 Instruction execution

NOTE:  This leaves only bits 31..3 implemented for specifying the address (Vaddr) 
in the WatchLo register(s) for the breakpoint. This arrangement only allows 
watchpoints to be set on doubleword boundaries. This means that because bits 2..0 
are ignored, executing an instruction at either 0xc0010000 or 0xc0010004 results in 
a watchpoint exception. While the instruction not designated as the watchpoint is 
not processed beyond the exception handling, operational speed may be reduced.
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addresses as a watchpoint. An indication of this type of set up error is that the 
watchpoint address is never hit.

5.3.2  intArchLib

In VxWorks for MIPS, the routines intLevelSet( ) and intVecBaseSet( ) have no 
effect. For a discussion of the MIPS interrupt architecture, see 5.4.7 Interrupts, p.99.

5.3.3  taskArchLib

The routine taskSRInit( ) is specific to the MIPS architecture. This routine allows 
you to change the default status register with which a task is spawned. For more 
information, see 5.4.7 Interrupts, p.99.

5.3.4  Memory Management Unit (MMU) 

This section describes the memory management unit implementation for MIPS 
processors. 

VxWorks for MIPS includes support for memory management. You can build your 
BSP with or without memory management, depending upon the BSP 
configuration. 

■ To include memory management support in a VxWorks Image Project, add the 
component INCLUDE_MAPPED_KERNEL to your project. 

■ To include memory management support in a BSP-built kernel, execute make 
MAPPED=yes in the BSP directory. Do not define 
INCLUDE_MAPPED_KERNEL in config.h. This definition is intended to be 
added by Makefile, not by config.h. 

In unmapped VxWorks images:

■ The kernel resides in kseg0 and kseg1 because these address ranges do not 
utilize the MMU. 

■ RTPs reside in the kernel heap, which is allocated in kseg0. RTPs run in the 
kernel protection state. 
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When memory management is enabled, the address map of VxWorks is changed:

■ The kernel resides in kseg2.

■ RTPs reside in kuseg (the lower 2 GB of the 32-bit virtual address space).

Kernel Text Segment Static Mapping

When the VxWorks kernel includes memory management, the kernel reserves a 
portion of the hardware translation lookaside buffer (TLB) registers to create a 
persistent memory map for the kernel text segment. This persistent memory map 
eliminates any address translation overhead for instruction references within the 
kernel text segment. BSPs provided by Wind River initialize the TLB registers 
appropriately for mapped operation. Pre-VxWorks 6.0 BSPs that make use of the 
MMU (for example, for accessing memory and peripheral devices at addresses 
beyond the top of the 32-bit address space) need to be modified to avoid conflicting 
with the new memory management design of this VxWorks release. 

Data Segment Alignment

When the VxWorks kernel includes memory management, static TLB entries are 
used to provide the address mapping for the kernel text segment. During the build 
process, mapped kernels are linked with the load address of the data segment 
aligned to a multiple of an MMU page boundary. This has two effects: 

■ It minimizes the number of TLB entries needed to statically map the kernel 
text. 

■ It allows write protection to be applied to the kernel text section independent 
of the kernel data, which must remain read/write. 

For all practical purposes, the physical memory between the end of the kernel text 
section and the beginning of the kernel data is unallocated and unusable. 
However, because the padding is done in the linker, the kernel is not increased in 
size by the padding amount.

5.3.5  Caches

For most MIPS devices, the caching characteristics of memory in kseg0 are 
determined at startup time by the K0 field of the CONFIG register, and should not 
be changed once set. For this reason, the VxWorks cacheEnable( ) and 
cacheDisable( ) routines are not implemented for MIPS and return ERROR. 

For mapped kernels, cache characteristics can be controlled on a page-by-page 
basis through the use of the standard VM library API calls.
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5.3.6  AIM Model for Caches 

The Architecture-Independent Model (AIM) for cache provides an abstraction 
layer to interface with the underlying architecture-dependent cache code. This 
allows uniform access to the hardware cache features that are usually CPU core 
specific. AIM for cache is for VxWorks internal use and does not change the 
VxWorks API for application development. For more information, see the 
reference entry for cacheLib.

Not all CPU families in which MIPS BSPs are provided utilize AIM for cache. 
Currently, only the following CPU variants are supported by AIM for cache: 

Support for other variants will be added in a future release. 

5.3.7  Cache Locking 

Cache locking is implemented as part of MIPS AIM for cache support. For more 
information, see the reference entry for the cache locking routine. 

5.3.8  Building MIPS Kernels

As described in 5.4 Architecture Considerations, p.95, VxWorks for MIPS kernels can 
be configured with or without MMU support. MIPS kernels that are compiled with 
MMU support are referred to as mapped kernels, kernels without MMU support are 
considered unmapped. This section describes the new procedures and 
considerations for selecting the desired kernel mode.

Default (Unmapped) Build Configuration

Consistent with earlier VxWorks releases, pre-built kernels provided in your 
VxWorks for MIPS installation are configured for unmapped operation. Creating a 
VxWorks Image Project using the Wind River Workbench results in an unmapped 
kernel configuration. As with earlier releases, operation of the default kernel is 
limited to accessing memory in the unmapped memory regions kseg0 
(0x80000000-0x9fffffff) and kseg1 (0xa0000000-0xbfffffff).

_mti4kx 
_mti5kx 
_mti24kx 
_vr55xx 
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Mapped Build Configuration

Although unmapped kernels can be configured with support for real-time 
processes (RTPs), they do not have access to some of the more advanced protection 
features in this VxWorks release, such as memory write protection, inter-task 
memory protection, exception vector write protection, user-supervisor address 
space protection, and stack overflow protection. If you require these protection 
features, you must use a mapped kernel.

There are several changes to the build process required to create a mapped kernel. 
Provisions are made in Wind River-supplied BSPs to easily make these changes, 
but BSPs that are not derived from those on this VxWorks distribution must take 
the following items into account:.

■ Building a mapped kernel in a Wind River-supplied BSP directory involves 
adding the MAPPED=yes option to the make command. For example, if you 
previously used the make vxWorks command to build an unmapped kernel, 
you must now use the make MAPPED=yes vxWorks command to build a 
mapped kernel. 

■ To build a mapped VxWorks Image Project (kernel) in Workbench, you must 
build a VxWorks Image Project with the INCLUDE_MAPPED_KERNEL 
component (found under Hardware > Memory > MMU in the kernel 
configuration tool). 

For more information on building VxWorks Image Projects, see the Wind River 
Workbench User’s Guide or the VxWorks Command-Line Tools User’s Guide. 

Mapped Kernel Build Details

In order to support a mapped kernel, the Wind River-supplied MIPS BSPs for this 
VxWorks release have been updated in the following ways: 

■ Changes have been made to the BSP makefiles (Makefile) to assign 
appropriate values to the variables LOCAL_MEM_LOCAL_ADRS, 
RAM_LOW_ADRS, and RAM_HIGH_ADRS based on whether MAPPED=yes 
is specified. These addresses are kseg0 for unmapped kernels and kseg2 for 
mapped kernels. 

■ The BSP makefiles (Makefile) have been changed to add an EXTRA_DEFINE 
for INCLUDE_MAPPED_KERNEL when building mapped kernels. 

NOTE:  Do not define (#define) INCLUDE_MAPPED_KERNEL in config.h. This 
could result in an incorrect linkage address, and could prevent the makefile 
from correctly selecting between mapped and unmapped kernels.
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■ The BSP makefiles (Makefile) have been modified to set an appropriate 
DATA_SEG_ALIGN value. This value is not critical for unmapped kernels, but 
must be an even power of two (for example, 1, 4, 16, and so forth) multiple of 
the default virtual memory (VM) library page size of 8 KB. 

■ The BSP makefiles (Makefile) have been modified to define ADJUST_VMA=1 
to arrange to post-process the kernel load image. This allows the boot ROM to 
load a mapped kernel. 

■ The BSP config.h files have been modified to include logic to correctly set the 
INCLUDE_MMU_BASIC component and SW_MMU_ENABLE parameter 
dependent upon whether INCLUDE_MAPPED_KERNEL or INCLUDE_RTP are 
defined. If INCLUDE_RTP is added to config.h, it must be done before this 
logic. Also, the LOCAL_MEM_LOCAL_ADRS, RAM_LOW_ADRS, and 
RAM_HIGH_ADRS definitions in config.h have been removed. For BSP builds, 
these values are provided in Makefile and the definitions are passed to the 
compiler on the command line. For project builds, these values are determined 
by the presence or absence of the INCLUDE_MAPPED_KERNEL component.

■ A new structure known as sysPhysMemDesc[ ] and a global variable 
sysPhysMemDescNumEnt have been added to sysLib.c. These variables 
describe the physical and virtual addresses and size of the system RAM to the 
VM library. This structure is only included if INCLUDE_MAPPED_KERNEL is 
defined. 

■ New startup code has been added to sysALib.s to provide initialization of the 
MMU to create static entries in the MMU that allow loading the kernel into 
mapped memory space. This avoids the overhead of running the TLB refill 
handler when accessing kernel code. 

Mapped Kernel BSP Build Precautions

The addition of mapped kernels results in certain build product combinations in 
the BSP directories that should be avoided. For example, 
INCLUDE_MAPPED_KERNEL should not be defined if the kernel is linked in kseg0. 
(Kernels built from the Workbench are immune to these effects, as long as the BSP 
directory is not modified, the kernel is configured as unmapped, and 
INCLUDE_RTP is not defined in config.h.) 

To avoid many of these interactions, Wind River recommends that you create one 
BSP directory in which boot ROMs and unmapped kernels are built, and a separate 
BSP directory in which mapped kernels are built. 



5  MIPS
5.4  Architecture Considerations

95

5

Other Recommendations 

■ Avoid building the bootrom.hex image in a directory where a mapped kernel 
was previously built. The boot ROM will appear to compile correctly, but will 
contain unused data and code, and may not work. The safest method for 
building a bootrom image is to use: 

make clean bootrom.hex 

However, the clean is not necessary if you are certain that a mapped kernel 
was never built in the BSP directory. 

■ Conversely, avoid building a mapped kernel in a BSP directory in which a boot 
ROM was built. In this case, the link step will fail with undefined symbols for 
sysPhysMemDesc[ ] and sysPhysMemDescNumEnt. If you inadvertently 
encounter this situation, clean the BSP directory with make clean and try 
again with make MAPPED=yes or make MAPPED=yes vxWorks. 

■ Use caution if you need to modify the logic in config.h that determines the 
definitions of INCLUDE_MMU_BASIC and SW_MMU_ENABLE. Specifically, all 
combinations of these variables produce unmapped kernels (which must be 
linked at appropriate addresses) except if INCLUDE_MMU_BASIC is defined 
and SW_MMU_ENABLE is set to FALSE. In this case, you build a kernel that 
expects to be mapped but, because the linkage address is determined in 
Makefile (which is configured to build an unmapped kernel), the kernel will 
not boot. 

■ If you switch between mapped and unmapped kernels in the same BSP 
directory, always run make clean before attempting to build the new kernel. 

■ Do not attempt to build a mapped boot ROM (for example, 
make MAPPED=yes bootrom.hex). 

5.4  Architecture Considerations

This section describes characteristics of the MIPS architecture that you should keep 
in mind as you write a VxWorks application. The following topics are addressed:

■ memory ordering
■ debugger
■ gp-rel addressing
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■ reserved registers
■ signal support
■ floating-point support
■ interrupts
■ memory management unit (MMU) 
■ AIM model for MMU 
■ virtual memory mapping
■ memory layout
■ 64-bit support
■ hardware breakpoints

5.4.1  Byte Order

Most MIPS RISC processors are capable of big-endian or little-endian memory 
ordering. The MIPS32sfgnule, MIPS32sfdiable, MIPS64diable, and 
MIPS64gnule are supported little-endian libraries. All other libraries are 
big-endian.

5.4.2  Debugging and tt( )

On all MIPS targets, the tt( ) routine displays a stack trace. However, this routine 
does not currently display function parameter information. It is not possible to 
reliably report parameter information on architectures (such as MIPS) that pass 
some or all function parameters in registers (as opposed to placing them on the 
run-time stack). A more complete stack trace, including function parameter 
information, is obtained by using the host-based debugger available with 
VxWorks. 

5.4.3  gp-rel Addressing 

User code should not change the GP register, which is used in the implementation 
of shared libraries. This is accomplished through the use of the -G 0 command line 
option for the GNU compiler, or appropriate use of the -t selection for the 
Wind River Compiler.
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5.4.4  Reserved Registers

Following standard MIPS usage, the k0, k1, and GP registers should be considered 
reserved. This is also required to implement shared libraries. The values for these 
registers should not be changed, nor should they be assumed to contain any 
particular repeatable value at any point in the execution of user-supplied code.

5.4.5  Signal Support

VxWorks provides software signal support for all architectures. However, the 
manner in which MIPS maps its own exceptions onto the software signals is 
architecture-dependent. Table 5-2 shows this mapping. 

Table 5-2 Mapping of MIPS Exceptions onto Software Signals

MIPS Exception Name MIPS Exception Description Software Signal

IV_TLBMOD_VEC Translation Lookaside Buffer 
Modification

SIGBUS

IV_TLBL_VEC Translation Lookaside Buffer Load SIGBUS

IV_TLBS_VEC Translation Lookaside Buffer Store SIGBUS

IV_ADEL_VEC Address Load SIGBUS

IV_ADES_VEC Address Store SIGBUS

IV_IBUS_VEC Instruction Bus Error SIGSEGV

IV_DBUS_VEC Data Bus Error SIGSEGV

IV_SYSCALL_VEC System Call SIGTRAP

IV_BP_VEC Breakpoint SIGTRAP

IV_RESVDINST_VEC Reserved Instruction SIGILL

IV_CPU_VEC Coprocessor Unusable SIGILL

IV_FPA_UNIMP_VEC Unimplemented Instruction SIGFPE

IV_FPA_INV_VEC Invalid Operation SIGFPE

IV_FPA_DIV0_VEC Divide-by-zero SIGFPE



VxWorks
Architecture Supplement, 6.2  

98

5.4.6  Floating-Point Support

VxWorks supports the same set of math routines for all MIPS targets using either 
hardware facilities or software emulation. The following double-precision routines 
are supported for MIPS architectures:

Few 32-bit MIPS processors supported by the MIPS32sf libraries have a hardware 
floating-point unit. As a result, floating-point hardware for these processors is not 
supported by VxWorks. However, VxWorks provides software emulation support 
for the math routines listed above. These math routines are provided using the 
VxWorks math libraries.

On 64-bit MIPS III and above microprocessors, a hardware floating-point unit is 
often available. On these devices, there is an option of either emulating thirty-two 
single-precision (32-bit) floating-point registers, or using the thirty-two 
double-precision (64-bit) floating-point registers. Note that VxWorks hardware 
floating-point support is available only for processors that include both a complete 
double-precision floating-point hardware implementation and the ISA III 
instruction set. Table 5-3 shows the available MIPS libraries and the level of 
floating-point support provided by each for all possible MIPS CPU types. Note 
that access to the 32-bit, single-precision, floating-point registers is not supported 
by any VxWorks library. CPUs with this type of floating-point unit must use the 
software floating-point emulation provided in the MIPS32 libraries. 

IV_FPA_OVF_VEC Overflow SIGFPE

IV_FPA_UFL_VEC Underflow SIGFPE

IV_FPA_PREC_VEC Inexact SIGFPE

Table 5-2 Mapping of MIPS Exceptions onto Software Signals (cont’d)

MIPS Exception Name MIPS Exception Description Software Signal

acos( ) asin( ) atan( ) atan2( ) ceil( ) cos( ) cosh( )
exp( ) fabs( ) floor( ) fmod( ) log10( ) log( ) pow( )
sin( ) sinh( ) sqrt( ) tan( ) tanh( ) trunc( )
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To utilize MIPS floating-point support in VxWorks, you must spawn a 
floating-point task with the VX_FP_TASK option set. Spawning a task with this 
option sets the coprocessor usable bit (CU1) in the MIPS SR register on MIPS64 
processors. For floating-point tasks, all registers are saved and restored on context 
switches. Thus, you do not need to be concerned about storing and restoring 
floating-point registers on a per-task basis. If you are developing floating-point 
tasks, you need to determine which of the five floating point exceptions are 
significant. (For more information, refer to IEEE 754 and your processor 
documentation.) These exceptions can be enabled on a per-task basis by changing 
the floating-point status and control register. However, you must provide the 
routine that manipulates the register. 

5.4.7  Interrupts

MIPS Interrupts

The MIPS architecture has inputs for six external hardware interrupts and two 
software interrupts. In cases where the number of hardware interrupts is 
insufficient, board manufacturers can multiplex several interrupts on one or more 
interrupt lines.

The MIPS CPU treats exceptions and interrupts in the same way; that is, it branches 
to a common vector and provides status and cause registers that let the system 
software determine the CPU state. The CPU does not generate an IACK cycle. This 
function must be implemented in software or in board-level hardware. (For 
example, the VMEbus IACK cycle is a board-level hardware function.) VxWorks 

Table 5-3 MIPS Library Compatibility Matrix

Floating-Point Hardware 
32-bit Core and/or 
ISA II or ISA III 64-bit Core and ISA III 

None or Single-Precision MIPS32sfxxx 
MIPS32sfxxxle 

MIPS32sfxxx 
MIPS32sfxxxle 

Double-Precision MIPS32sfxxx 
MIPS32sfxxxle a

MIPS32sfxxx 
MIPS32sfxxxle 
MIPS64xxx 
MIPS64xxxle a

a. MIPS32sfxxx and MIPS32sfxxxle libraries do not utilize the floating-point 
coprocessor. 
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for MIPS has implemented an interrupt and exception stack for all tasks, including 
both user and kernel tasks.

Because the MIPS CPU does not provide an IACK cycle, the interrupt handler must 
acknowledge (or clear) the interrupt condition. If the interrupt handler does not 
acknowledge the interrupt, VxWorks hangs while repeatedly trying to process the 
interrupt condition. The unacknowledged interrupts can fill the work queue and 
cause a workQPanic( ) event.

VxWorks for MIPS uses a 256-entry table of vectors. Exception or interrupt 
handlers can be attached to any given vector with the intConnect( ) and 
intVecSet( ) routines. Note that for interrupt sources whose lines are shared on a 
PCI bus, the pciIntConnect( ) routine should be used to attach the handler. The 
files installDir/vxworks-6.2/target/h/arch/mips/ivMips.h and bspname.h list the 
vectors used by VxWorks. 

VxWorks for MIPS follows the same stack conventions as all other VxWorks 6.x 
architectures. There is a single interrupt stack, per-task exception stacks, and 
per-task execution stacks. 

Interrupt Support Routines 

Because the MIPS architecture does not use interrupt levels, the intLevelSet( ) 
routine is not implemented. The six external interrupts and two software 
interrupts can be masked or enabled by manipulating eight bits in the status 
register with intDisable( ) and intEnable( ). Be careful to pass correct arguments 
to these routines because the MIPS status register controls much more than 
interrupt generation.

For interrupt control, the intLock( ) and intUnlock( ) routines are recommended. 
The intLock( ) routine prevents interrupts from occurring while the current task is 
running. However, if some action is taken that causes another task to run (such as 
a call to semTake( ) or taskDelay( )), the intLock( ) routine is not honored while 
the other task is running. For more information, see the reference entry for 
intLock( ). 

To change the default status register with which all tasks are spawned, use the 
taskSRInit( ) routine. The taskSRInit( ) routine is provided in case the BSP must 
mask any interrupts from all tasks. This is useful for systems that do not connect 
each interrupt line to an appropriate signal or that connect the lines to unwanted 
signals. Such lines can cause spurious interrupts. Masking these interrupts can 
prevent this from occurring. When using this routine, call it before kernelInit( ) in 
sysHwInit( ).
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The intConnect( ) and intVecSet( ) routines handle attaching interrupt handlers to 
any given vector. Any vectors not currently defined in ivMips.h are available for 
use. Vector numbers should be defined in the board-specific include file. The 
intVecBaseSet( ) routine has no meaning on MIPS processors; calling it has no 
effect.

The data structure intPrioTable, found in sysLib.c, is a board-dependent array that 
aids in the processing of the eight MIPS interrupt sources. Each entry in the array 
consists of a structure composed of four fields: the interrupt ID, the vector number, 
the mask field, and the demultiplex field. A typical structure definition and table 
are as follows:

typedef struct
{
ULONG intCause; /* CAUSE IP bit of int source */
ULONG bsrTableOffset; /* index into BSR table */
ULONG intMask; /* interrupt mask */
ULONG demux; /* demultiplex argument */
} PRIO_TABLE;

PRIO_TABLE intPrioTable[] =
{
{CAUSE_SW1,(ULONG) IV_SWTRAP0_VEC, 0x0100, 0}, /* sw trap 0 */
{CAUSE_SW2,(ULONG) IV_SWTRAP1_VEC, 0x0200, 0}, /* sw trap 1 */
{CAUSE_IP3,(ULONG) sysVmeDeMux, 0x0400,
IV_VME_BASE_VEC}, /* VME muxed */
{CAUSE_IP4,(ULONG) sysIoDeMux, 0x0800,
IV_IO_BASE_VEC}, /* IO muxed */
{CAUSE_IP5,(ULONG) IV_TIMER0_VEC, 0x1000, 0}, /* timer 0 */
{CAUSE_IP6,(ULONG) sysFpaDeMux, 0x2000,
IV_FPA_BASE_VEC}, /* FPA muxed */
{CAUSE_IP7,(ULONG) IV_TIMER1_VEC, 0x4000, 0}, /* timer 1 */
{CAUSE_IP8,(ULONG) IV_BUS_ERROR_VEC, 0x8000, 0} /* bus error */
};

When an interrupt is received, the handler maps the highest-priority pending line 
to its corresponding table entry. It does so in three steps. First, the demultiplex field 
is read. If the field is zero, field two is taken as the vector number for the BSR table. 
Otherwise, field two is interpreted as a demultiplex function and called with field 
four passed as its parameter. When multiple sources share an interrupt line, the job 
of the demultiplex function is to calculate a desired vector number and pass it back 
to the handler. Next, the mask field is read, and interrupts not currently pending 
and not masked are re-enabled. Finally, the handler uses the vector number as an 
index into the BSR table and calls the interrupt service routine previously installed 
by the user with intConnect( ) or intVecSet( ).

Because tying interrupting sources to the processor’s interrupt lines is 
board-dependent and sometimes arbitrary, VxWorks allows the BSP author to set 
the prioritization of interrupt lines. The pointer sysHashOrder points to a lookup 



VxWorks
Architecture Supplement, 6.2  

102

table that the interrupt handler uses to perform the actual mapping of pending 
interrupt lines to a corresponding table entry in intPrioTable. The operation of the 
lookup table is simple; that is, the IP field of the cause register is used as an index 
into the lookup table to obtain a value that is then used as an index into 
intPrioTable. 

Acknowledging the Interrupt Condition

Because MIPS processors do not provide an IACK cycle, it is the job of the 
user-attached interrupt handler to acknowledge (or clear) the interrupt condition. 
The sysAutoAck( ) routine must be provided as a default handler for any possible 
interrupt condition. If a spurious interrupt occurs, it is the job of sysAutoAck( ) to 
acknowledge the interrupt condition. If an interrupt condition is not 
acknowledged, VxWorks tries continuously to process the interrupt condition, 
resulting in a workQPanic( ) event. If this occurs, a warm reset will fail to 
auto-boot the target because the VxWorks environment variables have been 
corrupted by an interrupt stack that has overflowed. A cold start will copy the 
variables back into memory. 

Interrupt Inversion

When a single interrupt is pending in the cause register, the kernel masks out that 
interrupt’s bit before dispatching it to the interrupt handler. The kernel performs 
this mask operation using the contents of the cause register in combination with 
field three of the table intPrioTable. Interrupts not masked and not currently 
pending are re-enabled. Often, the field three value only explicitly masks its own 
interrupt. As a result, any subsequent interrupt, even if it is of a lower priority, can 
interrupt the interrupt service routine (ISR). This is known as interrupt inversion. 

To prevent interrupt inversion, modify the interrupt masks listed in intPrioTable. 
The new values should mask not only the interrupt in question, but all 
lower-priority interrupts as well. For example, the interrupt mask for the 
highest-priority interrupt is 0xff00. Similarly, the next-highest priority interrupt 
mask is 0x7f00. These values explicitly mask the interrupt and all lower-priority 
interrupts.

Keep in mind that the value of the appropriate interrupt mask is also dependent 
upon whether the least significant bit (LSB) or the most significant bit (MSB) of the 
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mask is the highest priority. If the LSB is the highest priority, the masks are as 
shown in Table 5-4: 

If the MSB is the highest priority, the masks are as shown in Table 5-5: 

Table 5-4 Interrupt Mask Values When LSB Is Highest Priority

Priority of the interrupt 
being serviced

Mask value required to prevent an equal- or lower-priority 
interrupt from being acknowledged

0 (software, highest) 0xff00 

1 0xfe00 

2 0xfc00 

3 0xf800 

4 0xf000 

5 0xe000 

6 0xc000 

7 (lowest) 0x8000 

Table 5-5 Interrupt Mask Values When MSB Is Highest Priority

Priority of the interrupt 
being serviced 

Mask value required to prevent an equal- or lower-priority 
interrupt from being acknowledged 

0 (software, lowest) 0x0100 

1 0x0300 

2 0x0700 

3 0x0f00 

4 0x1f00 

5 0x3f00 

6 0x7f00 

7 (highest) 0xff00 
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Note that due to the processor’s mapping of bits 1 and 0 to software interrupts, 
most MIPS BSPs select the MSB as the highest priority. This causes hardware 
interrupts to take precedence over software interrupts.

VMEbus Interrupt Handling 

The VMEbus has seven interrupt levels. On most MIPS VME boards, these 
interrupts are bound to a single interrupt line. This requires software to sense the 
VMEbus interrupt and demultiplex the interrupt condition to a single pending 
interrupt level. This can be performed using intPrioTable.

It is possible to bind to VMEbus interrupts without vectored interrupts enabled, as 
long as the VMEbus interrupt condition is acknowledged with sysBusIntAck( ). In 
this case, there is no longer a direct correlation with the vector number returned 
during the VMEbus IACK cycle. The vector number used to attach the interrupt 
handler corresponds to one of the seven VMEbus interrupt levels as defined in 
bspname.h. Mapping the seven VMEbus interrupts to a single MIPS interrupt is 
board-dependent.

Vectored interrupts do not change the handling of any interrupt condition except 
VMEbus interrupts. All of the necessary interrupt-acknowledgement routines are 
provided in either sysLib.c or sysALib.s.

Extended Interrupts on the RM9000

In the original MIPS architecture, provision is made for eight interrupt sources: six 
hardware interrupts and two software interrupts. For most MIPS targets, this is 
sufficient. With the advent of more complex embedded systems, six hardware 
interrupts may not suffice. One common solution is to multiplex multiple interrupt 
sources onto a single interrupt pin. This approach requires two levels of processing 
to handle each interrupt. First, it must be determined that the interrupt came from 
the multiplexed interrupt input. Second, the multiplexed input that caused the 
interrupt must be determined. 

The PMC Sierra RM9000 family of processors provides an alternative solution. 
These processors make provisions for four additional hardware interrupt inputs. 
This allows additional expansion without requiring multiple interrupts to be 
multiplexed on a single input. 

PMC Sierra implemented this change in a manner consistent with the original 
design of the status and cause registers. Specifically, the Interrupt Pending (IP) 
field of the cause register was extended from 8 to 16 bits, as shown in Figure 5-1. 
Six of these bits are now defined; the remaining two are reserved for future use. 
This expansion of the IP field was possible because the added bits were not 
previously defined.
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However, the status register did not have extra bits available for the needed 
additional interrupt mask fields. Therefore, the mask bits had to be placed in a new 
register, the interrupt control register (Coprocessor 0, Set 1, Register 20), shown in 
Figure 5-1. This field is considered to be an extension of the Interrupt Mask (IM) 
field, and mask bits for interrupts 15:8 are placed in bits 15:8 of the interrupt 
control register.

While four additional hardware interrupts have been added, six bits of the 
extensions to the IP and IM fields have been used. Bits 11:8 of these fields 
correspond to the newly added hardware interrupt inputs. Bit 12 is used to control 
the Timer interrupt source that was multiplexed with Interrupt input 5 in the 
original design. For backward compatibility, the Timer interrupt may still be 
placed on Interrupt 5, but setting the TE bit (bit 7) of the interrupt control register 
frees Interrupt 5 for use solely as a hardware input, and moves the Timer interrupt 
to Interrupt 12. The second additional interrupt input is used in conjunction with 
the Performance Counters implemented in the RM9000 family. This has been 
placed on Interrupt 13. 

The additional hardware interrupts on the RM9000 family add to the intPrioTable 
that is used by the exception and interrupt handling routines in excLib to call a 
user-attached interrupt handler. A typical extended interrupt table is as follows:

PRIO_TABLE intPrioTable[] =
{

{CAUSE_SW1,(ULONG) IV_SWTRAP0_VEC, 0x000100, 0}, /* sw trap 0 */
{CAUSE_SW2,(ULONG) IV_SWTRAP1_VEC, 0x000200, 0}, /* sw trap 1 */
{CAUSE_IP3,(ULONG) IV_IORQ0_VEC, 0x000400, 0}, /* Reserved */

Figure 5-1 RM9000 Register Formats 
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{CAUSE_IP4,(ULONG) IV_IORQ1_VEC, 0x000800, 0}, /* Uart */
{CAUSE_IP5,(ULONG) IV_IORQ2_VEC, 0x001000, 0}, /* Expansion Conn */
{CAUSE_IP6,(ULONG) IV_IORQ3_VEC, 0x002000, 0}, /* Expansion Conn */
{CAUSE_IP7,(ULONG) IV_IORQ4_VEC, 0x004000, 0}, /* Expansion Conn */
{CAUSE_IP8,(ULONG) IV_TIMER_VEC, 0x008000, 0}, /* Timer */
{CAUSE_IP9,(ULONG) IV_IORQ6_VEC, 0x010000, 0}, /* Expansion Conn */
{CAUSE_IP10,(ULONG)IV_IORQ7_VEC, 0x020000, 0}, /* Expansion Conn */
{CAUSE_IP11,(ULONG)IV_IORQ8_VEC, 0x040000, 0}, /* Expansion Conn */
{CAUSE_IP12,(ULONG)IV_IORQ9_VEC, 0x080000, 0}, /* Expansion Conn */
{CAUSE_IP13,(ULONG)IV_IORQ10_VEC, 0x100000, 0}, /* Alternate Tmr */
{CAUSE_IP14,(ULONG)IV_IORQ11_VEC, 0x200000, 0}, /* Perf Counter */
{CAUSE_IP15,(ULONG)IV_IORQ12_VEC, 0x400000, 0}, /* Reserved */
{CAUSE_IP16,(ULONG)IV_IORQ13_VEC, 0x800000, 0}, /* Reserved */

};

Corresponding to the expansion of intPrioTable for extended interrupts, the 
sysHashOrder table lookup also required modification. Due to memory 
considerations, the size of the lookup table was not increased from 256 (2^8) to 
16384 entries (2^14). Instead, the lookup table pointed to by sysHashOrder is left 
at 256 entries, and the cause register pending bits are checked in two separate 
iterations. The first iteration uses the interrupt sources corresponding to IP[7:0]. If 
none of those sources is active, a second lookup is performed using the interrupt 
sources corresponding to IP[15:8]. The value from the lookup table in the second 
iteration is automatically increased by 8 to place the proper offset into 
intPrioTable. As a result of this design decision, interrupt sources in the status 
register IM[7:0] are always given higher priority than those sources in the interrupt 
control register IM[15:8].

For more details on register formats on the RM9000, see the PMC Sierra RM9000x2 
Integrated Multiprocessor Data Sheet. 

5.4.8  Memory Management Unit (MMU)

MIPS processors include a minimal memory management unit commonly referred 
to as the translation lookaside buffer (TLB). This release of VxWorks supports the 
TLB in mapped kernels. MIPS processors provide three different modes of 
operation: user mode, kernel mode, and supervisor mode. The VxWorks kernel 
runs in kernel mode. RTPs run in user mode for mapped kernels and in kernel 
mode for unmapped kernels. Supervisor mode, as described in MIPS 
documentation, is not used. However, some Wind River documentation refers to 
supervisor mode. In this context, the reader should substitute the MIPS-equivalent 
term, kernel mode. 
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5.4.9  AIM Model for MMU 

The Architecture-Independent Model (AIM) for MMU provides an abstraction 
layer to interface with the underlying architecture-dependent MMU code. This 
allows uniform access to the hardware-dictated MMU model that is typically CPU 
core specific. AIM for MMU is for VxWorks internal use. However, the new model 
adds support for a new routine, vmPageLock( ) to the VxWorks vmLib API. For 
more information on this routine, see the reference entry for vmPageLock( ). All 
MIPS architecture variants supported in this release implement the AIM for MMU 
and the new routine.

vmPageLock( ) requires the use of static MMU entries. To ensure minimal resource 
usage, this routine requires alignment of the lock regions. This routine provides a 
mechanism for reducing page misses and should boost performance when used 
correctly.

Page locking of a text section will fail if the alignment and size of the text section 
is such that the number of resources available is not sufficient to satisfy the 
required number of MMU resources. If the BSP uses too many resources, it may not 
be possible to enable this feature. Because not all MIPS processors have the same 
number of resources, page locking requests that succeed on one processor may fail 
on another.

The MIPS architecture uses a basic page size of 4 KB. However, because each MMU 
resource controls a pair of 4 KB pages, the minimum (and default) page size for 
MIPS is 8 KB, so that the two 4 KB pages can be controlled together.

5.4.10  Virtual Memory Mapping 

The MIPS memory map is arranged in segments that have pre-determined modes 
of operation. Unlike some processors that can set specific virtual memory 
addresses to any mode of operation, MIPS processors pre-assign certain ranges of 
virtual memory addresses to kernel mode or user mode.
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As indicated in Figure 5-2, VxWorks operation is limited to kernel mode in the two 
unmapped memory segments, kseg0 and kseg1. A physical addressing range of 
512 MB is available. The on-chip translation lookaside buffer (TLB) is not 
supported in this mode therefore access to kuseg and kseg2 is not available. 

To summarize the kseg0 and kseg1 segments:

kseg0 
When the most significant three bits of the virtual address are 100, the 229–byte 
(512 MB) kernel physical space, labeled kseg0, is the virtual address space 
selected. The physical address selected is defined by subtracting 0x8000.0000 
from the virtual address. The cache mode for these accesses is determined by 
the K0 field of the configuration register, which is initialized in the BSP 
romInit( ) routine. 

kseg1 
When the most significant three bits of the virtual address are 101, the 229–byte 
(512 MB) kernel physical space, labeled kseg1, is the virtual address space 
selected. The physical address selected is defined by subtracting 0xA000.0000 
from the virtual address. Caches are always disabled for accesses to these 
addresses; physical memory or memory-mapped I/O device registers are 
accessed directly. 

Figure 5-2 MIPS Memory Map - Unmapped Kernel 
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Figure 5-3 illustrates the memory map used for mapped kernels. In mapped mode, 
kernel text and data are located in kseg2, while RTPs operate in kuseg. A region at 
the top of the 32-bit address space is used for temporary storage of working 
variables during exception processing. The descriptions of the additional segments 
kseg2, kuseg, and minus1 are as follows:

kuseg 
When the most significant three bits of the virtual address are 000, the 231–byte 
user virtual space, labeled kuseg, is selected. Access to kuseg addresses 
requires a TLB entry to map that virtual address to a physical address. The 
specifics of the translation between virtual and physical addresses are 
dynamic and managed by the virtual memory (VM) library. Cache 
characteristics and write protection are controlled (through the VM library) by 
control bits in the TLB entry, and may be selected on a page-by-page basis. 

kseg2 
When the most significant three bits of the virtual address are 110, the 229–byte 
kernel virtual space, labeled kseg2, is selected. Access to kseg2 addresses 

Figure 5-3 MIPS Memory Map - Mapped Kernel 
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requires a TLB entry to map those virtual addresses to corresponding physical 
addresses. There is a fixed relationship between virtual addresses in the kernel 
text section and corresponding physical addresses: subtracting 0xc0000000 
from the virtual address results in the physical address. This relationship may 
not be depended upon for other addresses in kseg2.

minus1 
The region marked minus1 in the mapped kernel memory map is a statically 
mapped virtual region used for temporary storage of variables that are used 
during exception and interrupt handling. 

5.4.11  Memory Layout 

Unmapped Kernels 

The memory layout of an unmapped MIPS kernel occupies memory in segments 
kseg0 and kseg1. The value LOCAL_MEM_LOCAL_ADRS, defined in the BSP 
config.h file, indicates the start of memory for the system. For single core BSPs, this 
value is 0x80000000, the virtual starting address of kseg0. In multi-core BSPs, this 
value is normally adjusted for each subsequent core, depending upon the system 
requirements. 

The boot ROM is responsible for setting up the system and loading the VxWorks 
kernel into memory. The memory layout is set up by the boot ROM in a three-step 
process, as shown in Figure 5-4. First, the initial boot loading routines located at 
ROM_TEXT_ADRS are executed. These routines copy data from ROM_TEXT_ADRS 
to RAM_LOW_ADRS and uncompress the data, if necessary. Once in RAM, the boot 
process continues by loading the VxWorks kernel. The constants 
RAM_LOW_ADRS, RAM_HI_ADRS, and ROM_TEXT_ADRS are located in the BSP 
config.h and Makefile files. LOCAL_MEM_SIZE and LOCAL_MEM_LOCAL_ADRS 
are located in config.h.

Mapped Kernels 

The memory layout of a mapped MIPS kernel occupies memory in kseg2 for the 
kernel text and data sections, kseg0 and kseg1 for vectors and DMA device 
buffers, kuseg for RTPs, and minus1 for variable storage while entering and 
exiting exception handling code. For single core BSPs, the value of 
LOCAL_MEM_LOCAL_ADRS is typically defined as 0xC0000000 (the virtual 
starting address of kseg2) for mapped kernels. In multi-core BSPs, 
LOCAL_MEM_LOCAL_ADRS is normally adjusted for each subsequent core, 
depending upon the system requirements. 
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Because the MMU is not yet set up when the boot ROM runs, the mapped kernel 
is loaded into kseg0, just as it is for unmapped kernels. However, the kseg0 
address is an alias of the kseg2 address at which the kernel is linked. When the 
boot ROM loads the mapped kernel and transfers to its entry point, the mapped 
kernel sets up the MMU so that the kernel text and data can be accessed at their 
mapped addresses in kseg2. Then, the boot process continues by running from 
kseg2.

It should be noted that alternate values are required for 
LOCAL_MEM_LOCAL_ADRS, RAM_LOW_ADRS, and RAM_HIGH_ADRS for 
mapped kernels. The mapped kernel build mechanism takes these differences into 
account.

The details of the VxWorks image are shown in Figure 5-5. The figure contains the 
following labels:

Figure 5-4 MIPS Memory Layout Process
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NOTE:  The values for LOCAL_MEM_LOCAL_ADRS, RAM_LOW_ADRS, and 
RAM_HIGH_ADRS shown in Figure 5-4 correspond to the boot ROM (or 
unmapped kernel) values, which are always located in unmapped memory. 
Different values for these variables are used when linking a mapped kernel. 
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Exception Vectors 
Table of exception and interrupt vectors. It is located at the base of kseg0, 
0x80000000 for both mapped and unmapped kernels. 

Initial Stack 
Initial stack set up by romInit( ) and used by usrInit( ) until usrRoot( ) has 
allocated the stack. Its size is determined by STACK_SAVE.

System Image 
The VxWorks image entry point. The VxWorks image consists of three 
segments: .text, .data, and .bss.

Interrupt Stack 
The stack used by interrupt service routines. Its size is determined by 
ISR_STACK_SIZE. It is placed at the end of the VxWorks image, before the 
kernel heap.

System Memory Pool 
The memory allocated for system use. The size of the memory pool is 
dependent on the size of the system image and interrupt stack. The end of the 
system memory pool is determined by sysMemTop( ). 

Figure 5-5 VxWorks Image in MIPS Memory Layout
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5.4.12  64-Bit Support

VxWorks provides real-time applications with access to a 64-bit data type. This 
allows applications to perform 64-bit calculations for enhanced performance.

The long long data type is available for both MIPS32 and MIPS64. However, in 
MIPS32, two 32-bit registers are paired to represent a 64-bit value. In MIPS64, such 
a value is a true 64-bit value represented by a 64-bit register. For better 
performance in your MIPS64 applications, use the long long data type when 
representing 64-bit values.

Support for 64-bit virtual addresses is not provided by VxWorks. That is, all 
pointer data types are 32-bits in length. 

5.5  Reference Material

Comprehensive information regarding MIPS hardware behavior and 
programming is beyond the scope of this document. MIPS Technologies, Inc. 
provides several hardware and programming manuals for the MIPS processor on 
its Web site:

http://www.mips.com/

Wind River recommends that you consult the hardware documentation for your 
processor or processor family as necessary during BSP development.

MIPS Architecture References 

The information given in this section is current at the time of writing; should you 
decide to use these documents, you may wish to contact the manufacturer or 
publisher for the most current version.

See MIPS Run. Sweetman, Dominic. Morgan Kaufmann Publishers, Inc., 
San Francisco, CA. 1999.
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6.1  Introduction

This chapter provides information specific to VxWorks development on supported 
PowerPC processors. 
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6.2  Supported Processors 

Table 6-1 shows the processor core types supported by this VxWorks for PowerPC 
release. 

Table 6-1 Supported PowerPC Processor Core Types 

VxWorks PowerPC 
CPU Family Description 

PPC403 Includes PowerPC 403 processor cores. 

Note that PowerPC 403 is an obsolete core and is not 
recommended for use in new development. The core is 
still supported for legacy reasons. 

PPC405 Includes PowerPC 405 processor cores. 

PPC440 Includes PowerPC 440 processor cores. 

PPC603 Includes PowerPC 603, MPC82XX, and MPC83XX 
processor cores. 

PPC604 Includes MPC7XX and MPC74XX processor cores as well 
as PowerPC 604, 750CX, 750FX, and 750GX cores. 

PPC85XX MPC85XX

PPC860 Includes MPC860 processor cores. 

PPC32 Includes PowerPC 970 and PowerPC 440EP processor 
cores. 

Note that PowerPC 970 support is limited to 32-bit mode. 

NOTE:  Support for additional processor core types may be added periodically. See 
the Wind River Online Support Web site for the latest information. 
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6.3  Interface Variations

This section describes particular functions and tools that are specific to PowerPC 
targets in any of the following ways:

■ available only for PowerPC targets 

■ parameters specific to PowerPC targets 

■ special restrictions or characteristics on PowerPC targets 

For complete documentation, see the reference entries for the libraries, routines, 
and tools discussed in the following sections. 

6.3.1  Stack Frame Alignment 

The stack frame alignment for all PowerPC CPU families is now 16 bytes. In earlier 
versions of VxWorks (prior to 6.0), only PowerPC 604 (including the MPC74XX 
family) and MPC85XX had 16-byte stack alignment. Other CPU families had 
8-byte stack alignment by default. Therefore, for these CPU families, objects 
compiled for earlier versions of VxWorks must be recompiled for this VxWorks 
release. 

6.3.2  Small Data Area

Both the GNU compiler and the Wind River Compiler support small data area 
(SDA). However, this release of VxWorks for PowerPC does not support the small 
data area feature for kernel code. Therefore, for the GNU compiler, the -msdata 
compiler flag must not be used. In addition, Wind River recommends that you use 
the -G0 option on the command line as well. The default configuration for the 
Wind River Compiler selects the no SDA setup, which has the equivalent effect of 
specifying the optional flags of -Xsmall-data=0 and -Xsmall-const=0. 

NOTE:  In general, Wind River recommends that you recompile your code and that 
you do not reuse objects compiled for a different environment, including an older 
version of VxWorks. 
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6.3.3  HI and HIADJ Macros

The HI and HIADJ macros are used in PowerPC assembly code to facilitate the 
loading of immediate operands larger than 16 bits. The macro HI(x) is the simple 
high-order 16 bits of the value x. The macro HIADJ(x) is the high-order 16 bits 
adjusted by the MSB (most significant bit) of the low-order 16 bits of value x. That 
is, if the MSB is set, HIADJ(x) truncates the lower 16 bits and adjusts the resulting 
value by adding 1 to the upper 16 bits. 

The macro HIADJ(x) must be used whenever the low-order 16 bits are used in an 
instruction that interprets them as a signed quantity (for instance, addi or lwz). If 
the low-order bits are used in an instruction that interprets them as an unsigned 
quantity (for instance, ori), the proper macro HI, not HIADJ, should be used.

For example, addi uses a signed quantity, so HIADJ is the proper macro:

lis rx, HIADJ(VALUE)
addi rx, rx, LO(VALUE)

However, ori uses an unsigned quantity, so HI is the proper macro:

lis rx, HI(VALUE)
ori rx, rx, LO(VALUE)

6.3.4  Memory Management Unit (MMU) 

This section describes the memory management unit (MMU) implementation for 
PowerPC processors and how its use varies from the standard VxWorks 
implementation. 

Instruction and Data MMU 

The PowerPC MMU introduces a distinction between instruction and data MMU 
and allows them to be separately enabled or disabled. Two parameters, 
USER_I_MMU_ENABLE and USER_D_MMU_ENABLE, are provided in the Params 
tab of the Properties window under SELECT_MMU. The default settings of these 
parameters are specified by the BSP. Wind River-supplied BSPs for PowerPC 405 
and PowerPC 440 processors specify USER_I_MMU_ENABLE as FALSE because this 
setting provides performance benefits in images that do not support RTPs (see 
PowerPC 405 Performance, p.124 and PowerPC 440 Performance, p.126). 
Wind River-supplied BSPs for other PowerPC processor types specify both 
USER_I_MMU_ENABLE and USER_D_MMU_ENABLE as TRUE. 
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MMU Translation Model

The VxWorks PowerPC implementations share a common programming model 
for mapping 4 KB memory pages. The physical memory address space is described 
by the data structure sysPhysMemDesc[ ], defined in sysLib.c. This data structure 
is made up of configuration constants for each page or group of pages. All of the 
configuration constants defined in the VxWorks Kernel Programmer’s Guide are 
available for PowerPC virtual memory pages.

Use of the MMU_ATTR_CACHE_DEFAULT (or VM_STATE_CACHEABLE) constant 
sets the cache to copy-back mode.

In addition to MMU_ATTR_CACHE_DEFAULT, the following additional constants 
are supported:

■ MMU_ATTR_CACHE_WRITETHRU 
(or VM_STATE_CACHEABLE_WRITETHROUGH) 

■ MMU_ATTR_CACHE_OFF (or VM_STATE_CACHEABLE_NOT) 
■ MMU_ATTR_SUP_RWX (or VM_STATE_WRITEABLE) 
■ MMU_ATTR_PROT_SUP_READ | MMU_ATTR_PROT_SUP_EXE 

(or VM_STATE_WRITEABLE_NOT) 
■ MMU_ATTR_CACHE_COHERENCY (or VM_STATE_MEM_COHERENCY) 
■ MMU_ATTR_CACHE_GUARDED (or VM_STATE_GUARDED) 

The first constant sets the page descriptor cache mode field in cacheable 
write-through mode. Cache coherency and guarded modes are controlled by the 

NOTE:  When configuring a VxWorks image for use with real-time processes 
(RTPs), both the instruction and the data MMU must be enabled. 

NOTE:  In VxWorks 5.5, memory protection attributes are set using various 
VM_STATE_xxx macros. These macros (as listed above) are still supported for this 
release. However, these macros may be removed in a future release. Wind River 
recommends that you use the MMU_ATTR_xxx macros for new development and 
that you update any existing BSP to use the new macros whenever possible. For 
more information on the VM_STATE_xxx macros, see the VxWorks Migration Guide. 

NOTE:  Memory coherency page state is only supported for PowerPC 603, 
PowerPC 604, MPC85XX, and PowerPC 970. On PowerPC 970 processors, the 
memory coherency attribute is not supported; PowerPC 970 always enforces 
memory coherency, whether the attribute is set or not.
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other constants. There is no default configuration, because each memory region 
may have specific requirements; see individual BSPs for examples.

For more information regarding cache modes, see PowerPC Microprocessor Family: 
The Programming Environments.

For more information on memory page states, state flags, and state masks, see the 
VxWorks Kernel Programmer’s Guide: Memory Management.

PowerPC 60x Memory Mapping

The PowerPC 603 (including MPC82XX and MPC83XX) and PowerPC 604 
(including MPC7XX, MPC74XX, PowerPC 750CX, 750FX, and 750GX; collectively, 
the PowerPC 604 family) MMU supports two models for memory mapping. The 
first, the block address translation (BAT) model, allows mapping of a memory 
block ranging in size from 128 KB to 256 MB (or larger, depending on the CPU) into 
a BAT register. The second, the segment model, gives the ability to map the 
memory in pages of 4 KB. VxWorks for PowerPC supports both memory models.

PowerPC 603/604 Block Address Translation Model

The block address translation (BAT) model takes precedence over the segment 
model. However, the BAT model is not supported by the VxWorks vmLib or cache 
libraries. Therefore, routines provided by those libraries are not effective, and no 
errors are reported, in memory spaces mapped by BAT registers. Typically, in 
VxWorks, the BATs are only used to map large external regions, or PROM/flash, 
where fine grain control is unnecessary; this has the advantage of reducing the size 
of the page table entry (PTE) table used by the segment model.

All PowerPC 603 and PowerPC 604 family members include eight BATs: four 
instruction BATS (IBAT) and four data BATs (DBAT). The BAT registers are always 
active, and must be initialized during boot. Typically, romInit( ) initializes all 
(active) BATs to zero so that they perform no translation. No further work is 
required if the BATs are not used for any address translation.

Motorola MPC7X5, MPC74X5, MPC8349, MPC8272, and MPC8280 CPUs have an 
additional four IBAT and four DBAT registers. These extra BATs can be enabled or 
disabled (HID0 or HID1, depending on the CPU); they are disabled by hardware 
reset. Configuring these additional BATs for VxWorks is optional.

The IBM PowerPC 750FX also adds four IBAT and four DBAT registers, but these 
are always enabled. In this case, the additional BATs must be configured.



6  PowerPC
6.3  Interface Variations

121

6

The data structure sysBatDesc[ ], defined in sysLib.c, handles the BAT register 
configuration. All of the configuration constants used to fill sysBatDesc[ ] are 
defined in installDir/vxworks-6.2/target/h/arch/ppc/mmu603Lib.h for both the 
PowerPC 603 and the PowerPC 604. Providing the correct entries in sysBatDesc[ ] 
is sufficient to configure the basic four BATs; no additional software configuration 
is required. For information on configuring all eight BAT registers, see the 
following section. If sysBatDesc[ ] is not defined by the BSP, the BATs are left alone 
after being configured by romInit( ). 

Enabling Additional BATs 

If the extra BATs are to be used, the following steps must be performed in the BSP:

1. Extend the sysBatDesc[ ] array to provide initialization values for the 
additional BATs.

2. Select or write a BAT initialization routine. Initialization routines for the 
MPC7X5, MPC74X5, and PowerPC 750FX are provided with this release.

3. Connect the initialization routine to the function pointer provided by the 
kernel, so that the BATs are initialized at the proper time during MMU 
initialization.

The sysBatDesc[ ] array essentially doubles in size, and the order of the entries is 
fixed. The initial 16 entries are identical in meaning to the original array, so may 
remain unchanged. For example (from the sp745x BSP):

UINT32 sysBatDesc [2 * (_MMU_NUM_IBAT + _MMU_NUM_DBAT +
_MMU_NUM_EXTRA_IBAT + _MMU_NUM_EXTRA_DBAT)] =

{
/* I BAT 0 */
((ROM_BASE_ADRS & _MMU_UBAT_BEPI_MASK) | _MMU_UBAT_BL_1M |
_MMU_UBAT_VS | _MMU_UBAT_VP),
((ROM_BASE_ADRS & _MMU_LBAT_BRPN_MASK) | _MMU_LBAT_PP_RW |
_MMU_LBAT_CACHE_INHIBIT),

0,0, /* I BAT 1 */
0,0, /* I BAT 2 */
0,0, /* I BAT 3 */
/* D BAT 0 */
((ROM_BASE_ADRS & _MMU_UBAT_BEPI_MASK) | _MMU_UBAT_BL_1M |
_MMU_UBAT_VS | _MMU_UBAT_VP),
((ROM_BASE_ADRS & _MMU_LBAT_BRPN_MASK) | _MMU_LBAT_PP_RW |
_MMU_LBAT_CACHE_INHIBIT),

0,0, /* D BAT 1 */
0,0, /* D BAT 2 */
0,0, /* D BAT 3 */
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/*
* These entries are for the the I/D BATs (4-7) on the MPC7455/755.
* They should be defined in the following order.
* IBAT4U,IBAT4L,IBAT5U,IBAT5L,IBAT6U,IBAT6L,IBAT7U,IBAT7L,
* DBAT4U,DBAT4L,DBAT5U,DBAT5L,DBAT6U,DBAT6L,DBAT7U,DBAT7L,
*/
0,0, /* I BAT 4 */
0,0, /* I BAT 5 */
0,0, /* I BAT 6 */
0,0, /* I BAT 7 */
0,0, /* D BAT 4 */
0,0, /* D BAT 5 */
0,0, /* D BAT 6 */
0,0 /* D BAT 7 */
};

The BAT initialization routine is declared as follows:

(void) myBatInitFunc (int * &sysBatDesc[0])

This routine reads sysBatDesc[ ], initializes the BAT registers, and performs any 
other required setup; for example, configure HID0 for MPC74X5. For additional 
BAT register numbers and configuration information, see the CPU-specific 
reference manual. The following example routines initialize the MPC7X5: 

/*
* mmuPpcBatInitMPC74x5 initializes the standard 4 (0-3)  I/D BATs &
* the additional 4 (4-7) I/D BATs present on the MPC74[45]5.
*/

IMPORT void mmuPpcBatInitMPC74x5 (UINT32 *pSysBatDesc);

Finally, the BAT initialization routine must be connected to the MMU initialization 
hook, _pSysBatInitFunc, which is NULL by default:

IMPORT FUNCPTR _pSysBatInitFunc;

_pSysBatInitFunc = mmuPpcBatInitMPC7x5;

The assignment to _pSysBatInitFunc may be made conditional upon the value of 
the processor version register (PVR), to allow the same kernel to run on different 
CPUs.

PowerPC 603/604 Segment Model 

The segment model allows memory to be mapped in 4 KB pages. All mapping 
attributes are defined in the individual page descriptors 
(write-through/copy-back, cache-inhibited, memory coherent, guarded, execute, 
and write permissions).
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The application programmer interface for the PowerPC 603/604 memory mapping 
unit is the same as that described previously for the MMU translation model (see 
MMU Translation Model, p.119).

For PowerPC 604, the page table size depends on the total memory to be mapped. 
The larger the memory to be mapped, the bigger the page table. The VxWorks 
implementation of the segment model follows the recommendations given in 
PowerPC Microprocessor Family: The Programming Environments. The total size of the 
memory to be mapped is computed during MMU library initialization, allowing 
dynamic determination of the page table size. Table 6-2 shows the correspondence 
between the total amount of memory to map and the page table size for PowerPC 
604 processors.

PowerPC 405 Memory Mapping

The PowerPC 405 memory mapping model allows memory to be mapped in 4 KB 
pages. The translation table is organized into two levels. The top level consists of 
an array of 1,024 Level 1 (L1) table descriptors; each of these descriptors can point 
to an array of 1,024 Level 2 (L2) table descriptors. All mapping attributes are 
defined in L2 descriptors (write-through/copy-back, cache-inhibited, guarded, 
execute, and write permissions).

Table 6-2 Page Table Size (PowerPC 604 only)

Total Memory to Map Page Table Size

8 MB or less 64 KB

16 MB 128 KB

32 MB 256 KB

64 MB 512 KB

128 MB 1 MB

256 MB 2 MB

512 MB 4 MB

1 GB 8 MB

2 GB 16 MB

4 GB 32 MB
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The translation table size depends on the total memory to be mapped. The larger 
the memory to be mapped, the bigger the table. 

The application programmer interface for the PowerPC 405 memory mapping unit 
is the same as that described previously for the MMU translation model (see MMU 
Translation Model, p.119). 

PowerPC 405 Performance

For optimal performance, the number of translation lookaside buffer (TLB) entries 
for data access should be maximized. To eliminate instruction MMU contention for 
TLB entries, leave USER_I_MMU_ENABLE undefined except in cases where the 
system will be running RTPs. Because a virtual address is always the same as the 
real address in a system that is not running RTPs, enabling the instruction MMU 
provides no additional functionality but can result in a performance impact. 

PowerPC 440 Memory Mapping 

The PowerPC 440 core provides a 36-bit physical address space and a 32-bit 
program (virtual) address space. The mapping is accomplished with translation 
lookaside buffers (TLBs), which are managed by software.

The PowerPC 440 is an implementation of the Book E processor specification. The 
MMU is always active and all program addresses are translated by the TLBs. The 
MSRIS and MSRDS bits are used to extend the virtual address space so that TLB 
lookups can happen from two different address spaces for either instruction or 
data references. This easily allows for a static map to be used for boot and basic 
operation when MSR(IS,DS) = (0,0) (VxWorks regards this as MMU “disabled”), and 
enables dynamic 4 KB page mapping (MMU “enabled”) when MSRIS = 1 or 
MSRDS = 1.

NOTE:  VxWorks allocates page-aligned descriptor arrays from the heap at virtual 
memory initialization time. This results in a small amount of initial memory 
fragmentation.

NOTE:  USER_I_MMU_ENABLE must be defined for systems that require RTP 
support. 
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Boot Sequencing

After a processor reset, the board support package sets up a temporary static 
memory model. The following steps are included in the BSP romInit.s module:

1. The processor receives a reset exception.

2. The processor hardware maps a single 4 KB page of memory at the top of the 
32-bit program address space and branches to the reset vector (located in the 
last word of the program address space).

3. The reset vector contains a branch instruction to resetEntry( ) (located within 
the last 4 KB of the program address space).

4. The resetEntry( ) routine initializes the TLB entries to map the entire program 
address space to physical address space devices and memory, using large size 
(256 MB) translation blocks. Unused TLBs are marked as invalid. The MSRIS 
and MSRDS fields are set to zero, and execution continues with an rti to the 
romInit( ) routine.

Run-Time Support 

The VxWorks kernel provides support for the PowerPC 440 memory management 
unit (MMU). To include this support, configure INCLUDE_MMU_BASIC.

VxWorks supports two cooperating models for memory mapping. The first, the 
static model, allows mapping of memory blocks ranging from 1 KB to 256 MB in size 
by dedicating an individual processor TLB entry to each block. The second, the 
dynamic model, provides the ability to map physical memory in 4 KB pages using 
the remaining available TLB entries in a round-robin fashion.

PowerPC 440 Static Model 

The data structure sysStaticTlbDesc[ ], defined in sysLib.c, describes the static 
TLB entry configuration. The number of static mappings is variable, depending on 
the size of the table, but should be kept to a minimum to allow the remaining TLB 
entries on the chip to be used for the dynamic model.

The static TLB entry registers are set by the initialization software in the MMU 
library.

Entry descriptions in sysStaticTlbDesc[ ] that set the _MMU_TLB_TS_0 attribute 
are used when VxWorks has the MMU “disabled” (that is, MSR(IS,DS) = (0,0)). Note 
that the VxWorks virtual memory library cannot represent physical addresses 
larger than the lowest 4 GB, and several of the PowerPC 440GP devices are located 
at higher physical addresses. To provide access to these devices when VxWorks has 
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the MMU “enabled” (that is, MSRIS = 1 or MSRDS = 1), some entry descriptions in 
sysStaticTlbDesc[ ] set attribute _MMU_TLB_TS_1.

All of the configuration constants used to fill sysStaticTlbDesc[ ] are defined in 
installDir/vxworks-6.2/target/h/arch/ppc/mmu440Lib.h.

PowerPC 440 Dynamic Model

The PowerPC 440 dynamic mapping model allows memory to be mapped in 4 KB 
pages. The translation table is organized into two levels: the top level consists of an 
array of 1,024 Level 1 (L1) table descriptors; each of these descriptors can point to 
an array of 1,024 Level 2 (L2) table descriptors. All mapping attributes are defined 
in L2 descriptors (write-through/copy-back, cache-inhibited, guarded, execute, 
and write permissions).

The translation table size depends on the total memory to be mapped. The larger 
the memory to be mapped, the bigger the table.

The application programmer interface for the PowerPC 440 dynamic model is 
identical to the MMU translation model described previously (see MMU 
Translation Model, p.119).

PowerPC 440 Performance

For optimal performance, the number of TLB entries for data access should be 
maximized as follows:

1. Minimize the number of static entries defined in sysStaticTlbDesc[ ].

2. Leave USER_I_MMU_ENABLE undefined, eliminating instruction MMU 
contention for dynamic TLB entries, except in cases where the system will be 
running RTPs. (Because a virtual address is always the same as the real address 
in a system that is not running RTPs, enabling the instruction MMU provides 
no additional functionality but can result in a performance impact.) 

NOTE:  VxWorks allocates page-aligned descriptor arrays from the heap at virtual 
memory initialization time. This results in a small amount of initial memory 
fragmentation.

NOTE:  USER_I_MMU_ENABLE must be defined for systems that require RTP 
support. 
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MPC85XX Memory Mapping 

The MPC85XX CPU uses 32-bit virtual and physical addressing similar to the 
PowerPC 60x processors. 

The MPC85XX is an implementation of the Book E processor specification. The 
MMU is always active and all addresses are translated by a TLB0 (dynamic, 
fixed-4 KB size TLB) or a TLB1 (static, variable-size TLB) entry. This easily allows 
for a static map to be used for boot and basic operations when MSR(IS,DS) = (0,0) 
(VxWorks regards this as MMU “disabled”), and enables dynamic 4 KB page 
mapping when MSRIS = 1 or MSRDS = 1 (MMU “enabled”).

Boot Sequencing

After a processor reset, the board support package sets up a temporary static 
memory model. The following steps are included in the BSP romInit.s module:

1. The processor receives a reset exception.

2. The processor hardware maps a single 4 KB page of memory at the top of the 
32-bit program address space and branches to the reset vector (located in the 
last word of the program address space).

3. The reset vector contains a branch instruction to resetEntry( ) (located in the 
last 4 KB of the program address space).

4. The resetEntry( ) routine initializes the TLB entries to map the entire program 
address space to physical address space devices and memory, using large size 
(256 MB) translation blocks. The internally mapped registers are mapped with 
a static TLB here also and the base address is changed to 0xFE000000. 

Run-Time Support 

The VxWorks kernel provides support for the MPC85XX memory management 
unit (MMU). To include this support, configure INCLUDE_MMU_BASIC.

VxWorks supports two cooperating models for memory mapping. The first, the 
static model, allows mapping of memory blocks ranging from 1 KB to 256 MB in size 
by dedicating an individual processor TLB entry to each block. The second, the 
dynamic model, provides the ability to map physical memory in 4 KB pages using 
the remaining available TLB entries in a round-robin fashion.

MPC85XX Static Model

The data structure sysStaticTlbDesc[ ], defined in sysLib.c, describes the static 
TLB entry configuration. The number of static mappings is variable, depending on 
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the size of the table, but should be kept to a minimum to allow the remaining TLB 
entries on the chip to be used for the dynamic model.

The static TLB entry registers are set by the initialization software in the MMU 
library.

Entry descriptions in sysStaticTlbDesc[ ] that set the _MMU_TLB_TS_0 attribute 
are used when VxWorks has the MMU “disabled” (that is, MSR(IS,DS) = (0,0)). All 
of the configuration constants used to fill sysStaticTlbDesc[ ] are defined in 
installDir/vxworks-6.2/target/h/arch/ppc/mmuE500Lib.h.

MPC85XX Dynamic Model

The MPC85XX dynamic mapping model allows memory to be mapped in 4 KB 
pages. The translation table is organized into two levels. The top level consists of 
an array of 1,024 Level 1 (L1) table descriptors; each of these descriptors can point 
to an array of 1,024 Level 2 (L2) table descriptors. All mapping attributes are 
defined in L2 descriptors (write-through/copy-back, cache-inhibited, guarded, 
execute, and write permissions). 

The translation table size depends on the total memory to be mapped. The larger 
the memory to be mapped, the bigger the table.

The application programmer interface for the MPC85XX dynamic model is 
identical to the MMU translation model described previously (see MMU 
Translation Model, p.119).

MPC8XX Memory Mapping

The MPC8XX memory mapping model allows you to map memory in 4 KB pages; 
requests for larger page sizes are mapped into an appropriate number of 4 KB 
pages. The translation table is organized into two levels. The top level consists of 
an array of 1,024 Level 1 (L1) table descriptors; each of these descriptors can point 
to an array of 1,024 Level 2 (L2) table descriptors. Three mapping attributes are 
defined in the L1 descriptors (copy-back, write-through, and guarded cache 
modes), the others (cache off and all access permission attributes) are defined in 
the L2 descriptors. This affects granularity. For example, if one 4 KB page is 
mapped in copy-back mode, all pages within the corresponding 4 MB block (1,024 
x 4 KB pages) are mapped in copy-back mode, except for any pages having cache 

NOTE:  VxWorks allocates page-aligned descriptor arrays from the heap at virtual 
memory initialization time. This results in a small amount of initial memory 
fragmentation.
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off defined. That is, the cache mode setting of a single page can affect the cache 
mode setting of all mapped pages in the block.

The application programmer interface for the MPC8XX memory mapping unit is 
described previously for the MMU translation model (see MMU Translation Model, 
p.119). MPC8XX processors that implement hardware memory coherency 
typically do not support the use of the MMU_ATTR_CACHE_COHERENCY (or 
VM_STATE_MEM_COHERENCY) attribute; the state MMU_ATTR_CACHE_OFF (or 
VM_STATE_CACHEABLE_NOT) identifies a page as memory-coherent. 

RTP Limitation

The MPC8XX memory management unit (MMU) supports 16 unique address 
space identifiers (ASIDs). Therefore, only 15 real-time processes (RTPs) are 
supported as one ASID is reserved for kernel use. 

6.3.5  Coprocessor Abstraction 

Coprocessor abstraction decouples the core OS from the CPU-family-specific 
implementation of coprocessor features. Each architecture maps their coprocessors 
by logical number into the abstraction layer provided by the core OS. For PowerPC 
processors, the coprocessors are listed in Table 6-3. 

6.3.6  vxLib 

vxTas( )
The vxTas( ) routine provides a C-callable interface to a test-and-set 
instruction, and it is assumed to be equivalent to sysBusTas( ) in sysLib. Due 
to hardware limitations, VxWorks for certain PowerPC processors requires the 
operand of vxTas( ) to be a cached address. Currently, this restriction applies 
to the MPC7450 family and the PowerPC 970. 

Table 6-3 PowerPC Coprocessors 

Coprocessor Number Name Task Option Flag 

1 Floating-Point VX_FP_TASK 

2 AltiVec VX_ALTIVEC_TASK 

3 SPE VX_SPE_TASK 
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6.3.7  AltiVec and PowerPC 970 Support 

AltiVec is a vector coprocessor and PowerPC instruction set extension introduced 
on the MPC74XX family of processors. (The IBM PowerPC 970 processors include 
similar functionality and are treated as AltiVec-enabled processors by VxWorks.) 
VxWorks treats AltiVec as an extension to the PowerPC 604 core; that is, a 
PowerPC 604 binary image can, in certain situations, run without modification on 
any AltiVec part, but the image does not provide access to, or control of, the AltiVec 
unit itself. This section describes the VxWorks implementation of AltiVec support, 
including:

■ VxWorks run-time support for AltiVec

■ Enabling AltiVec support

■ C language extensions for vector types and formatted I/O

■ Compiling modules that use the AltiVec unit

■ Debugging extensions for AltiVec

■ Workbench tool support; WTX and WDB extensions for AltiVec 

■ Known problems with C++ mixed linking of AltiVec and non-AltiVec modules

VxWorks Run-Time Support for AltiVec 

The following features are supported for the AltiVec unit by the VxWorks kernel.

■ Run-time detection of the AltiVec unit is possible using the altivecProbe( ) 
routine. This routine is used internally by VxWorks to prevent attempts to 
enable AltiVec for a CPU that lacks such a unit. This allows a single build of a 
VxWorks kernel to run on boards that support both AltiVec and non-AltiVec 
parts, for example, the mv5100 family of boards can be configured with either 
an MPC750/755 or an MPC7400/7410 CPU.

■ Tasks that use the AltiVec unit must be spawned with the VX_ALTIVEC_TASK 
option flag set.

■ Tasks created without the VX_ALTIVEC_TASK option that use AltiVec 
instructions incur an AltiVec Unavailable Exception error, and the task is 
suspended. 

NOTE:  The AltiVec features and requirements described in this section also apply 
to the IBM PowerPC 970 processor family which includes similar functionality. All 
documentation in this section applies to both AltiVec-enabled MPC74XX 
processors and similarly enabled PowerPC 970 processors unless otherwise noted. 
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■ Tasks cannot be spawned with vector parameters. Only integer-sized 
parameters can be passed to taskSpawn( ). 

■ The MPC74XX processor’s AltiVec registers are saved and restored as part of 
the task context. The VxWorks kernel saves and restores all 32 AltiVec registers 
when switching between AltiVec contexts. The value of the VRSAVE register 
is preserved, but not used, by the context switch code.

■ The altivecTaskRegsShow( ) routine displays values of AltiVec registers in the 
shell.

■ The altivecSave( ) and altivecRestore( ) routines save and restore AltiVec 
register contents from memory. These routines can be called from interrupt 
handlers. Before calling these routines, the programmer must ensure that 
memory has been allocated to store the values, and that the memory is aligned 
on a 16-byte boundary.

The AltiVec-specific routines shown in Table 6-4 have been added to VxWorks. 

Table 6-4 AltiVec-Specific Routines

Routine Command Syntax Description

altivecInit( ) Initializes AltiVec coprocessor 
support. 

altivecTaskRegsShow( ) [task] Prints the contents of the 
AltiVec registers of a task. 

altivecTaskRegsSet( ) [task, ALTIVECREG_SET *] Sets the AltiVec registers of a 
task. 

altivecTaskRegsGet( ) [task, ALTIVECREG_SET *] Gets the AltiVec registers from 
a task TCB. 

altivecProbe( ) Probes for the presence of an 
AltiVec unit. 

altivecSave( ) [ALTIVEC_CONTEXT *] Saves vector registers to 
memory. 

altivecRestore( ) [ALTIVEC_CONTEXT *] Restores vector registers from 
memory. 
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Layout of the AltiVec EABI Stack Frame 

The stack frame for routines using the AltiVec registers adds the following areas to 
the standard EABI frame:

■ vector register save area (32 * 128 bytes)

■ alignment padding (always zero bytes because the frame is always 16-byte 
aligned)

■ saved VRSAVE register (4 bytes)

The stack frame layout for routines using the AltiVec registers is shown in 
Figure 6-1. Non-AltiVec stack frames are unchanged from prior VxWorks releases. 

vec_malloc( ) size_t Returns a 16-byte aligned 
pointer for an object of a given 
size. 

vec_calloc( ) size_t nObj, size_t size Returns a 16-byte aligned 
pointer for an array of nObj 
objects each of size size, 
initialized to 0. 

vec_realloc( ) void *p, size_t nbytes Increases the size of a 16-byte 
aligned buffer to nbytes. 

vec_free( ) void *p Deallocates the memory area 
pointed to by p. 

Table 6-4 AltiVec-Specific Routines (cont’d)

Routine Command Syntax Description

NOTE:  Memory allocation in VxWorks for PowerPC 604 is always 16-byte aligned; 
vec_malloc( ), vec_calloc( ), and vec_realloc( ) are aliases for alloc( ).
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Figure 6-1 Stack Frame Layout for Routines That Use AltiVec Registers
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C Language Extensions for Vector Types

The AltiVec specification adds a new family of vector data types to the C language. 
vector types are 128 bits long, and are used to manipulate values in AltiVec 
registers. Under control of a compiler option, vector is now a keyword in the C and 
C++ languages. The AltiVec programming model introduces five new keywords as 
simple type-specifiers: vector, __vector, pixel, __pixel, and bool.

Formatted Input and Output of Vector Types

The AltiVec Technology Programming Interface Manual also specifies vector 
conversions for formatted I/O. VxWorks supports the new formatted input and 
output of vector data types using the printf( ) and scanf( ) class routines shown in 
Table 6-5.

For a comprehensive discussion on the new format specifications, see the AltiVec 
Technology Programming Interface Manual. The following example program 
illustrates the input and output of sample vector values as well as several 
formatting variations. 

! CAUTION:  vector is used as both a C++ class name and a C variable name in the 
VxWorks header files and some BSP source files, and conflicts with the vector 
keyword. Where possible, use __vector rather than vector in VxWorks code as a 
precaution.

Table 6-5 Vector Format Conversion Specifications

Character Argument Type; Converted To 

%vc vector unsigned char 

%vd vector signed int 

%vhd vector signed short 

%vf vector float 

%vu vector unsigned int 

%vs null-terminated character string 
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void testFormattedIO()
{
__vector unsigned char s; 
__vector signed int I;
__vector signed short SI;

__vector __pixel P;

__vector float F;

s = (__vector unsigned char) 
(’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’);

I = (__vector signed int) (99, 88, -34, 0);
SI = (__vector signed short) (1, 2, -1, -2, 0, 3, 4, 5);
P = (__vector __pixel) (50, 51, 52, 53, 54, 55, 56, 57);
F = (__vector float) (-3.1415926, 3.1415926, 9.8, 0.000);

printf("s = (%vc), (%,vc)\n\n", s, s);
printf("I = (%,vd), (%,2vld), (%,_3lvi)\n\n", I, I, I);
printf("I = (%,#vd), (%,vlx), (%,_lvX), (%vo)\n\n", I, I, I, I);
printf("I = (%,#vd), (%,#vlp), (%,_lvp), (%#vo)\n\n", I, I, I, I);
printf("SI = (%_vhd), (%:hvd), (%;vhi)\n\n", SI, SI, SI);
printf("VECTOR STRING: (%vs)\n\n", "GOOD !!");
printf("VECTOR PIXEL (%+:5hvi)\n\n", P);

printf("VECTOR FLOAT *e5.6*: (%,5.6ve)\n", F);
printf("VECTOR FLOAT *E5.6*: (%:5.6vE)\n", F);
printf("VECTOR FLOAT *g5.6*: (%;5.6vg)\n", F);
printf("VECTOR FLOAT *G5.6*: (%5.6vG)\n", F);
printf("VECTOR FLOAT *f.7* : (%_.7vf)\n", F);
printf("VECTOR FLOAT *e* : (%ve)\n", F);
}

This program generates the following output: 

-> testFormattedIO
s = (0123456789ABCDEF), (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

I = (99,88,-34,0), (99,88,-34, 0), ( 99_ 88_-34_  0)

I = (99,88,-34,0), (63,58,ffffffde,0), (63_58_FFFFFFDE_0), (143 130 37777777736 0)

I = (99,88,-34,0), (0x63,0x58,0xffffffde,0x0), (0x63_0x58_0xffffffde_0x0),
(0143 0130 037777777736 0)

SI = (1_2_-1_-2_0_3_4_5), (1:2:-1:-2:0:3:4:5), (1;2;-1;-2;0;3;4;5)

VECTOR STRING: (GOOD !!)

VECTOR PIXEL ( +50: +51: +52: +53: +54: +55: +56: +57)

VECTOR FLOAT *e5.6*: (-3.141593e+00,3.141593e+00,9.800000e+00,0.000000e+00)
VECTOR FLOAT *E5.6*: (-3.141593E+00:3.141593E+00:9.800000E+00:0.000000E+00)
VECTOR FLOAT *g5.6*: (-3.14159;3.14159; 9.8; 0)
VECTOR FLOAT *G5.6*: (-3.14159 3.14159 9.8 0)
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VECTOR FLOAT *f.7* : (-3.1415925_3.1415925_9.8000002_0.0000000)
VECTOR FLOAT *e* : (-3.141593e+00 3.141593e+00 9.800000e+00 0.000000e+00)
value = 76 = 0x4c = ’L’
->

Compiling Modules with the Wind River Compiler to Use the AltiVec Unit 

Modules that use the AltiVec registers and instructions must be compiled with the 
Wind River Compiler option: -tPPC7400FV:vxworks62 (or 
-tPPC970FV:vxworks62 for PowerPC 970). Use of this flag always enables the 
AltiVec keywords __vector, __pixel, and __bool.

The Wind River Compiler also enables the AltiVec keywords vector, pixel, bool 
(and vec_step) by default if the -tPPC7400FV (or -tPPC970FV for PowerPC 970) 
option is used. However, each keyword can be individually enabled or disabled 
with the Wind River Compiler (dcc) option -Xkeywords=mask, where mask is a 
logical OR of the values in Table 6-6. 

Table 6-6 Wind River Compiler -Xkeywords Mask

Mask Keyword Enabled

0x01 extended 

0x02 pascal 

0x04 inline 

0x08 packed 

0x10 interrupt 

0x20 vector 

0x40 pixel 

0x80 bool 

0x100 vec_step 

NOTE:  Many non-AltiVec-specific keywords are also controlled by -Xkeywords. 
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For example, the following command-line sequence enables bool and vec_step, 
but disables vector and pixel (and also all of the non-AltiVec keywords in 
Table 6-6). For more information, see your release notes.

% dcc -tPPC7400FV:vxworks62 -Xkeywords=0x180-DCPU=PPC604 
-DTOOL_FAMILY=diab -DTOOL=diab -c fioTest.c 

The version of the Wind River Compiler included with this VxWorks release is 
fully compliant with the Motorola AltiVec EABI document. 

Compiling Modules with GNU to Use the AltiVec Unit

Modules that use the AltiVec registers and instructions must be compiled with the 
-Wa and -maltivec flags (or -mcpu=power4 -Wa and -mppc64bridge for 
PowerPC 970). These flags enable the following five keywords as a new family of 
types: bool, vector, __vector, pixel, and __pixel.

The version of the GNU compiler included with this VxWorks release is fully 
compliant with the Motorola AltiVec EABI specification. 

Extensions to the WTX Protocol for AltiVec Support 

The presence and state of the AltiVec unit must also be communicated to the 
Workbench host tools, such as the debugger. The following WTX API routines are 
available for AltiVec support.

! CAUTION:  vector is used as both a C++ class name and a C variable in the VxWorks 
header and source files, and conflicts with the vector keyword.

! CAUTION:  vector is used as both a C++ class name and a C variable in the VxWorks 
header and source files, and conflicts with the vector keyword enabled by the 
-maltivec option.

! CAUTION:  Examples of commonly used AltiVec-enabled routines are the printf( ) 
and scanf( ) family of routines. Applications calling these routines with more than 
eight integer-class or more than eight floating-point arguments may behave 
unpredictably.
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C++ Exception Handling and AltiVec Support

Throwing C++ exceptions between modules compiled with different compiler 
flags may result in unexpected behavior. C++ exceptions save register state. 
Modules compiled with AltiVec support (using -maltivec) save all non-volatile 
AltiVec registers, but modules compiled without AltiVec support do not save any 
AltiVec registers. If a C++ exception is thrown from an AltiVec-enabled module, 
caught by a non-AltiVec enabled handler, and then thrown from there to an 
AltiVec-enabled handler that alters the AltiVec registers, it is possible to corrupt the 
saved AltiVec state. In particular, the non-volatile vector registers (v20 through 
v31) may be corrupted. 

The following example illustrates the above scenario. It consists of a program 
composed of two files, file1.cpp and file2.cpp. Because file2 is compiled with the 
-maltivec option, it is considered AltiVec code. file1 is compiled without the 
-maltivec option, so it is considered non-AltiVec code. 

The example takes program flow across the two modules. It is also contrived to 
make intelligent guesses about the compiler register allocation strategy. The 
output is incorrect when one of the files is compiled without the -maltivec option. 

Listing For file1.cpp 

extern "C" int printf (const char *fmp, ...);
extern void bar ();

void foo ()
{
try 

{
bar ();
}

catch (...)
{
}

}

Table 6-7 WTX API Routines for AltiVec Support

Routine
Command 
Syntax

Description

wtxTargetHasAltivecGet( ) hWtx Returns TRUE if the target has an AltiVec 
unit. 
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Listing For file2.cpp 

extern "C" int printf (const char *fmp, ...);
extern void foo ();

typedef __vector signed long T;

void bar ()
{
// use a non-volatile vector register 
asm ( "vsplitisw 24,0" ); // v24 <- (0,0,0,0)
}

void Start ()
{
// use a non-volatile vector register v24
T local = (__vector signed long) (-1, -1, -1, -1);

asm ( "vsplitisw 24,15" ); // v24 <- (15, 15, 15, 15)

foo ();

// continue using the non-volatile vector registers
asm ( "addi 9, 31, 32" ); // local <- v24
asm ( "stvx 24, 0, 9" );

printf ("Finally, local = (%vld)\n", local);
}

Reproduce the Problem 

To produce a partially linked object file2.o, compile the two files with the 
following commands: 

% ccppc -mcpu=604 -c file1.cpp
% ccppc -mcpu=604 -nostdlib -maltivec -r file1.o file2.cpp 

Download file2.o to a target, and execute the Start routine. 

-> Start
Finally, local = (0,0,0,0)
->

Routine foo in file1.cpp is non-AltiVec code. Therefore, the try...catch block in foo 
does not save and restore the AltiVec context. Within the try...catch block, the call 
to bar alters the value of vector register v24. Because file1.cpp does not save 
AltiVec context, the value 0 in v24 assigned by bar remains unchanged when the 
program flow returns to Start. The original value 15, assigned before the call to bar, 
is now corrupted. Hence, the incorrect output, local = (0,0,0,0).
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Correct the Behavior

Compile both files with the -maltivec option: 

% ccppc -mcpu=604 -nostdlib -maltivec -r file1.cpp file2.cpp -o file2.o 

Download file2.o to a target and execute the Start routine. 

-> Start
Finally, local = (15,15,15,15)
->

Because both modules now have AltiVec code (compiled with the -maltivec 
option), the try...catch block in foo now saves and restores the AltiVec context. The 
value 15 originally assigned in Start is faithfully restored by foo when it returns.

6.3.8  Signal Processing Engine Support 

The signal processing engine (SPE) is a SIMD processing unit with a PowerPC 
instruction set extension introduced on the MPC85XX family of processors. This 
section describes the VxWorks implementation of SPE support including:

■ VxWorks run-time support for SPE 

■ the SPE EABI stack frame 

■ C language extensions for vector types and formatted I/O 

■ compiling modules that use the SPE unit 

■ Workbench tool support; WTX and WDB extensions for SPE 

VxWorks Run-Time Support for the Signal Processing Engine 

The following features are supported for the SPE unit by the VxWorks kernel. 

■ The SPE unit initialization speInit( ) is performed by the usrSpeInit( ) routine 
in installDir/vxworks-6.2/target/src/config/usrSpe.c. Typically, this is called by 
the usrRoot( ) routine if INCLUDE_SPE is defined. 

■ Run-time detection of the SPE unit is possible using the speProbe( ) routine. 
This routine is used internally by VxWorks to prevent attempts to enable SPE 
for a CPU that lacks such a unit. 

■ Tasks that use the SPE unit must be spawned with the VX_SPE_TASK option 
flag set. 

■ Tasks created without the VX_SPE_TASK option that use SPE instructions incur 
an SPE Unavailable Exception error, and the task is suspended. 
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■ Tasks cannot be spawned with vector parameters. Only integer-sized 
parameters can be passed to taskSpawn( ). 

■ The MPC85XX processor’s upper 32 bits in the general purpose registers are 
saved and restored as part of the task context. The VxWorks kernel saves and 
restores all 32 SPE register extensions when switching between SPE contexts. 
The SPEFSCR and the accumulator are also saved in the context switch.

■ The speTaskRegsShow( ) routine displays values of all 64 bits of the general 
purpose registers in the shell. 

■ The speSave( ) and speRestore( ) routines save and restore the upper 32 bits of 
the general purpose register contents from memory. These routines can be 
called from interrupt handlers. Before calling these routines, you must ensure 
that memory is allocated to store the values, and that the memory is aligned 
on a 32-bit boundary. 

Layout of the SPE EABI Stack Frame 

The stack frame for routines using the whole of the 64-bit general purpose registers 
adds the following areas to the standard EABI frame: 

■ 64-bit register save area (32 * 64 bytes)

Table 6-8 SPE-Specific Routines 

Routine Command Syntax Description 

speInit( ) Initializes SPE APU support. 

speTaskRegsShow( ) [task] Prints the contents of the SPE 
registers of a task. 

speTaskRegsSet( ) [task, SPEREG_SET *] Sets the SPE registers of a task. 

aspeTaskRegsGet( ) [task, SPEREG_SET *] Gets the SPE registers from a 
task TCB. 

speProbe( ) Probes for the presence of an 
SPE unit. 

speSave( ) [SPE_CONTEXT *] Saves upper GPR registers to 
memory. 

speRestore( ) [SPE_CONTEXT *] Restores registers from 
memory. 
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■ alignment padding (always zero bytes because the frame is always 8-byte 
aligned) 

The stack frame layout for routines using the upper 32 bits of the general purpose 
registers is shown in Figure 6-2. Non-SPE stack frames are unchanged from prior 
VxWorks releases.

Alignment Constraints for SPE Stack Frames 

The required alignment for the SPE EABI specification is 16 bytes. Therefore, it is 
compatible to call routines compiled for SPE from certain other PowerPC 
EABI-compliant code that assumes an 8-byte alignment for the stack boundary. 
However, the converse does not hold true and undefined results can occur. 

C Language Extension for Vector Types 

The SPE specification adds a new family of vector data types to the C language. 
These data types are 64-bit entities which have other data types embedded in them. 
The new entities are: __ev64_u16__, __ev64_s16__, __ev64_u32__, __ev64_s32__, 
__ev64_u64__, __ev64_s64__, and __ev64_fs__. The type __ev604_opaque__ 
represents any of the above types. 

Figure 6-2 Stack Frame Layout for Routines That Use SPE Registers
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Formatted Input and Output of Vector Types

The SPE Programming Interface Manual also specifies vector conversions for 
formatted I/O. VxWorks supports the new formatted input and output of vector 
data types using the printf( ) and scanf( ) class routines shown in Table 6-9.

For a comprehensive discussion on the new format specifications, see the SPE 
Programming Interface Manual. 

Compiling Modules with the Wind River Compiler to Use the SPE Unit 

Modules that use the SPE registers and instructions must be compiled with the 
Wind River Compiler option: -tPPCE500FS:vxworks62. 

% dcc -tPPCE500FS:vxworks62 -DCPU=PPC85XX -DTOOL_FAMILY=diab -DTOOL=diab 
-c fioTest.c 

The version of the Wind River Compiler included with this VxWorks release is 
fully compliant with the Motorola SPE EABI document. 

Compiling Modules with the GNU Compiler to Use the SPE Unit

Modules that use the SPE registers and instructions must be compiled with the 
GNU compiler option: -mcpu=8540. 

% ccppc -mcpu=8540 -fno-builtin -Wall -DCPU=PPC85XX -DTOOL_FAMILY=gnu 
-DTOOL=gnu -c fioTest.c 

The version of the GNU compiler included with this VxWorks release is fully 
compliant with the Motorola SPE EABI specification. 

Table 6-9 Vector Format Conversion Specifications

Format String Required Argument Type

%hr signed 16-bit fixed point 

%r signed 32-bit fixed point 

%lr signed 64-bit fixed point 

%hR unsigned 16-bit fixed point 

%R unsigned 32-bit fixed point 

%lR unsigned 64-bit fixed point 
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Extensions to the WTX Protocol for SPE Support 

The presence and state of the SPE unit must also be communicated to the 
Workbench host tools, such as the debugger. The following WTX API routines are 
available for SPE support.

6.4  Architecture Considerations

This section describes characteristics of the PowerPC architecture that you should 
be aware of as you write a VxWorks application. The following topics are 
addressed: 

■ divide-by-zero handling 
■ SPE exceptions under likely overflow/underflow conditions 
■ SPE unavailable exception in relation to task options 
■ 26-bit addressing and extended-call exception vector support
■ byte order 
■ hardware breakpoint access types 
■ PowerPC register usage 
■ cache information
■ AIM model for caches 
■ AIM model for MMU 
■ floating-point support 
■ VxMP support for MPC boards 
■ exceptions and interrupts 
■ memory layout 
■ power management 
■ build mechanism 
■ real-time processes (RTPs) 

For more information on the PowerPC architectures, see the corresponding 
microprocessor user’s manual from Freescale, Inc. or IBM.

Table 6-10 WTX API Routines for SPE Support

Routine
Command 
Syntax

Description

wtxTargetHasSpeGet( ) hWtx Returns TRUE if the target has an SPE unit. 
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6.4.1  Divide-by-Zero Handling 

Integer division by zero produces undefined results. Exception generation and 
handling are not provided by the compiler or run-time.

Floating-point exceptions are disabled by default during task initialization, 
causing zero-divide conditions to be ignored. On processors with hardware 
floating point (for example, PowerPC 603 or PowerPC 604), individual tasks may 
modify their machine state register (MSR) and the floating-point status and control 
register (FPSCR) in order to generate exceptions. Likewise, for the MPC85XX, the 
SPEFSCR and MSR must be modified to generate exceptions. On processors 
without hardware floating point (for example, PowerPC 405 or MPC860), neither 
the software floating-point library nor the compiler provide support for simulating 
a floating-point exception.

6.4.2  SPE Exceptions Under Likely Overflow/Underflow Conditions 

The signal processing engine (SPE) unit on the MPC85XX processors provides 
floating-point support for scalar or vector quantities. Some of these instructions 
generate an exception (if SPEFSCR is set accordingly) and return a pre-determined 
value if an overflow or underflow is likely, even though the actual result does not 
cause an overflow or underflow. The action needed to handle such a condition is 
application dependent. Thus, the user must set SPEFSCR accordingly and handle 
the erroneous result. The instructions that exhibit this behavior include: efsadd, 
efssub, efsmul, efsdiv, evfsadd, evfssub, evfsmul, and evfsdiv. 

6.4.3  SPE Unavailable Exception in Relation to Task Options 

The SPE on the MPC85XX processors does not implement the standard PowerPC 
floating-point feature. The SPE implements its own floating-point instruction set. 
While the hardware supports only single-precision floating-point computation, 
there are two kinds of floating-point instructions: 

■ Scalar floating-point, uses lower 32 bits of a GPR ONLY. 

■ Vector floating-point, uses all 64 bits of a GPR. 

VX_FP_TASK corresponds to the scalar floating-point, while VX_SPE_TASK 
corresponds to the vector floating-point. The difference between spawning a task 
with VX_FP_TASK and VX_SPE_TASK is that the task that is spawned with 
VX_SPE_TASK will save and restore the upper 32 bits in the GPRs during context 
switch, by means of task hooks. 
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Because both kinds of floating-point instructions require the use of the SPE 
coprocessor, the MSRSPE bit is enabled when either options is specified for the task. 
The following are some of the behaviors that result from this semantic:

■ Tasks spawned with VX_FP_TASK but without VX_SPE_TASK do not save and 
restore the upper 32 bits of GPRs upon context switch. 

■ Tasks spawned with either VX_FP_TASK or VX_SPE_TASK are not able to 
generate the SPE unavailable exception when executing any SPE vector 
instructions. 

■ Tasks that use both scalar and vector floating-point instructions can only be 
spawned with VX_SPE_TASK. However, as a good programming practice, you 
should regard scalar floating-point as associated with VX_FP_TASK. 

Programmatically, VxWorks makes no distinction between a task spawned with 
VX_SPE_TASK, and a task spawned with both VX_SPE_TASK and VX_FP_TASK. 
However, any debugging information will show the corresponding options as 
specified during task creation. 

6.4.4  26-bit Address Offset Branching 

VxWorks uses bl or bla instructions by default for both exception/interrupt 
handling, and for dynamically downloaded module relocations. By using bl or 
bla, the PowerPC architecture is only capable of branching within the limits 
imposed by a signed 26-bit offset. This limits the available branch range to +/- 
32 MB.

Branching Across Large Address Ranges 

Branches across larger address ranges must be made to an absolute 32-bit address 
with the help of the LR or CTR register. Each absolute 32-bit jump is accomplished 
with a sequence of at least three instructions (more, if the register state must be 
preserved). This is rarely needed and is expensive in terms of execution speed and 
code size. Such large branches are typically seen only in very large downloaded 
modules and very large (greater than 32 MB) system images. 

One way of getting around this restriction for downloadable applications is to use 
the -mlongcall compiler option in the GNU compiler. However, this option may 
introduce an unacceptable amount of performance penalty and extra code size for 
some applications. It is for this reason that the VxWorks kernel is not compiled 
using -mlongcall. 
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Another way to get around this limitation is to increase the size of the WDB 
memory pool for host tools. By default, the WDB pool size is set to one-sixteenth 
of the amount of free memory. Memory allocations for host-based tools (such as the 
shell) are done out of the WDB pool first, and then out of the general system 
memory pool. Requests larger than the available amount of WDB pool memory are 
done directly out of the system memory pool. If an application is anticipated to be 
located outside of the WDB pool—thus potentially crossing the 32 MB threshold—
the size of the WDB memory pool can be increased to ensure the application fits 
into the required space.

To change the size of the WDB memory pool, redefine the macro WDB_POOL_SIZE 
in your BSP config.h file. This macro is defined in 
installDir/vxworks-6.2/target/config/all/configAll.h as follows:

#define WDB_POOL_SIZE ((sysMemTop() - FREE_RAM_ADRS)/16) 

Redefining WDB_POOL_SIZE in your BSP local config.h file alters the macro for 
that BSP only. 

Branching Across Large Address Ranges Using the Wind River Compiler 

The Wind River Compiler handles far branching in a different way than the GNU 
compiler. The linker automatically inserts branch islands in the code for far 
addresses known at link time. Thus, this slower branch approach is used only 
when necessary.

Extended-Call Exception Vector Support 

VxWorks for PowerPC adds support for extended-call (32-bit addressable) 
exception vectors.

When exceptions and interrupts occur, PowerPC processors transfer control to a 
predetermined address, the exception vector, depending on the exception type. 
After saving volatile task state, the handler routine installed for that exception 
vector is called. This call is made using bl or bla instructions that, as described 
previously, require the handler routine to be located within the 32 MB of the vector 
table or within the first 32 MB of memory. Most systems are able to satisfy this 
32 MB constraint. However, if a given handler routine were to be located outside 
of the addressable areas, the target address would be unreachable in some 
previous VxWorks releases. 

This release provides support for extended-call exception vectors, which can call 
handler routines located anywhere in the 4 GB address space. Extended-call 
exception vectors make calls to a 32-bit address in the link register (LR) using the 
blrl instructions. Extra work is required for an extended-call exception vector to 
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load a 32-bit address into the LR, and make a call to it. Therefore, using 
extended-call exception vectors incurs an additional eleven instruction overhead 
in increased interrupt latency. It is therefore not advisable to use this feature unless 
absolutely necessary.

This release still maintains the earlier style 26-bit call vectors as the default. Using 
a single bl/bla instruction is much more efficient than the multiple-instruction 
sequence described previously. It is expected that most targets will continue to use 
the original relative branch (default) style exception handling. 

A new global boolean, excExtendedVectors, has been added, that allows users to 
enable extended-call exception vectors. By default, excExtendedVectors is set to 
FALSE. When set to TRUE, extended-call vectors are enabled. excExtendedVectors 
must be set to TRUE before the exception vectors are initialized in the VxWorks boot 
sequence (that is, before the call to excVecInit( )). Setting excExtendedVectors after 
excVecInit( ) does not achieve the desired result, and results in unpredictable 
system behavior. Selection of extended-call exception vectors is done on a per-BSP 
basis in order to minimize the impact on those BSPs that do not require this feature. 

Enabling Extended-Call Exception Vectors for Command-Line BSP Builds 

Because excExtendedVectors must be set to TRUE before the call to excVecInit( ), 
users must define the preprocessor define INCLUDE_SYS_HW_INIT_0, and also 
supply a sysHwInit0( ) routine that sets excExtendedVectors to TRUE. 

The following example is taken from the ads860 BSP. 

Add the following code to config.h:

#ifdef INCLUDE_SYS_HW_INIT_0

/*
* Perform any BSP-specific initialisation that must be done before
* cacheLibInit() is called and/or BSS is cleared.
*/

#ifndef _ASMLANGUAGE
IMPORT BOOL excExtendedVectors; 
extern void sysHwInit0();
#endif /*_ASMLANGUAGE */

#define SYS_HW_INIT_0 sysHwInit0
#endif /* INCLUDE_SYS_HW_INIT_0 */
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Now, add the following code to sysLib.c:

#ifdef INCLUDE_SYS_HW_INIT_0

/************************************************************************
* sysHwInit0 - Used here to enable extended exception vector support.
*
* RETURNS: None.
*/ 

void sysHwInit0 () 
{
excExtendedVectors = TRUE;/* enable extended-call exc. vectors */
}

#endif /*INCLUDE_SYS_HW_INIT_0 */

Enabling Extended-Call Exception Vectors for Project Builds 

The INCLUDE_EXC_EXTENDED_VECTORS component must be enabled for your 
project. This component sets excExtendedVectors to TRUE before excVecInit( ) is 
called during the boot sequence. INCLUDE_EXC_EXTENDED_VECTORS is found 
in the kernel folder. 

6.4.5  Byte Order

The byte order used by VxWorks for the PowerPC family is big-endian.

6.4.6  Hardware Breakpoints 

Not all target architectures support hardware breakpoints, and those that do, 
accept different values for the access type passed to the bh( ) routine. The PowerPC 
family supports hardware breakpoints, however, the access type of hardware 
breakpoints allowed depends upon the specific processor. 

For each processor family, the number of hardware breakpoints (a hardware 
limitation), address alignment constraints, and access types are detailed in the 
following tables. Both instruction and data access must be 4- byte aligned unless 
otherwise noted. 

For more information, see the reference entry for bh( ).

PowerPC 405

PowerPC 405 targets have two data breakpoints and two instruction breakpoints.
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Address data parameters are 1-byte aligned if width access is 1 byte, 2-bytes 
aligned if width access is 2 bytes, 4-bytes aligned if width access is 4 bytes, and 
cache-line-size aligned if access is a data cache line (32 bytes on PowerPC 405). 
Instruction accesses are always 4-byte aligned.

PowerPC 405 processors allow the following access types for hardware 
breakpoints. The byte width means break on all accesses between (addr) and 
(addr + x):

PowerPC 603

The PowerPC 603 processor has a single instruction breakpoint, and no data 
breakpoints. The PowerPC 603 allows the following access types for hardware 
breakpoints:

Table 6-11 PowerPC 405 Access Types

Access Type Breakpoint Type

0 Instruction.

1 Data write byte (one byte width).

2 Data read byte (one byte width).

3 Data read/write byte (one byte width).

4 Data write half-word (two bytes width).

5 Data read half-word (two bytes width).

6 Data read/write half-word (two bytes width).

7 Data write word (four bytes width).

8 Data read word (four bytes width).

9 Data read/write word (four bytes width).

0xa Data write cache line (32 bytes width).

0xb Data read cache line (32 bytes width).

0xc Data read/write cache line (32 bytes width).
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PowerPC 604 (including MPC7XX and MPC74XX), PowerPC 440, MPC8XX, and MPC85XX 

The PowerPC 604, MPC75X, and MPC74XX CPUs have one data and one 
instruction breakpoint. Data and instruction access must be 4-byte aligned

The MPC8XX and PowerPC 440 have 4 instruction and 2 data breakpoints. Data 
access is 1-byte aligned on MPC8XX and PowerPC 440 CPUs. 

The MPC85XX has 2 instruction and 2 data breakpoints. Data access is 1-byte 
aligned. 

All of these processors allow the following access types for hardware breakpoints:

PowerPC 970

VxWorks for PowerPC does not include support for hardware breakpoints on 
PowerPC 970 processors. 

6.4.7  PowerPC Register Usage

The PowerPC conventions regarding register usage, stack frame formats, 
parameter passing between routines, and other factors involving code 
inter-operability, are defined by the Application Binary Interface (ABI) and the 

Table 6-12 PowerPC 603 Access Types

Access Type Breakpoint Type

0 Instruction.

NOTE:  PowerPC 603 _83xx and _g2le variants include two instruction and two 
data access breakpoints. 

Table 6-13 PowerPC 604, PowerPC 440, MPC8XX, and MPC85XX Access Types 

Access Type Breakpoint Type

0 Instruction.

1 Data read/write.

2 Data read.

3 Data write.
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Embedded Application Binary Interface (EABI) protocols. The VxWorks 
implementation for PowerPC follows these protocols. Table 6-14 shows PowerPC 
register usage in VxWorks (note that only CPUs with hardware floating-point 
support have fpr0-31).

Table 6-14 PowerPC Registers

Register Name Usage

gpr0 Volatile register that may be modified during routine linkage.

gpr1 Stack frame pointer, always valid.

gpr2 Small data area, small const pointer register (_SDA2_BASE_). 
VxWorks does not support SDA. 

gpr3 Volatile register used for parameter passing and return values.

gpr4-gpr10 Volatile registers used for parameter passing.

gpr11-gpr12 Volatile registers that may be modified during routine linkage.

gpr13 Small data area pointer register (_SDA_BASE_). (VxWorks does 
not support SDA.) 

gpr14-gpr30 Non-volatile registers used for local variables.

gpr31 Used for local variables or environment pointers.

sprg4-sprg7 Book E and PowerPC 4xx special purpose registers; used by 
VxWorks. 

usprg0 Book E special purpose register; not used by VxWorks.

fpr0 Volatile floating-point register.

fpr1 Volatile floating-point register used for parameter passing and 
return values.

fpr2-fpr8 Volatile floating-point registers used for parameter and results 
passing.

fpr9-fpr13 Volatile floating-point registers.

fpr14-fpr31 Non-volatile floating-point registers used for local variables.
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6.4.8  Caches

The following subsections augment the information in the VxWorks Kernel 
Programmer’s Guide. 

Most PowerPC processors contain an instruction cache and a data cache. In the 
default configuration, VxWorks enables both caches, if present. To disable the 
instruction cache, highlight the USER_I_CACHE_ENABLE macro in the Params tab 
under INCLUDE_CACHE_ENABLE and remove the TRUE; to disable the data cache, 
highlight the USER_D_CACHE_ENABLE macro and remove the TRUE.

For most boards, the cache capabilities must be used with the MMU to resolve 
cache coherency problems. The page descriptor for each page selects the cache 
mode. This page descriptor is configured by filling the data structure 
sysPhysMemDesc[ ] defined in sysLib.c. (For more information about cache 
coherency, see the reference entry for cacheLib. For information about the MMU 
and VxWorks virtual memory, see the VxWorks Kernel Programmer’s Guide: Memory 
Management. For MMU information specific to the PowerPC family, see 
6.3.4 Memory Management Unit (MMU), p.118.)

The state of both data and instruction caches is controlled by the WIMG1 
information saved either in the BAT (block address translation) registers or in the 
segment descriptors. Because a default cache state cannot be supplied, each cache 
can be enabled separately after the corresponding MMU is turned on. For more 
information on these cache control bits, see PowerPC Microprocessor Family: The 
Programming Environments, published jointly by Motorola and IBM.

On PowerPC processors, cache flush at a specific address is usually performed by 
the dcbst instruction. Flushing of the entire cache usually involves loading from 
main memory over an address range. The starting address of the address range to 
load from is determined by the value stored in the variable cachePpcReadOrigin. 
The default value of cachePpcReadOrigin is 0x10000; this value can be changed in 
the BSP. 

During initialization of the MMU library (before cache is enabled for the first time), 
cachePpcReadOrigin is set to a suitably aligned address within the first cacheable 
entry of sysPhysMemDesc[ ] that is of a sufficient size to accommodate the flush 
mechanism requirements. The required size is processor-dependent: 4 MB for 
PPC970, one and a half times the size of the cache for other processors. If the MMU 

1. W: the WRITETHROUGH or COPYBACK attribute.
I: the cache-inhibited attribute.
M: the memory coherency required attribute.
G: the guarded memory attribute. 



VxWorks
Architecture Supplement, 6.2  

154

is not configured, or if such a block of memory cannot be found, the default value 
of cachePpcReadOrigin is used. If your BSP overrides the default value of 
cachePpcReadOrigin, the overridden value is used in place of the default value. 

cachePpcReadOrigin needs to point to cacheable memory in order for the load to 
properly displace modified entries in the cache that is flushed. A cacheable block 
of at least one an a half times the size of the cache is required due to the nature of 
the pseudo LRU (Least Recently Used) algorithm used by several processors. If this 
scheme does not work for a your target system for any reason, you must override 
cachePpcReadOrigin in sysHwInit( ) in the BSP. 

PowerPC 405

PowerPC 405 targets, when not using the MMU, control the W, I, and G attributes 
using special purpose registers (SPRs). (Because it does not provide any hardware 
support for memory coherency, this processor always considers the M attribute to 
be off.)

See the processor user’s manual for detailed descriptions of the data cache 
cacheability register (DCCR), data cache write-through register (DCWR), 
instruction cache cacheability register (ICCR), and storage guarded register (SGR).

PowerPC 440

The Book E specification and the PowerPC 440 core implementation do not 
provide a means to set a global cache enable/disable state, nor do they permit 
independently enabling or disabling the instruction and data caches.

In the default configuration, VxWorks enables both caches. If you disable one 
cache, you must disable the other. To disable both caches, highlight the 
USER_I_CACHE_ENABLE and USER_D_CACHE_ENABLE macros in the Params tab 
under INCLUDE_CACHE_ENABLE and remove the TRUE.

The state of both data and instruction caches is controlled by the WIMG 
information saved either in the static TLB entry registers or in the dynamic 
memory mapping descriptors. Because a default cache state cannot be supplied, 
both caches are enabled after the corresponding MMU is turned on.

If an application requires a different cache mode for instruction versus data access 
on the same region of memory, #undef USER_I_MMU_ENABLE, #define 
USER_D_MMU_ENABLE, use sysStaticTlbDesc[ ] to set up the instruction access 
mode, and sysPhysMemDesc[ ] to set up the data access mode.

The VxWorks cache library interface has changed for the following two calls:

STATUS cacheEnable(CACHE_TYPE cache);
STATUS cacheDisable(CACHE_TYPE cache);
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The cache argument is ignored and the instruction and data caches are both enabled 
or disabled together. If called before the MMU library is initialized, cacheEnable( ) 
returns OK and signals the MMU library to activate the cache after it has completed 
initialization. If the MMU library is active (that is, MSRDS = 1), cacheEnable( ) 
returns ERROR. 

PowerPC 603 and 604 

On PowerPC 603 and 604 processors, cache is disabled when the MMU is disabled. 
For more information on the PowerPC 6xx MMU implementation, see PowerPC 
60x Memory Mapping, p.120. 

PowerPC 970

Because of the cache and MMU properties of PowerPC 970 targets, any memory 
region that can potentially contain segment register tables (that is, any space which 
may be part of the kernel heap when a task is created) must not be configured as 
cache-inhibited in sysPhysMemDesc[ ]. 

In addition, PowerPC 970 targets ignore the W and M attribute settings. The M 
attribute is considered to always be set and the W attribute is set based on the cache 
level. For more information, see the PowerPC 970 reference documentation. 

6.4.9  AIM Model for Caches 

The architecture-independent model (AIM) for cache provides an abstraction layer 
to interface with the underlying architecture-dependent cache code. This allows 
uniform access to the hardware cache features that are typically CPU core specific. 
AIM for cache is for VxWorks internal use and does not change the VxWorks API 
for application development. For more information on the cache API, see the 
reference entry for cacheLib.

On PowerPC processors, the following CPU families use the AIM for cache:

■ PowerPC 440 
■ PowerPC 603 (for the MPC82XX family)
■ PowerPC 604 (including the MPC74XX family)
■ MPC8XX
■ MPC85XX 
■ PowerPC 970

These CPU families now implement the cacheClear( ) VxWorks API routines. Prior 
to VxWorks 6.0, PowerPC processors did not populate the cacheClear( ) routine 
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and cacheClear( ) was equivalent to a no-op. The PowerPC 405 family continues to 
operate this way. 

6.4.10  AIM Model for MMU 

The architecture-independent model (AIM) for MMU provides an abstraction 
layer to interface with the underlying architecture-dependent MMU code. This 
allows uniform access to the hardware-dictated MMU model that is usually CPU 
core specific. AIM for MMU is for VxWorks internal use. However, this new model 
adds support for two new routines, vmPageLock( ) and vmPageOptimize( ), to 
the VxWorks vmLib API. For more information, see the reference entries for these 
routines. The PowerPC CPU families that implement AIM for MMU (and support 
for the new routines) are:

■ PowerPC 405: vmPageLock( ) and vmPageOptimize( ) 
■ PowerPC 440: vmPageLock( ) and vmPageOptimize( ) 
■ MPC85XX: vmPageLock( ) only

The vmPageLock( ) routine requires the use of static TLB entries. This routine also 
requires alignment of the lock regions to ensure minimal resource usage in general. 
The vmPageOptimize( ) routine requires variable page size support in the 
dynamic TLB entries. Both routines provide a mechanism for reducing TLB misses 
and should boost system performance when used correctly. 

The configuration components for AIM for MMU are as follows:

#define INCLUDE_AIM_MMU_CONFIG

#ifdef INCLUDE_AIM_MMU_CONFIG
#define INCLUDE_AIM_MMU_MEM_POOL_CONFIG /* Configure the memory pool 

allocation for page tables */
#define INCLUDE_AIM_MMU_PT_PROTECTION /* Page Table protection */
#endif

#ifdef INCLUDE_AIM_MMU_MEM_POOL_CONFIG 
#define AIM_MMU_INIT_PT_NUM 0x40 /* Number of pages pre allocate for 

page table */
#define AIM_MMU_INIT_PT_INCR 0x20 /* Number of pages increment alloc

for page table if previous
allocation is exhausted */

#define AIM_MMU_INIT_RT_NUM 0x10 /* Number of pages pre allocate for
region table */

#define AIM_MMU_INIT_RT_INCR 0x10 /* Number of pages increment alloc 
for region table if previous 
allocation is exhausted */

#endif 
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#define INCLUDE_MMU_OPTIMIZE 

#ifdef INCLUDE_MMU_OPTIMIZE 
#define INCLUDE_LOCK_TEXT_SECTION /* Calls vmPageLock with kernel text 

start address and and size of 
text section */

#define INCLUDE_PAGE_SIZE_OPTIMIZATION /* Calls vmPageOptimize to optimize 
all of mapped virtual kernel 
address space */ 

#endif

Page locking of the text section will fail if the alignment of text and the number of 
resources available are not sufficient. For PowerPC 405 and PowerPC 440 
processors, the resource is pulled from the general TLB pool which has 64 entries. 
The allowance set aside by the architecture for locking is 5 static pages (this may 
change). For MPC85XX processors, the resource is pulled from the TLB1 entries 
(also known as CAM entries). There are 16 TLB1 entries available. If the BSP uses 
too many entries, it may not be possible to enable this feature. 

6.4.11  Floating-Point Support 

PowerPC 405, 440 (soft-float), and MPC860 

The PowerPC 405, 440 (soft-float), and MPC860 processors do not support 
hardware floating-point instructions. However, VxWorks provides a 
floating-point library that emulates these mathematical routines. All ANSI 
floating-point routines have been optimized using libraries from U. S. Software.

In addition, the following single-precision routines are also available: 

The following floating-point routines are not available on PowerPC 405, 440 
(soft-float), and MPC860 processors: 

acos( ) asin( ) atan( ) atan2( ) 
ciel( ) cos( ) cosh( ) exp( ) 
fabs( ) floor( ) fmod( ) log( ) 
log10( ) pow( ) sin( ) sinh( ) 
sqrt( ) tan( ) tanh( ) 

acosf( ) asinf( ) atanf( ) atan2f( ) 
cielf( ) cosf( ) expf( ) fabsf( ) 
floorf( ) fmodf( ) logf( ) log10f( ) 
powf( ) sinf( ) sinhf( ) sqrtf( ) 
tanf( ) tanhf( ) 
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MPC85XX

MPC85XX processors support single-precision hardware floating-point 
instructions. The default compilation rules for CPU=PPC85XX targets use the 
option -tPPCE500FS:vxworks62 when using TOOL=diab. The S in E500FS 
indicates that only software instructions are used, but the following options are 
available: 

For a list of available math routines, see your compiler documentation. 

When using the GNU compiler (TOOL=gnu), VxWorks provides a floating-point 
library that emulates the following mathematical routines. All ANSI floating-point 
routines have been optimized using libraries from U.S. Software. 

The following single-precision routines are also available:

cbrt( ) infinity( ) irint( ) iround( ) 
log2( ) round( ) sincos( ) trunc( ) 
cbrtf( ) infinityf( ) irintf( ) iroundf( ) 
log2f( ) roundf( ) sincosf( ) truncf( ) 

N no floating point 

S software floating point only 

G both float and double data types are allowed, but actual operands 
and results are single-precision only using hardware floating-point 
instructions 

F both float and double data types are allowed, single-precision uses 
hardware floating-point, double-precision uses software integer 
instructions 

acos( ) asin( ) atan( ) atan2( ) 
ciel( ) cos( ) cosh( ) exp( ) 
fabs( ) floor( ) fmod( ) log( ) 
log10( ) pow( ) sin( ) sinh( ) 
sqrt( ) tan( ) tanh( ) 

acosf( ) asinf( ) atanf( ) atan2f( ) 
cielf( ) cosf( ) expf( ) fabsf( ) 
floorf( ) fmodf( ) logf( ) log10f( ) 
powf( ) sinf( ) sinhf( ) sqrtf( ) 
tanf( ) tanhf( ) 
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The following floating-point routines are not available on MPC85XX processors: 

PowerPC 440 (hard-float), 60x, and 970

The following floating-point routines are available for PowerPC 440 (hard-float), 
60x, and 970 processors: 

The following subset of the ANSI routines is optimized using libraries from 
Motorola:

The following floating-point routines are not available on PowerPC 440 
(hard-float), 60x, and 970 processors: 

No single-precision routines are available for these processors.

Handling of floating-point exceptions is supported for PowerPC 440 (hard-float), 
60x, and 970 processors. By default, the floating-point exceptions are disabled.

To change the default setting for a task spawned with the VX_FP_TASK option, 
modify the values of the machine state register (MSR) and the floating-point status 
and control register (FPSCR) at the beginning of the task code.

■ The MSR FE0 and FE1 bits select the floating-point exception mode.

■ The FPSCR VE, OE, UE, ZE, XE, NI, and RN bits enable or disable the 
corresponding floating-point exceptions and rounding mode. (See archPpc.h 
for the macro PPC_FPSCR_VE and so forth.)

You can access register values using the routines vxMsrGet( ), vxMsrSet( ), 
vxFpscrGet( ), and vxFpscrSet( ).

cbrt( ) infinity( ) irint( ) iround( ) 
log2( ) round( ) sincos( ) trunc( ) 
cbrtf( ) infinityf( ) irintf( ) iroundf( ) 
log2f( ) roundf( ) sincosf( ) truncf( ) 

acos( ) asin( ) atan( ) atan2( ) 
ciel( ) cos( ) cosh( ) exp( ) 
fabs( ) floor( ) fmod( ) log( ) 
log10( ) pow( ) sin( ) sinh( ) 
sqrt( ) tan( ) tanh( ) 

acos( ) asin( ) atan( ) atan2( ) 
cos( ) exp( ) log( ) log10( ) 
pow( ) sin( ) sqrt( ) 

cbrt( ) infinity( ) irint( ) iround( ) 
log2( ) round( ) sincos( ) trunc( ) 
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6.4.12  VxMP Support for Motorola PowerPC Boards 

VxMP is an optional VxWorks component that provides shared-memory objects 
dedicated to high-speed synchronization and communication between tasks 
running on separate CPUs. For complete documentation of the optional 
component VxMP, see the VxWorks Kernel Programmer’s Guide: Shared Memory 
Objects: VxMP.

Normally, boards that make use of VxMP must support hardware test-and-set 
(TAS: atomic read-modify-write cycle). Motorola PowerPC boards do not provide 
atomic (indivisible) TAS as a hardware function. VxMP for PowerPC provides 
special software routines that allow the Motorola boards to make use of VxMP.

Boards Affected

The current release of VxMP provides a software implementation of a hardware 
TAS for PowerPC-based VME boards manufactured by Motorola. No other 
PowerPC boards are affected.

Implementation

The VxMP product for Motorola PowerPC boards has special software routines 
that compensate for the lack of atomic TAS operations in the PowerPC and the lack 
of atomic instruction propagation to and from these boards. This software consists 
of the routines sysBusTas( ) and sysBusTasClear( ).

The software implementation uses ownership of the VMEbus as a semaphore; in 
other words, no TAS operation can be performed by a task until that task owns the 
VME bus. When the TAS operation completes, the VME bus is released. This 
method is similar to the special read-modify-write cycle on the VME bus in which 
the bus is owned implicitly by the task issuing a TAS instruction. (This is the 
hardware implementation employed, for example, with a 68K processor.) 
However, the software implementation comes at a price. Execution is slower 
because, unlike true atomic instructions, sysBusTas( ) and sysBusTasClear( ) 
require many clock cycles to complete.

Configuring VMEbus TAS 

To invoke the VMEbus TAS, set SM_TAS_TYPE to SM_TAS_HARD on the Params 
tab of the project facility under INCLUDE_SM_OBJ.

NOTE:  Some PowerPC board manufacturers, for example Cetia, claim to equip 
their boards with hardware support for true atomic operations over the VME bus. 
Such boards do not need the special software written for the Motorola boards.
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Restrictions for Multi-Board Configurations

Systems using multiple VME boards where at least one board is a Motorola 
PowerPC board must have a Motorola PowerPC board set with a processor ID 
equal to 0 (the board whose memory is allocated and shared). This is because a TAS 
operation on local memory by, for example, a 68K processor does not involve VME 
bus ownership and is, therefore, not atomic as seen from a Motorola PowerPC 
board. 

This restriction does not apply to systems that have globally shared memory 
boards that are used for shared memory operations. In this case, specifying 
SM_OFF_BOARD as TRUE on the Params tab of the properties window for the 
processor with ID of 0 and setting the associated parameters enables you to assign 
processor IDs in any configuration. 

6.4.13  Exceptions and Interrupts 

PowerPC 405, 440, and MPC85XX 

PowerPC 405, 440, and MPC85XX processors support two classes of exceptions 
and interrupts: normal and critical. The PowerPC 440GX and 440EP processors, also 
referred to as revision x5 of the PowerPC 440, have an additional class called 
machine check interrupt. This release correctly attaches default handlers to the 
corresponding vectors. excVecSet( ), which internally recognizes whether the 
vector being modified is normal or critical, can be used with either class of vector 
and is the preferred method for connecting alternative handlers. 

The routines excCrtConnect( ) and excIntCrtConnect( ) are available in addition to 
the basic routines excConnect( ) and excIntConnect( ):

STATUS excCrtConnect (VOIDFUNCPTR *vectr, VOIDFUNCPTR routine);
STATUS excIntCrtConnect (VOIDFUNCPTR *vectr, VOIDFUNCPTR routine);

The excCrtConnect( ) routine connects a C routine to a critical exception vector, in 
a manner analogous to excConnect( ). The excIntCrtConnect( ) routine performs a 
similar function for an interrupt (also see excVecGet( ) and excVecSet( ), p.164).

The excIntConnectTimer( ) routine, required for PowerPC 405 targets, is not 
needed for the PowerPC 440 targets. 

In the case of the machine check interrupt class, the VxWorks machine check 
exception handler is customized by macros in the BSP config.h file. The following 
macros can be defined to enable their respective features: 
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INCLUDE_440X5_DCACHE_RECOVERY 
This macro makes data cache parity errors recoverable. Selecting this option 
also selects INCLUDE_440X5_PARITY_RECOVERY, and sets 
USER_D_CACHE_MODE to CACHE_WRITETHROUGH. 

INCLUDE_440X5_TLB_RECOVERY 
This macro makes TLB parity errors recoverable. Selecting this option also 
selects INCLUDE_440X5_PARITY_RECOVERY and INCLUDE_MMU_BASIC. 
The INCLUDE_MMU_BASIC component is required because TLB recovery 
requires setup performed by MMU library initialization. However, you can to 
undefine (#undef) both USER_D_MMU_ENABLE and USER_I_MMU_ENABLE 
if you do not want the functionality provided by the MMU library.

INCLUDE_440X5_PARITY_RECOVERY 
This macro sets the PRE bit in CCR0. This macro is required by the 440x5 
hardware if either data cache or TLB recovery is enabled. Selecting this option 
also selects INCLUDE_EXC_HANDLING.

INCLUDE_440X5_TLB_RECOVERY_MAX 
This macro dedicates a TLB entry to the machine check handler, and a separate 
TLB entry to the remaining interrupt/exception vectors, in order to maximize 
the ability to recover from TLB parity errors. Selecting this option also selects 
INCLUDE_440X5_TLB_RECOVERY.

INCLUDE_440X5_MCH_LOGGER 
This macro causes the machine check handler to log recovered events which 
are otherwise handled transparently by the OS and the application.

MPC85XX 

MPC85XX processors support three classes of exceptions and interrupts: normal, 
critical, and machine check. Besides the standard excConnect( ) and 
excIntConnect( ) routines, excCrtConnect( ) and excIntCrtConnect( ) are available 
for the critical exception class, and excMchkConnect( ) is available for the machine 
check exception class (see excVecGet( ) and excVecSet( ), p.164). The routine 
prototypes are the same for all connect routines. 

The exception vector base address defined in the interrupt vector prefix register 
(IVPR) is set to 0x0. The current release does not support a different base address.
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The interrupt vector offset registers (IVORs) are set as follows: 

Table 6-15 Interrupt Vector Offset Register Settings for MPC85XX

IVOR Interrupt Type Offset 

IVOR0 Critical input 0x100 

IVOR1 Machine checka 0x200 

IVOR2 Data storage 0x300 

IVOR3 Instruction storage 0x400 

IVOR4 External input 0x500 

IVOR5 Alignment 0x600 

IVOR6 Program 0x700 

IVOR7 Floating-point unavailable (not supported on 
MPC85XX) 

0x800 

IVOR8 System call 0x900 

IVOR9 Auxiliary processor unavailable (not supported on 
MPC85XX) 

0xa00 

IVOR10 Decrementer 0xb00 

IVOR11 Fixed-interval timer interrupt 0xc00 

IVOR12 Watchdog timer interrupt 0xd00 

IVOR13 Data TLB error 0xe00 

IVOR14 Instruction TLB error 0xf00 

IVOR15 Debug 0x1000 

IVOR32 SPE APU unavailable 0x1100 

IVOR33 SPE floating-point data exception 0x1200 

IVOR34 SPE floating-point round exception 0x1300 

IVOR35 Performance monitor 0x1400 
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excVecGet( ) and excVecSet( ) 

In a standard VxWorks image, excVecInit( ) and excInit( ) install the default 
exception and interrupt handlers, along with the stub for the entry and exit code, 
by calling the connect routines described previously. Application code can change 
the default handler to an alternate handler by calling excVecSet( ). excVecSet( ) 
does not copy the stub for the entry and exit code, and thus, the exception type 
(normal, critical, or machine check) need not be specified. The default exception 
type for the vector of interest is used. If the application code changes the location 
of a vector (for example, using IVOR which is not recommended), the connect 
routines are still needed to install the stub as well as the handler. excVecSet( ) is 
used to install an alternate handler, and excVecGet( ) returns the address of the 
installed handler given a vector:

void excVecSet (FUNCPTR *vectr, FUNCPTR function);
FUNCPTR excVecGet (FUNCPTR *vectr);

Relocated Vectors 

On some PowerPC processors, certain exception vectors are located very close to 
each other. In order to fit the prologue instructions that prepare the values needed 
for excEnt( ) and intEnt( ), it becomes necessary to move these vectors to a different 
address. Thus, such vectors are relocated. Table 6-16 lists the relocated vectors. All 
standard VxWorks API routines correctly use the relocated addresses when the 
original address is supplied. Examples of these routines include excVecSet( ), 
excVecGet( ), and excIntConnectTimer( ). 

a. If cache parity recovery is enabled in the BSP config.h file, IVOR1 will be 
modified to address 0x1500, where the parity recovery code resides. Exception 
processing will fall back to address 0x200 after examining the MCSR if the 
machine check is not caused by parity error. 

Table 6-16 Relocated Exception Vectors for PowerPC Processors 

Name Interrupt Type 
Affected 
Processors 

From To 

PIT Periodic interval timer PowerPC 405, 
PowerPC 405F 

0x1000 0x1080 

FIT Fast interval timer 0x1010 0x1300 
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Note that the relocated vectors and addresses are not user changeable. If you 
relocate other vectors, or change a relocated vector’s address, VxWorks does not 
convert to the new address properly. 

6.4.14  Memory Layout

The VxWorks memory layout is the same for all PowerPC processors. Figure 6-3 
shows the memory layout with the following labels:

Interrupt Vector Table 
Table of exception/interrupt vectors.

SM Anchor 
Anchor for the shared memory network and VxMP shared memory objects (if 
there is shared memory on the board).

Boot Line 
ASCII string of boot parameters.

Exception Message 
ASCII string of the fatal exception message.

Initial Stack 
Initial stack for usrInit( ), until usrRoot( ) is allocated a stack.

System Image 
The VxWorks system image itself (three sections: text, data, and bss). The entry 
point for VxWorks is at the start of this region, which is BSP dependent (see the 
BSP-specific documentation).

Host Memory Pool 
Memory allocated by host tools. The size depends on the macro 
WDB_POOL_SIZE. Modify WDB_POOL_SIZE under INCLUDE_WDB.

PERF_MON Performance monitor PowerPC 604 
(PowerPC 604, 
MPC7XX, 
MPC74XX, and 
PowerPC 970) 

0xf00 0xf80 

Table 6-16 Relocated Exception Vectors for PowerPC Processors  (cont’d)

Name Interrupt Type 
Affected 
Processors 

From To 
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Interrupt Stack 
Size is defined by ISR_STACK_SIZE under INCLUDE_KERNEL. Location 
depends on the system image size.

System Memory Pool 
Size depends on the size of the system image. The sysMemTop( ) routine 
returns the address of the end of the free memory pool. 

Error Detection and Reporting Preserved Memory 
Size is defined in PM_RESERVED_MEM. This memory is used when 
INCLUDE_EDR_PM is defined. 

All addresses shown in Figure 6-3 are relative to the start of memory for a 
particular target board. The start of memory (corresponding to 0x0 in the 
memory-layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under 
INCLUDE_MEMORY_CONFIG for each target.

6.4.15  Power Management

The PowerPC DEC timer is generally used as the system tick timer in VxWorks 
applications. Although this timer works well in that role, it has a weakness that 
makes it unsuitable for long power management timekeeping: the timer has a 
tendency to drift unless the interrupt service routine takes special care to correct 
for under-run. This sort of processing adds overhead to the interrupt service 
routine; but under normal circumstances this only occurs at a system tick. Long 
power management requires that the system time be advanced with each 
interrupt. In this case, the extra processing required by the DEC timer is 
undesirable. In order to make use of the long sleep mode, an alternate timer device 
must be available for use as the system clock. The m8260 timer has been adapted 
for use in the MPC8260 BSPs. To determine if this feature is supported for your 
target board, see your BSP reference documentation. 

It is not possible to disable the DEC timer interrupt without disabling all 
peripheral interrupts. In addition, it is not possible to change the timer frequency 
of the timer. Therefore, the DEC timer is used as the timestamp timer in the long 

NOTE:  The PowerPC architecture supports the placement of the exception vector 
table (EVT) in high memory (0xfff00000) by setting the IP bit in the MSR; 
PowerPC 4xx supports arbitrary placement of the EVT through the EVPR/IVPR 
(exception vector prefix register/interrupt vector prefix register). However, 
VxWorks does not support this placement. 
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Figure 6-3 VxWorks System Memory Layout (PowerPC) 
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power management configuration. If a timestamp component is not included in 
your VxWorks image, the DEC interrupt is ignored. 

6.4.16  Build Mechanism 

The general build mechanism for VxWorks uses make along with the macros CPU 
and TOOL to determine how to build for a specific target processor. Prior to 
VxWorks 6.0, each CPU family needed to link with its own set of library archives. 
The updated build mechanism eliminates much of the redundancy associated with 
the old build method by building most of the files for a generic 32-bit PowerPC 
UISA. This allows the same set of library archives to be used by different CPU 
families.

There are two general sets of VxWorks library archives for PowerPC. One set is for 
processors with hardware floating-point support (defined by the PowerPC 
floating-point model, excluding any core or chip specific floating-point model). 
The other set is for processors that lack hardware floating-point support and 
require what is commonly known as software floating-point support. The TOOL 
macro is used to differentiate between these two modes of floating-point (FP) 
support. This macro now takes the following values: 

The directory organization of the library archives in 
installDir/vxworks-6.2/target/lib/ppc/PPC32 reflects the new build mechanism. 
There are now two sets of library archives, one for hard-float and one for soft-float. 
These libraries reside in the common and sfcommon directories, respectively. 
These two common directories contain files that can be compiled for the generic 
32-bit PowerPC UISA model and contain no processor-specific instructions. (The 
term common refers to the compiler, in the sense that these directories are used by 
both the Wind River Compiler and the GNU compiler as opposed to those 
directories that specify the compiler that their library archives are linked with as 
part of the directory name). 

NOTE:  VxWorks 5.5 provided short power management support for all PowerPC 
cores. This behavior is retained if the power management component is not 
included.

diab Wind River Compiler with hardware FP support

sfdiab Wind River Compiler with software FP support

gnu GNU compiler with hardware FP support 

sfgnu GNU compiler with software FP support 
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Under installDir/vxworks-6.2/target/lib/ppc/PPC32, some directories have names 
with the CPU variant attached, such as _ppc440_x5, _ppc604, or _ppc85XX. These 
directories contain library archives that must be compiled for a specific CPU 
variant because they may contain processor-core-specific instructions. For 
example, if a BSP uses the PowerPC 405 processor, it can be built with 
TOOL=sfdiab which links it with the library archives in sfcommon, 
sfcommon_ppc405, and sfdiab. Likewise, a BSP that uses a MPC74XX processor 
can be built with TOOL=gnu which links it with the library archives in common, 
common_ppc604, and gnu.

The value for the macro CPU is set to the CPU family in the BSP makefile. This 
remains unchanged from prior releases. However, outside of the BSP, the macro 
CPU takes on a new value when compiling for the generic 32-bit PowerPC UISA. 
This new value is PPC32. This value is used when building in 
installDir/vxworks-6.2/target/src (kernel) or /target/usr (RTP). 

Table 6-17 lists the CPU and TOOL combinations for building RTP applications. 
(CPU and TOOL combinations for building kernel applications are listed in 
Table A-1.) 

6.5  Reference Material 

Comprehensive information regarding PowerPC hardware behavior and 
programming is beyond the scope of this document. IBM and Freescale 
Semiconductor, Inc. provide several hardware and programming manuals for the 
PowerPC processor on their Web sites:

http://www.ibm.com/

http://www.freescale.com/

Table 6-17 CPU and TOOL Values When Building For an RTP 

CPU TOOL 

PPC32 (hardware FP) diab
gnu 

PPC32 (software FP) sfdiab
sfgnu 
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Wind River recommends that you consult the hardware documentation for your 
processor or processor family as necessary during BSP development.

PowerPC Architecture References 

The references provided in this section are current at the time of writing; should 
you decide to use these documents, you may wish to contact the manufacturer for 
the most current version.

■ The PowerPC Architecture: A Specification for a New Family of RISC Processors, 
Morgan-Kaufmann, 1994, ISBN 1-55860-316-6.

■ Programming Environments Manual for 32-bit Implementations of the PowerPC 
Architecture, Order #MPCFPE32B/AD, 1/1997. 
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7.1  Introduction

This chapter provides information specific to VxWorks development on Renesas 
SuperH targets. 

7.2  Supported Processors 

This release of VxWorks for Renesas SuperH supports the SH-4 family of 
processors only. 
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7.3  Interface Variations

This section describes particular routines and tools that are specific to SuperH 
targets in any of the following ways:

■ available only on SuperH targets 

■ parameters specific to SuperH targets 

■ special restrictions on, or characteristics of SuperH targets 

For complete documentation, see the reference entries for the libraries, 
subroutines, and tools discussed in the following sections.

7.3.1  dbgArchLib

Register Routines

The SuperH version of dbgArchLib provides the following architecture specific 
routines:

r0( )-r15( ) 
Returns a task’s register value.

sr( ) 
Returns a task’s Status Register value.

gbr( ) 
Returns a task’s Global Base Register value.

vbr( ) 
Returns a task’s Vector Base Register value.

mach( ), macl( ) 
Returns a task’s MACH, MACL register value.

pr( ) 
Returns a task’s Procedure Register value.

NOTE:  The Global Base Register and Vector Base Register are system-wide global 
registers. Therefore, these registers are not included in the task context. The gbr( ) 
and vbr( ) routines return the register value only when the task is suspended or 
stopped by an exception handler. Otherwise, the routines return the initial value of 
0. 
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Stack Trace and the tt( ) Routine

The tt( ) routine does not display the parameters of the subroutine call. For a 
complete stack trace, use Wind River Workbench. 

Software Breakpoints 

VxWorks for Renesas SuperH supports both software and hardware breakpoints. 
When you set a software breakpoint with the b( ) command, VxWorks replaces an 
instruction with a trapa instruction. VxWorks restores the original instruction 
when the breakpoint is removed.

If you set a breakpoint just after a delayed branch instruction, the b( ) command 
returns the following warning message:

-> l 0x6001376,2
6001376 b1a0 bsr +832 (==> 0x060016ba)
6001378 0606 (mov.l r0,@(r0,r6))
-> b 0x6001378
WARNING: address 0x6001378 might be a branch delay slot
value = 0 = 0x0
->

In addition, you may see an illegal instruction exception when the breakpoint is 
hit. However, the b( ) command does not prevent setting a breakpoint in a branch 
delay slot because code just after a constant data may also match the pattern of a 
delayed branch instruction.

Hardware Breakpoints and the bh( ) Routine 

The SuperH architecture provides flexible hardware breakpoint support for 
instruction and data access through the User Break Controller (UBC module). The 
supported combinations and the number of channels (one to four) vary, depending 
on the SuperH processor type. For more details, consult the appropriate SuperH 
hardware manual. 

Hardware breakpoints can be set from the target or host shell using the bh( ) 
routine. For the target shell, the INCLUDE_DEBUG definition is required in order 
to include dbgLib. For more information, see the reference entry for the bh( ) 
routine. For SuperH, the access type qualifier of the bh( ) routine represents a 
bitmap combination. The combinations are defined in Table 7-1.
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Table 7-2 provides some useful access value examples. 

Table 7-1 SuperH Bitmap Combinations

Bits Value Breakpoint Type 

0-1 00 Instruction fetch and data access 

01 Instruction fetch only 

10 Data access only 

2-3 00 Read and write cycle 

01 Read cycle only 

10 Write cycle only 

4-5 00 Operand size byte, word, and long (any) 

01 Operand size byte only 

10 Operand size word 

11 Operand size long 

6-7 00 CPU access only 

01 DMAC access only 

10 CPU and DMAC access 

8-9 00 IBUS (regular memory access) 

01 XBUS (DSP XRAM only) 

10 YBUS (DSP YRAM only) 

NOTE:  Bit 0 represents the least significant bit (LSB).

Table 7-2 Access Value Examples 

Access Value Breakpoint Type 

0x0000 Instruction fetch, CPU data read and write of any size. 

0x0001 Instruction fetch only. 
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BSP Requirements for Hardware Breakpoints 

The architecture-specific debug library uses a UBC abstraction layer in order to 
cope with differences in the various SuperH processors. To support this, the BSP 
must set up the UBC structure accordingly in a BSP-specific initialization routine. 
This routine must be registered as _func_wdbUbcInit. The initialization routine 
should set the UBC structure members as follows:

chanCnt 
Number of UBC channels (0-4). 

brcrSize 
UBC identification. The supported values are:

BRCR_NONE - no UBC support 
BRCR_0_1 - no BRCR, 1 channel (SH7050, SH7000) 
BRCR_16_1 - 16-bit BRCR, 1 channel (SH7055, SH7604) 
BRCR_16_2 - 16-bit BRCR, 2 channels (SH7750, SH7709) 
BRCR_32_2 - 32-bit BRCR, 2 channels (SH7729, SH7709A) 
BRCR_32_4 - 32-bit BRCR, 4 channels (SH7615) 
CCMFR_32_2 - 32-bit CCMFR, 2 channels (SH7770)

brcrInit 
BRCR value (or CCMFR value for SH-4A architectures) to initialize. 

pBRCR 
Address of the BRCR register (or CCMFR register for SH-4A architectures). 

base[i] 
Channel base addresses. Up to four channels are supported. 

For example, in sysHwInit( ), add the following: 

#if defined(INCLUDE_WDB) || defined (INCLUDE_DEBUG) 
_func_wdbUbcInit = sysUbcInit; 

#endif 

The following function, sysUbcInit( ), is an example for SH7750-based BSPs. 
SH7750 has a 16-bit BRCR register and two user break channels. For examples 
using other CPU types, see the appropriate Wind River-provided BSP. 

0x0032 CPU long read and write. 

0x0026 CPU word read only. 

Table 7-2 Access Value Examples  (cont’d)

Access Value Breakpoint Type 
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/**********************************************************************
*
* sysUbcInit - Initialize the UBC structure
*
* This routine is called when setting the first hardware breakpoint to
* initialize the User Break Controller structure and identify the UBC. 
*
*/ 

void sysUbcInit 
( 
UBC * pUbc 
) 
{ 
pUbc->brcrSize = BRCR_16_2;
pUbc->brcrInit = 0; 
pUbc->pBRCR = (UINT32) UBC_BRCR; 
pUbc->base[0] = (UINT32) UBC_BARA; 
pUbc->base[1] = (UINT32) UBC_BARB; 
}

7.3.2  excArchLib

Support for Bus Errors

SH7750 processors detect various types of access alignment errors as address error 
exceptions, but do not support access timeout errors to non-existent memory.

The exception handling library provides a way to detect this type of bus error in a 
board-dependent manner. To implement the bus timeout detection, the target 
board must be able to detect the timeout and interrupt the CPU. This interrupt 
should be non-maskable and edge-triggered.

■ Specify a bus error interrupt vector number to excBErrVecInit(vecnum) in your 
BSP code.

■ Set the interrupt-acknowledge routine to a function pointer 
_func_excBErrIntAck.
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Support for Zero-Divide Errors (Target Shell) 

The exception handling library uses a CPU-specific trap number (see ivSh.h) to 
detect divide-by-zero errors. For example, the target shell responds to a 
zero-divide condition with: 

-> 1/0
Zero Divide
TRA Register: 0x00000004 (TRAPA #1)
Program Counter: 0x0c008a2a
Status Register: 0x40001001
shell restarted.
->

Other tasks handle the zero-divide trap as any other exception; the task is 
suspended unless the trap is caught either as a signal (SIGFPE) or by installing a 
user handler with intVecSet( ). 

For application code, this implementation requires support from the compiler used 
to build the code. The GNU compiler includes support for this type of exception. 
However, the Wind River Compiler does not include this support. Therefore, 
application code built with the Wind River Compiler does not generate an 
exception for a divide-by-zero operation.

7.3.3  intArchLib

intConnect( ) Parameters 

The intConnect( ) routine takes the following parameters: the interrupt vector 
address, the handler function, and an integer parameter to the handler function.

The intConnect( ) routine can be extended by setting _func_intConnectHook to 
the new routine, for example sysIntConnect( ). This routine can be implemented 
for a BSP that has an off-chip interrupt controller (for example, VME).

intLevelSet( ) Parameters

The intLevelSet( ) routine takes an argument from 0 to 15.
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intLock( ) Return Values

The intLock( ) routine returns the old status register value.

intEnable( ) and intDisable( ) Parameters 

The intEnable( ) and intDisable( ) routines can invoke BSP-supplied routines 
when they are set to the _func_intEnableRtn and _func_intDisableRtn global 
pointers, respectively. These routines take one integer parameter. If the function 
pointers are not set (NULL), the intEnable( ) and intDisable( ) routines do nothing 
and return ERROR when called. The following points must be considered when 
implementing these routines:

■ An interrupt level, in general, can be shared by two or more interrupt sources. 
In order to implement intEnable( ) and intDisable( ), the BSP must restrict 
each level to a single interrupt source; otherwise, the value passed to these 
routines cannot be used to identify the source. 

■ The interrupt controller’s priority registers (IPRA-IPRx) are different for each 
SuperH CPU variant. Consult the appropriate SuperH hardware manual for 
the bit definitions of these registers. 

7.3.4  mathLib

VxWorks for Renesas SuperH supports the following double-precision math 
routines:

The following single-precision math routines are supported:

acos( ) asin( ) atan( ) atan2( ) ceil( ) cos( ) cosh( ) 
exp( ) fabs( ) floor( ) fmod( ) frexp( ) ldexp( ) log( ) 
log10( ) modf( ) pow( ) sin( ) sinh( ) sqrt( ) tan( ) 
tanh( ) 

acosf( ) asinf( ) atanf( ) atan2f( ) ceilf( ) cosf( ) coshf( ) 
expf( ) fabsf( ) floorf( ) fmodf( ) frexpf( ) ldexpf( ) logf( ) 
log10f( ) modff( ) powf( ) sinf( ) sinhf( ) sqrtf( ) tanf( ) 
tanhf( ) 
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7.3.5  vxLib

vxTas( ) 
The vxTas( ) routine provides a C-callable interface to a test-and-set 
instruction, and it is assumed to be equivalent to sysBusTas( ) in sysLib. The 
SuperH version of vxTas( ) simply executes the tas.b instruction, but the 
test-and-set (atomic read-modify-write) operation may require an external bus 
locking mechanism on some hardware. In this case, wrap vxTas( ) with the bus 
locking and unlocking code in sysBusTas( ).

vxMemProbe( ) 
The vxMemProbe( ) routine probes a specified address by capturing a bus 
error. The SuperH version of the vxMemProbe( ) routine captures the address 
error (defined by the CPU), MMU exceptions (defined by the CPU), and the 
bus-timeout error (optional, defined by the BSP). If a function pointer 
_func_vxMemProbeHook is set by the BSP, the vxMemProbe( ) routine calls 
the hook routine instead of its default probing code.

7.3.6  SuperH-Specific Tool Options

This section includes information on supported compiler, linker, and assembler 
options for both the Wind River GNU Compiler (gnu) and the Wind River 
Compiler (diab). 

GNU Compiler (ccsh) Options 

VxWorks for Renesas SuperH supports the following SuperH-specific GNU 
compiler (ccsh) options: 

-m4 SH-4 instruction set. 
-ml Little-endian. 
-mb Big-endian (default option). 
-mbigtable Use long jump tables. 
-mdalign Align doubles on 64-bit boundaries. 
-mno-ieee No IEEE handling of floating point NaNs. 
-mieee IEEE handling of FP NaNs (default option). 
-misize Dump out instruction size information. 
-mrelax Generate pseudo-ops needed by the assembler and linker 

to do function call relaxing. 
-mspace Generate smaller code rather than faster code. 
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GNU Assembler Options

VxWorks for Renesas SuperH supports the following SuperH-specific GNU 
assembler (assh) options:

GNU Linker Options

VxWorks for Renesas SuperH supports the following SuperH-specific GNU linker 
(ldsh) options:

Wind River Compiler Options

There are no SuperH-specific Wind River Compiler compiler (dcc) options. The 
following SuperH target definitions are supported with the -t compiler option: 

Wind River Compiler Assembler Options

The target definitions listed in the previous section, also apply to the assembler. 
The following Wind River Compiler assembler option is useful when building 
GNU-compatible modules: 

-little Generate little-endian code. 
-relax Alter jump instructions for long displacements. 
-small Align sections to 4-byte boundaries instead of 16-byte 

boundaries. 

-EB Enable SuperH ELF big-endian emulation (default). 
-EL Enable SuperH ELF little-endian emulation. 

-tSH4EH:vxworks62 Big-endian SH-4 targets with hardware floating 
point. 

-tSH4LH:vxworks62 Little-endian SH-4 targets with hardware floating 
point. 

-tSH4EH:rtp Big-endian SH-4 RTPs with hardware floating point. 
-tSH4LH:rtp Little-endian SH-4 RTPs with hardware floating 

point. 

-Xalign-power2 The .align directive specifies power-of-two alignment. 
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Wind River Compiler Linker Options

There are no SuperH-specific Wind River Compiler linker options. The target 
definitions listed in Wind River Compiler Options, p.180 apply to the linker as well.

7.4  Architecture Considerations 

This section describes characteristics of the Renesas SuperH architecture that you 
should keep in mind as you write a VxWorks application. The following topics are 
addressed:

■ operating mode, privilege protection
■ byte order
■ register usage
■ banked registers
■ exceptions and interrupts
■ memory management unit
■ maximum number of RTPs
■ null pointer dereference detection 
■ caches
■ floating-point support
■ power management
■ signal support 
■ SH7751 on-chip PCI window mapping
■ VxWorks virtual memory mapping 
■ memory map

7.4.1  Operating Mode, Privilege Protection 

VxWorks runs in privileged mode on SuperH processors. RTPs (real-time 
processes) run in user mode. RTPs issue a trapa number 32 instruction when 
jumping to a VxWorks system call and switch to privileged mode to access 
resources that are protected in user mode. For more information on RTPs, see the 
VxWorks Application Programmer’s Guide. 
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7.4.2  Byte Order

For SH-4 processor families, both big- and little-endian byte orders are supported. 
Pre-built VxWorks libraries are provided for both endian byte orders and the 
included makefiles can be used to build applications with either byte order. For 
big-endian byte order, set the make variable TOOL to gnu or diab. For little-endian 
byte order, set the make variable to gnule or diable.

Those SuperH BSPs that support both big- and little-endian byte order are 
delivered as two copies: one copy for little-endian support and another copy for 
big-endian support. The little-endian version is appended with _le. The BSPs differ 
in the makefile only. 

Wind River Workbench host tools (such as GDB and the Wind River 
System Viewer) automatically detect the byte order of the target system. 
Additionally, the byte order for GDB can be forced using the set endian command. 

7.4.3  Register Usage 

Register usage for SuperH processors is as follows: 

7.4.4  Banked Registers 

In the privileged mode of SuperH processors, two sets of general registers r0 - r7 
are available. One set is called BANK0, and another set is called BANK1. The 
register bank (RB) bit in the status register (SR) defines which banked register set 
is accessed as r0 - r7. While RB = 1, BANK1 registers (r0_bank1 - r7_bank1) are 

r0 return value 
r1...r3 scratch registers 
r4...r7 function parameters 
r8...r13 call saved registers 
r14 frame pointer (call saved) 
r15 stack pointer 
pr subroutine return address 
fpul FP to integer communication register 
dr0 (fr0) FP return value 
dr2 (fr1...fr3) FP scratch registers
dr4..dr10 (fr4..fr11) FP parameters
dr12,dr14 (fr12...fr15) call saved FP registers
xd0..xd14 (xf0...xf15) not used by the compiler
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accessed as r0 - r7. While RB = 0, BANK0 registers (r0_bank0 - r7_bank0) are 
accessed as r0 - r7. When an exception or interrupt happens, VxWorks for Renesas 
SuperH automatically sets the RB bit to 1.

VxWorks for Renesas SuperH sets the RB bit as follows:

RB = 0
system initialization (romInit - kernelInit)

RB = 0
multi tasking (after usrRoot)

RB = 1
TLB mis-hit exception handling

RB = 1
common processes for exception/interrupt handling

RB = 0
individual exception/interrupt handling

Generally, all VxWorks tasks run with BANK0 registers. There are some common 
processes for exception and interrupt handling which run with BANK1, but those 
processes switch back to BANK0 before dispatching to an individual handler. The 
switching is done by applying a new SR value from intPrioTable[ ] in the BSP. One 
exception is translation lookaside buffer (TLB) mis-hit exception handling which 
runs with BANK1 to the end.

7.4.5  Exceptions and Interrupts 

The SuperH architecture (SH-4) defines four branch addresses for exceptional 
events, as shown in Table 7-3.  

Table 7-3 SuperH Branch Addresses

Event Branch Address Cause Register

Reset, Power-on 0xa0000000 EXPEVT

Exception, Trap VBR + 0x100 EXPEVT/TRA

TLB mis-hit (MMU) VBR + 0x400 EXPEVT

Interrupt VBR + 0x600 INTEVT
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To support the standard vectored interrupt handling scheme on SuperH, VxWorks 
defines a virtual vector table which starts at (VBR + 0x800). This vector table size 
is (4-bytes x 256-entries), and the entry offset is defined as follows:

exception/interrupt
(EXPEVT/INTEVT register value) / 8

trap
(TRA register value)

Specify the entry offset as the first argument (vector) of intConnect (vector, routine, 
parameter).

VxWorks for Renesas SuperH uses the trapa instruction to implement system calls, 
software breakpoints, and to detect an integer zero-divide. 

Multiple Interrupts

The status register of SuperH has 4 bits of interrupt masking field; thus it supports 
15-levels of prioritized interrupts. Control of masking field is fully left to software.

To support the prioritized interrupt handling system on SuperH, VxWorks defines 
a table of status register values in the BSP. This table is called intPrioTable[ ], and 
is located in sysALib.

When a SuperH CPU accepts an interrupt request, it first blocks any succeeding 
exception or interrupt by setting the block bit (BL) to 1 in the status register (SR), 
the processor then branches to (VBR + 0x600).

The common interrupt dispatch code is loaded at (VBR + 0x600), and the processor 
instructs the following: (1) save critical registers on interrupt stack, (2) update SR 
with a value in intPrioTable[ ], (3) branch to an individual interrupt handler. Here, 
step (2) typically unblocks higher-priority interrupts, thus multiple interrupts can 
be processed. Also, the SR is not updated if the corresponding intPrioTable[ ] 
entry is null.

As a specification of the on-chip interrupt controller (INTC), the processor may 
branch to (VBR + 0x600) with a NULL value in the INTEVT register. This could 
happen if the interrupt status or control flags of the on-chip peripheral modules are 
modified while the BL bit of the SR is 0. To safely ignore this spurious interrupt, 
the common interrupt dispatch code checks the INTEVT register value and 
immediately calls the RTE (return from exception) instruction if the value is NULL.
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Interrupt Stack

For VxWorks on all Renesas SuperH architectures, an interrupt stack allows all 
interrupt processing to be performed on a separate stack. The interrupt stack is 
implemented in software because the SuperH family does not support such a stack 
in hardware. The interrupt stack size is defined by the ISR_STACK_SIZE macro in 
the configAll.h file. The default size of the interrupt stack is 1000 bytes. The 
interrupt stack is initialized by calling kernelInit( ).

For SuperH, the common interrupt dispatch code pushes some critical registers on 
the interrupt stack while the BL bit of SR is 1. As a specification, SuperH 
immediately reboots if any exception occurs while the BL bit is 1. Note that if the 
MMU is enabled, any access to logical address space may lead to a TLB mis-hit 
exception. In other words, no logical address space access is allowed while the BL 
bit is 1 if the MMU is enabled. Therefore, the interrupt stack must be located on a 
fixed physical address space (P1/P2) if the MMU is enabled. Interrupt stack 
underflow/overflow guard pages are not available on SuperH architectures due to 
the location of the stack in the P1/P2 area (which is MMU unmappable). The 
SuperH version of kernelInit( ) internally calls intVecBaseGet( ) and uses the 
upper three bits of its returned address as the base address of the interrupt stack, 
so that you can specify your choice of P1/P2 to intVecBaseSet( ) in usrInit( ), 
typically through a redefined macro VEC_BASE_ADRS in your BSP.

7.4.6  Memory Management Unit (MMU)

The current version of the MMU library for SuperH processors supports a default 
page size of 4 KB. 64 KB and 1 MB pages are supported for static MMU entries only 
(for more information, see the reference entry for vmPageLock( ) and 
7.4.13 SH7751 On-Chip PCI Window Mapping, p.193). The default page size 
VM_PAGE_SIZE is defined as 0x1000 (4 KB) in 
installDir/vxworks-6.2/target/config/all/configAll.h. 

By default, VxWorks and user applications are linked to the P0 area (2 GB logical 
address space, copyback/write-through cacheable). The ROM initialization code is 
also linked to P0, but the code is executed from the P2 area (0.5 GB fixed physical 
address space, non-cacheable) at the beginning of the ROM initialization routine, 
romInit( ), when the board is powered on or reset.

SH-4 processors include a memory management unit (MMU) commonly referred 
to as the translation lookaside buffer (TLB). The TLB holds the most recently used 
virtual-to-physical address mappings in the form of TLB entries. The SH-4 TLB is 
two-layered; instruction-TLB (ITLB) for program text, and unified-TLB (UTLB) for 
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program text/data/bss. The ITLB has four full-associative entries, and the UTLB 
has 64 full-associative entries. In a sense, the ITLB caches some UTLB entries and 
the UTLB caches some page table entries on the physical memory. If an SH-4 
processor accesses a virtual address that is not mapped on the UTLB, a TLB mis-hit 
exception immediately takes place and control is transferred to the VxWorks TLB 
mis-hit exception handler placed at the pre-determined vector address (VBR + 
0x400). The TLB mis-hit handler walks through the translation table on physical 
memory, and loads the missing virtual-to-physical address mapping to the TLBs, 
if any exist. If the handler fails to find a valid page table entry for the accessed 
virtual address, a TLB Miss/Invalid exception event is reported in the VxWorks 
shell.

The SH-4 memory map is depicted in Figure 7-1. Note that the SH-4 memory map 
is arranged into segments that have pre-determined modes of operation. Unlike 
some processors that can set specific virtual addresses to any mode of operation, 
SH-4 pre-assigns certain ranges of virtual addresses as accessible in privileged 
mode or user mode. 

In Figure 7-1, there are five memory segments: P0/U0, P1, P2, P3, and P4. The 
lowest 2 GB segment is accessible in either privileged or user mode; it is called P0 

Figure 7-1 SH-4 Processor Memory Map 
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in privileged mode, and U0 in user mode. The other segments are accessible only 
in privileged mode—that is, in the VxWorks supervisor mode.

The five SH-4 memory segments are also pre-designated as either TLB-mapped or 
hard-mapped, as shown in Figure 7-1. Ranges of addresses designated as 
TLB-mapped, P3 and P0/U0, use the TLB to determine the physical mappings for 
the virtual addresses. Ranges of addresses specified as hard-mapped, P1 and P2, 
do not use the TLB. Instead, SH-4 directly maps the virtual address starting at 
physical address 0x0. Likewise, P4 is directly mapped to various on-chip resources.

To summarize each of the segments:

P0/U0 
When the most significant bit of the virtual address is 0, the 2 GB user space 
labeled P0/U0 is the virtual address space selected. All references to P0/U0 are 
mapped through the TLB while the MMU is enabled. This memory segment 
can be marked either as cacheable or uncacheable on a page-by-page basis.

P1
When the most significant three bits of the virtual address are 100, the 512 MB 
kernel space labeled P1 is the virtual address space selected. References to P1 
are not mapped through the TLB; the physical address selected is defined by 
subtracting 0x80000000 from the virtual address. The cache mode for these 
accesses is determined by the copyback (CB) bit of the cache control register 
(CCR) mapped in P4, and the CB bit is set if the CACHE_COPYBACK_P1 option 
is specified in the USER_D_CACHE_MODE parameter of the BSP’s config.h 
file. 

P2 
When the most significant three bits of the virtual address are 101, the 512 MB 
kernel space labeled P2 is the virtual address space selected. References to P2 
are not mapped through the TLB; the physical address selected is defined by 
subtracting 0xA0000000 from the virtual address. Caches are always disabled 
for accesses to these addresses; physical memory or memory-mapped I/O 
device registers are accessed directly.

P3 
When the most significant three bits of the virtual address are 110, the 512 MB 
kernel space labeled P3 is the virtual address space selected. All references to 
P3 are mapped through the TLB while the MMU is enabled. This memory 
segment can be marked either as cacheable or uncacheable on a page-by-page 
basis.



VxWorks
Architecture Supplement, 6.2  

188

P4 
When the most significant three bits of the virtual address are 111, the 512 MB 
kernel space labeled P4 is the virtual address space selected. References to P4 
are not mapped through the TLB; this space is mapped to various on-chip 
resources. Caches are always disabled for accesses to these addresses; on-chip 
registers or PCI bus windows are accessed directly.

While the memory segments P1 and P2 are both hard-mapped kernel segments, 
both segments map to the same physical memory in the lowest 512 MB of memory. 
As a result, to virtually reference a variable or code in P1 is to virtually reference 
the same in P2. However, because P2 is not cacheable, virtually referencing a 
variable or code in P2 results in an uncached reference. Note that the SH-4 MMU 
manages a 29-bit physical address. In other words, the SH-4 MMU translates a 
32-bit virtual address into a 29-bit physical address. Also note that virtual 
addresses referenced in hard-mapped space do not cause a TLB mis-hit exception 
at any time. These points are important to the implementation of the software side 
of the MMU. 

The current version of the MMU library for SuperH does not support SH-4A 32-bit 
address extended mode (4 GB physical address memory space). VxWorks runs in 
SH-4 29-bit emulation mode on SH-4A processors.

SH-4-Specific MMU Attributes 

SH-4 processors support certain special MMU attributes (MMU_ATTR_SPL_0 
through MMU_ATTR_SPL_3) which allow you to set the PTEA (Page Table Entry 
Assistant) register during an MMU TLB mishandling and then load the value to 
the UTLB data array 2. The special attributes can be used to set the PTEA register 
as follows: 

MMU_ATTR_SPL_0 Enables setting of the SA[0] bit on the PTEA register

MMU_ATTR_SPL_1 Enables setting of the SA[1] bit on the PTEA register

MMU_ATTR_SPL_2 Enables setting of the SA[2] bit on the PTEA register

MMU_ATTR_SPL_3 Enables setting of the TC bit on the PTEA register

NOTE:  The above register settings are required for PCMCIA use. However, due to 
the PTEA register value read/write operation during the TLB mishandle, 
exception handling becomes much slower when the special attributes are 
implemented. For this reason, Wind River does not recommend using the special 
attributes unless they are required for PCMCIA support. 
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AIM Model for MMU 

The Architecture-Independent Model (AIM) for MMU provides an abstraction 
layer to interface with the underlying architecture-dependent MMU code. This 
allows uniform access to the hardware-dictated MMU model that is typically CPU 
core specific. AIM for MMU is for VxWorks internal use. However, the new model 
adds support for a new routine, vmPageLock( ) to the VxWorks vmLib API. For 
more information on this routine, see the reference entry for vmPageLock( ). 

vmPageLock( ) requires the use of static MMU entries. To ensure minimal resource 
usage, this routine requires alignment of the lock regions. This routine provides a 
mechanism for reducing page misses and should boost performance when used 
correctly.

Page locking of a text section will fail if the alignment and size of the text section 
is such that the number of resources available is not sufficient to satisfy the 
required number of MMU resources. If the BSP uses too many resources when the 
“Lock program text into TLBs” (INCLUDE_LOCK_TEXT_SECTION) option is 
defined, it may not be possible to enable this feature. SH-4 reference BSPs do not 
enable the INCLUDE_LOCK_TEXT_SECTION option by default.

The maximum number of MMU entries that can be used for static memory pages 
is seventy-five percent of 64, or the CPU-supported UTLB entry number, which is 
48. 

7.4.7  Maximum Number of RTPs 

The maximum number of real-time processes available in a given system is limited 
for the SH-4 processor family due to the implementation of virtual context support. 
The maximum number of RTPs available in a system is 255. 

7.4.8  Null Pointer Dereference Detection 

In order to implement null pointer dereference detection for the SH-4 processor 
family, you must leave the virtual address zero unmapped. Alternatively, you can 
add an entry start from 0x0 using the MMU_ATTR_VALID_NOT (or 
VM_STATE_VALID_NOT) parameter. MMU_ATTR_VALID_NOT is configured by 
sysPhysMemDesc[ ] which is declared in the sysLib.c file in your BSP. 

NOTE:  The SH-4 ASID (address space identification) provides 256 virtual contexts. 
However, one virtual context is always assigned to the system page. 
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7.4.9  Caches 

The SuperH cache implementation differs from processor to processor; refer to 
your processor hardware manual for details. The SuperH target libraries include 
support for the following processor types, as shown in Table 7-4. The SuperH 
cache libraries for this release do not use the processor abstraction layer method 
(referred to as cache AIM) used for certain other processors as of VxWorks 6.0. 
Instead, the libraries are directly linked to the upper layer of the cache library as in 
earlier VxWorks releases. 

The BSP must assign sysCacheLibInit to the cache library initialization routine. 
For example:

FUNCPTR sysCacheLibInit = (FUNCPTR)  cacheSh7750LibInit;

7.4.10  Floating-Point Support

SH-4 processors have an on-chip floating-point unit. The mathHardInit( ) routine 
does the necessary initialization for this library, and is automatically called from 
usrRoot( ) in usrConfig.c if the INCLUDE_HW_FP option is defined. Tasks that 
perform floating-point arithmetic must be spawned with the VX_FP_TASK option.

Floating-point exceptions are disabled by default. This can be changed temporarily 
on a per-task basis by setting the FPSCR register (using fpscrSet( )). Note that the 
compiler automatically generates code to change the FPSCR value in order to 
switch from double- to single-precision arithmetic and back. The two values are 
stored in two 32-bit globals pointed to by __fpscr_values.

NOTE:  The VM_STATE_xxx macros (listed above) are used in VxWorks 5.5 releases 
and are still supported for this release. However, these macros may be removed in 
the future. Wind River recommends that you use the MMU_ATTR_xxx macros for 
new development and that you update any existing BSP to use the new macros 
whenever possible. For more information on the VM_STATE_xxx macros, see the 
VxWorks Migration Guide.

Table 7-4 Cache Libraries and Supported Processors

Cache Library Supported Processors 

cacheSh7750Lib SH7750, SH7750R, SH7751, SH7751R, SH7760, SH7770 
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The FPSCR register can also be set globally with the help of the global 
fpscrInitValue variable (declare this variable as extern UINT32). This value must 
be set early at startup. It is used to initialize __fpscr_values and each floating-point 
task’s initial FPSCR value.

The default fpscrInitValue variable sets the rounding mode to the Round to Nearest 
policy and enables denormalized numbers. The SH7750 processor requires 
software support for handling denormalized numbers in the form of an exception 
handler. This handler is provided with the VxWorks target library. If your 
application does not require support for denormalized numbers you may change 
the FPSCR setting accordingly. Disabling denormalized numbers causes the FPU 
to treat them as zero. For more information, see the SH7750 Hardware Manual.

The floating-point context includes the extended floating-point registers. To save 
and restore the extended floating-point registers at context switches, tasks 
performing floating-point instructions should be spawned with the VX_FP_TASK 
option. Interrupt handlers using floating-point operations must explicitly call 
fppSave( ) and fppRestore( ). These two functions are also used to save and 
restore the extended floating-point registers.

There are no special compiler flags required for enabling hardware or software 
floating-point. Provided you use the appropriate target CPU option, both the GNU 
compiler and the Wind River Compiler default to hardware floating-point for SH-4 
processors. For more information, see 7.3.6 SuperH-Specific Tool Options, p.179. 

7.4.11  Power Management

SuperH processors provide a simple power management mechanism that allows 
them to enter a low power mode during idle periods. To enable processor power 
management, the BSP must configure the vxPowerModeRegs[ ] structure. Power 
management registers differ considerably from processor to processor, even within 
the same processor family. The vxPowerModeRegs[ ] structure allows the 
architecture support library to abstract these differences. 

For SuperH processors that have two power management (standby) control 
registers, initialize the structure in sysHwInit( ) as follows: 

vxPowerModeRegs.pSTBCR1 = STBCR;
vxPowerModeRegs.pSTBCR2 = STBCR2;
vxPowerModeRegs.pSTBCR3 = NULL;

For SuperH processors that have three power management (standby) control 
registers, initialize the structure in sysHwInit( ) as follows: 
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vxPowerModeRegs.pSTBCR1 = STBCR;
vxPowerModeRegs.pSTBCR2 = STBCR2;
vxPowerModeRegs.pSTBCR3 = STBCR3;

The vxPowerModeSet( ) routine can be used to set the power mode. The 
supported parameter values for this routine are: 

The user-specified mode (VX_POWER_MODE_USER) allows you to set the standby 
registers to user-specified values (up to three registers). For example:

vxPowerModeSet (VX_POWER_MODE_USER | sbr1<<8 | sbr2<<16 | sbr3<<24); 

The DEFAULT_POWER_MGT_MODE configuration parameter can be used to set 
the boot-up power management mode.

7.4.12  Signal Support 

VxWorks provides software signal support for all architectures. However, the 
manner in which SH-4 processors map their own exceptions to software signals is 
architecture-dependent. Table 7 shows this mapping for SH-4 processors: 

VX_POWER_MODE_DISABLE disable power management 
VX_POWER_MODE_SLEEP sleep mode 
VX_POWER_MODE_DEEP_SLEEP deep sleep mode 
VX_POWER_MODE_USER user-specified mode 

NOTE:  Before working with power management, always consult the SuperH 
processor hardware manual for your chip for information on supported power 
modes and restrictions and requirements for RAM refresh, timers, and other 
on-chip devices. Note that some power modes require the SDRAM to be switched 
to self-refresh mode. Because SDRAM cannot be read while in self-refresh mode, 
the kernel cannot be run from SDRAM. 

NOTE:  This power management implementation does not support the SH-4A 
processor family. 

Table 7-5 Exception-to-Software-Signal Mapping for SH-4 Processors 

SH-4 Exception Name Software Signal 

INUM_TLB_READ_MISS SIGSEGV 

INUM_TLB_WRITE_MISS SIGSEGV 
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7.4.13  SH7751 On-Chip PCI Window Mapping 

Some SH-4 processors (SH7751 and SH7751R) have an on-chip PCI bus controller, 
and the PCI windows are memory-mapped to the highest 64 MB address range in 
the P4 segment (FC000000 - FFFFFFFF). This type of memory mapping is not 
manageable in the page-oriented manner that is used by the VxWorks page 
manager library, pgMgrLib. This could be a problem for PCI devices that require 
memory-mapped PCI space (for example, a frame buffer on a graphics card). As 
mentioned previously, the SH-4 MMU handles a 29-bit physical address. This 
29-bit address space is designated as external memory space and is divided into 
eight 64 MB areas (Area0 - Area7). The first seven areas (Area0 - Area6) are used 
to connect various types of memory. The last segment (Area7) is reserved. 
However, if the MMU is enabled, Area7 becomes a shadow of the highest 64 MB 
address range in the P4 segment. Therefore, a PCI frame buffer is TLB-mappable 
from Area7. Figure 7-2 illustrates this memory mapping.

INUM_TLB_WRITE_INITIAL_MISS SIGSEGV 

INUM_TLB_READ_PROTECTED SIGSEGV 

INUM_TLB_WRITE_PROTECTED SIGSEGV 

INUM_READ_ADDRESS_ERROR SIGSEGV 

INUM_WRITE_ADDRESS_ERROR SIGSEGV 

INUM_FPU_EXCEPTION SIGFPE 

INUM_ILLEGAL_INST_GENERAL SIGILL 

INUM_ILLEGAL_INST_SLOT SIGILL 

INUM_TRAP_1 SIGFPE 

Table 7-5 Exception-to-Software-Signal Mapping for SH-4 Processors  (cont’d)

SH-4 Exception Name Software Signal 



VxWorks
Architecture Supplement, 6.2  

194

7.4.14  VxWorks Virtual Memory Mapping 

The virtual to physical mapping for VxWorks is shown in Figure 7-3. The segments 
P1 and P2 are hard-mapped to the lowest 512 MB of memory. A small portion of 
P0, the VxWorks kernel, is also TLB-mapped here. The remainder is mapped to 
physical memory through the TLB. 

Two address spaces, kernel and RTP, are also shown in Figure 7-3. This space is the 
standard VxWorks address space used by the SH-4 processor to differentiate 
between kernel code and RTP code. Note that the kernel domain is located in P0 
(or P3, depending on your BSP configuration), while RTPs are located in U0. Also 
note that RTP address space is overlapped at virtual address 40000000. One virtual 
page, the system page, is also shown in Figure 7-3. Shared data is mapped to the 

Figure 7-2 SH7751 On-Chip PCI Window Memory Mapping 
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beginning of the kernel’s data segment, and is used to export specific global 
variables to the RTPs.

The TLB-mapping model allows you to map memory in 4 KB pages. The 
translation table is organized into three levels: the top level consists of an array of 
256 level 0 (L0) context table descriptors; in turn, each of the level 0 descriptors can 
point to an array of 1024 level 1 (L1) table descriptors; and each of the level 1 
descriptors can point to an array of 1024 level 2 (L2) table descriptors. Each L2 table 
entry is actually a page table entry value to be applied to the PTEL register by the 
TLB mis-hit exception handler; each L2 table entry describes memory attributes in 
a 4 KB page. Each L2 table describes a 4 MB (1024 entries x 4 KB) virtual space, and 
each L1 table describes a 4 GB (1024 entries x 4 MB) virtual space. This 4 GB virtual 
space is called a virtual context, and is selected by an 8-bit address space ID (ASID) 
in the PTEH register. Therefore, the L0 context table has 256 entries which are 
indexed by ASID.

Figure 7-3 SH-4 Virtual-to-Physical Memory Map 
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VxWorks runs in one of two modes, user or supervisor. Furthermore, addresses 
can be specified as read-only, write-only, or read/write. Memory attributes 
determine the addresses’ accessibility: that is, whether the address is accessible by 
the user or supervisor, and whether it is in read/write or read-only mode. Table 7-6 
summarizes the valid MMU attribute combinations for the SH-4 processor family. 
Note that the P3 segment can only be assigned supervisor access, and that the 
P0/U0 segment can be assigned supervisor or user access. Also note that in the 
P0/U0 segment, user mode cannot have read/write attributes enabled unless they 
are enabled in supervisor mode as well. This means that an address in P0/U0 
cannot have a read and write attribute in user mode with a read-only attribute in 
supervisor mode.

7.4.15  Memory Layout

The memory layout of the Renesas SuperH is shown in Figure 7-4. The figure 
contains the following labels:

Part of Kernel Text and Data 
Part of Kernel code which needs to be located in P1 space.

Exception Handling Stub 
Stub to handle exception vectoring.

Table 7-6 Valid MMU Attribute Combinations for SH-4 Processors 

Supervisor Mode User Mode

Segment Virtual Address Range Read Write Read Write

P4 E0000000 - FFFFFFFF X X n/a n/a

P3 C0000000 - DFFFFFFF X n/a n/a

X X n/a n/a

P2 and P1 80000000 - BFFFFFFF X X n/a n/a

P0/U0 00000000 - 7FFFFFFF X

X X

X X

X X X X
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TLB Mis-hit Handler 
Handler for translation lookaside buffer (TLB) mis-hit.

Interrupt Handling Stub 
Stub to handle interrupt priority control and vectoring.

Interrupt Vector Table 
Table of exception/interrupt vectors.

Interrupt Priority Table 
Copied image of intPrioTable[ ].

SM Anchor 
Anchor for the shared memory network.

Boot Line 
ASCII string of boot parameters.

Exception Message 
ASCII string of the fatal exception message.

Initial Stack 
Initial stack for usrInit( ), until usrRoot( ) is allocated a stack.

System Image 
VxWorks itself (four sections: text, rodata, data, and bss). The entry point for 
VxWorks (sysInit( )) is at the start of this region.

Interrupt Stack 
Stack for the interrupt handlers. Size is defined in configAll.h. Location 
depends on system image size.

System Memory Pool 
Heap for the kernel. 
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Figure 7-4 VxWorks Memory Layout for the SH-4 System Module (P0 or P3) 
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7All addresses shown in Figure 7-4 are relative to the start of memory for a 
particular target board. The start of memory (corresponding to +0 in the 
memory-layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS in config.h 
for each target.

7.5  Migrating Your BSP

In order to convert a VxWorks BSP from an earlier release to VxWorks 6.2, you 
must make certain architecture-independent changes. This includes making 
changes to custom BSPs designed to work with a VxWorks 5.5 release and not 
supported or distributed by Wind River. 

This section includes changes and usage caveats specifically related to migrating 
SuperH BSPs to VxWorks 6.2. For more information on migrating BSPs to 
VxWorks 6.2, see the VxWorks Migration Guide. 

7.5.1  Memory Protection

The SH-4 reference BSPs provided by Wind River disable the MMU by default. If 
you require memory protection for your board, you must enable the MMU by 
including the INCLUDE_MMU_BASIC component in the BSP config.h file. 

NOTE:  Some SuperH BSPs set LOCAL_MEM_SIZE to a value that is smaller 
than the actual physical memory. This is done to reduce boot-up time for the 
default boot ROM shipped with the BSP or because of variations in physical 
memory size on different hardware revisions. If this is the case for your BSP, 
you can increase LOCAL_MEM_SIZE up to the physical memory size. This will 
result in an increase in the system memory pool size. (If your BSP supports 
LOCAL_MEM_AUTOSIZE, the physical memory size is calculated by the BSP 
automatically.) For more information, see your BSP config.h or target.ref file. 
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7.6  Reference Material 

Comprehensive information regarding SuperH hardware behavior and 
programming is beyond the scope of this document. Renesas Technology 
Corporation provides several hardware and programming manuals for the 
SuperH processor on its Web site:

http://www.renesas.com/

Wind River recommends that you consult the hardware documentation for your 
processor or processor family as necessary during BSP development. 
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A.1  Introduction

Wind River recommends that you use Workbench or the vxprj command-line 
utility whenever possible to build your VxWorks image or application. Workbench 
and vxprj are correctly pre-configured to build most types of projects. However, 
this appendix provides architecture-specific information that you may need to 
build certain types of VxWorks applications and libraries, specifically in situations 
where you must invoke the make command directly. 

For more information on building applications and libraries, see the Wind River 
Workbench for VxWorks User’s Guide or the VxWorks Command-Line Tools User’s 
Guide: Building Kernel and Application Projects.
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A.2  Defining the CPU and TOOL Make Variables

There are several make variables used to control the VxWorks build system, 
including the CPU and TOOL variables. The CPU variable is used to describe the 
the target instruction-set architecture. The TOOL variable specifies the compiler 
and toolkit used (Wind River Compiler or Wind River GNU Compiler) and can 
also be used to specify the endianess or floating-point support as necessary. 

These options can be specified when invoking the make command directly. For 
example:

% make CPU=MIPS32 TOOL=sfgnule 

This command compiles for a 32-bit MIPS target using the GNU compiler, with 
software floating-point support and little-endian byte order.

Table A-1 shows the supported values for CPU and TOOL. When referencing this 
table, note the following:

■ Not every combination of target processor family, toolkit, floating-point mode, 
and endianess is supported.

■ The CPU value used by the VxWorks build system does not necessarily 
correspond to the exact microprocessor model.

■ The information in the table may not be up to date. For information regarding 
current processor support, see your product release notes or the Online 
Support Web site.

NOTE:  Modules built with either gnu or diab can be linked together in any 
combination, except for modules that require C++ support. Cross-linking of C++ 
modules is not supported in this release. For more information, see your product 
migration guide. 

Table A-1 Values for the CPU and TOOL Make Variables

CPU Value TOOL Value Processor Class Floating Point Endian

ARMARCH5 diab ARM Architecture 
Version 5 CPUs (running 
in ARM state) 

little

gnu little



A  Building Applications
A.2  Defining the CPU and TOOL Make Variables

203

A

ARMARCH6 diab ARM Architecture 
Version 6 CPUs (running 
in ARM state) 

little

gnu little

PENTIUM diab Pentium little

gnu little

PENTIUM2 diab Pentium Pro, Pentium II little

gnu little

PENTIUM3 diab Pentium III, Pentium M little

gnu little

PENTIUM4 diab Pentium 4, Pentium M little

gnu little

XSCALE gnu XScale Architecture 
CPUs (running in ARM 
state)

little

diab little

gnube big

diabbe big

MIPS32 sfgnu 32-bit MIPS Software big

sfdiab 32-bit MIPS Software big

sfgnule 32-bit MIPS Software little

sfdiable 32-bit MIPS Software little

Table A-1 Values for the CPU and TOOL Make Variables (cont’d)

CPU Value TOOL Value Processor Class Floating Point Endian
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MIPS64 gnu 64-bit MIPS Hardware big

diab 64-bit MIPS Hardware big

gnule 64-bit MIPS Hardware little

diable 64-bit MIPS Hardware little

PPC405 sfdiab PowerPC 405GP, 405GPr Software big

sfgnu PowerPC 405GP, 405GPr Software big

PPC440 sfdiab PowerPC 440GP Software big

sfgnu PowerPC 440GP Software big

diab PowerPC 440GX Hardware big

gnu PowerPC 440GX Hardware big

PPC603 diab PowerPC 603, MPC824X, 
MPC825X, MPC826X, 
MPC8349, MPC8272, 
MPC8280 

big

gnu PowerPC 603, MPC824X, 
MPC825X, MPC826X, 
MPC8349, MPC8272, 
MPC8280 

big

PPC604 diab PowerPC 604, 604e, 
MPC745, PowerPC 750, 
750CX, 750CXe, MPC755, 
MPC7400, MPC7410 

big

gnu PowerPC 604, 604e, 
MPC745, PowerPC 750, 
750CX, 750CXe, MPC755, 
MPC7400, MPC7410 

big

Table A-1 Values for the CPU and TOOL Make Variables (cont’d)

CPU Value TOOL Value Processor Class Floating Point Endian
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PPC604 
(AltiVeca) 

diab MPC7445, MPC7450, 
MPC7455 

big

gnu MPC7445, MPC7450, 
MPC7455 

big

PPC860 

 

sfdiab MPC821, MPC823, 
MPC823e, MPC850, 
MPC850SAR, MPC855, 
MPC855T, MPC860 

big

sfgnu MPC821, MPC823, 
MPC823e, MPC850, 
MPC850SAR, MPC855, 
MPC855T, MPC860 

big

PPC85XX sfdiab MPC8540, MPC8560 big

sfgnu MPC8540, MPC8560 big

PPC32 diab PowerPC 440EP, 970 big

gnu PowerPC 440EP, 970 big

SH7750 
(kernel 
applications 
only)

gnu SH-4 hardware big

gnule SH-4 hardware little

diab SH-4 hardware big

diable SH-4 hardware little

SH32 
(RTPs only)

gnu SH-4 hardware big

gnule SH-4 hardware little

diab SH-4 hardware big

diable SH-4 hardware little

Table A-1 Values for the CPU and TOOL Make Variables (cont’d)

CPU Value TOOL Value Processor Class Floating Point Endian
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Special Considerations for PowerPC Processors

CPU_VARIANT 

On PowerPC processors, specifying CPU and TOOL is usually sufficient to build a 
module using the pre-defined rules, with the following exceptions: 

■ Processors that are based on the x5 version of the PowerPC 440 core (such as 
PowerPC 440GX or 440EP) require support for the recoverable machine check 
mechanism even if none of the mechanism’s optional capabilities are enabled. 
In order to select the proper version of architecture support code, BSPs for 
these processors must specify either CPU=PPC440 CPU_VARIANT=_x5 or 
CPU=PPC32 CPU_VARIANT=_ppc440_x5.

■ The MPC744X and MPC745X processors require execution of additional 
synchronization operations when accessing certain hardware registers. To 
select the version of the architecture support code that contains these 
additional instructions, BSPs for the MPC744X and MPC745X processors must 
specify CPU=PPC604 CPU_VARIANT=_745x or 
CPU=PPC32 CPU_VARIANT=_ppc604_745x. This specification is not needed for 
the MPC7400 or MPC7410, and must not be used for processors that do not 
implement the AltiVec instruction set.

■ Freescale Semiconductor, Inc. processors based on the G2_LE core, such as the 
MPC827X and the MPC828X, vary from the traditional G2 core that belongs to 
the PPC603 family in VxWorks. The G2_LE core provides additional BAT 
registers in the MMU, includes additional SPRG registers, and incorporates 
the critical interrupt class of exception. To select the proper architecture 
support code, the BSP must specify either CPU=PPC603 CPU=VARIANT=_g2le 
or CPU=PPC32 CPU_VARIANT=_ppc603_g2le.

■ Like the G2_LE core, the e300 core also provides additional BAT registers and 
the critical interrupt class of exception. The e300 core is synonymous with the 
Freescale PowerQUICC Pro processor family (processors such as the 
MPC834X and MPC836X belong to this family). BSPs for this family must 
specify either CPU=PPC603 CPU_VARIANT=_83xx or 

a. Motorola PowerPC MPC74XX CPUs are treated as a variation of the PowerPC 604 CPU 
type. AltiVec support in the MPC74XX processors is in addition to the existing 
PowerPC 604 functionality. Modules that make use of AltiVec instructions must be 
compiled with certain compiler-specific options, but can be linked with modules that 
do not use the AltiVec compile options. See 6.3.7 AltiVec and PowerPC 970 Support, 
p.130, for details
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CPU=PPC32 CPU_VARIANT=_ppc603_83xx to select the proper architecture 
support code.

Backward Compatibility 

In order to maintain backwards compatibility with earlier VxWorks releases, 
specifying the values for TOOL (gnu or diab) will continue to work as it did in 
prior releases. The TOOL value will be converted to sfdiab or sfgnu as necessary 
based on the specified CPU value.

For example, specifying CPU=PPC440 with any TOOL option (TOOL=diab, 
TOOL=sfdiab, TOOL=gnu, or TOOL=sfgnu) will build for software floating point. 
(You may also specify software floating point using CPU=PPC32 
CPU_VARIANT=_ppc440 TOOL=sfdiab or sfgnu.) 

If you want to build for hardware floating point, use CPU=PPC32, 
CPU_VARIANT=_ppc440 or _ppc440_x5 (for PowerPC 440EP), and TOOL=diab or 
gnu. 

A.3  Make Variables to Support Additional Compiler Options 

In addition to CPU and TOOL, some architectures utilize the ADDED_C++FLAGS or 
the ADDED_CFLAGS make variables to set additional compiler options. The 
following sections describe how these variables are used for certain architectures. 

A.3.1  Compiling Downloadable Kernel Modules 

Certain architectures require special compiler options when compiling 
downloadable kernel modules. These options can be passed to the compiler using 
the ADDED_C++FLAGS or the ADDED_CFLAGS make variables from the 
command line or by adding the appropriate flags to the CC_ARCH_SPEC macro 
using Workbench. The following sections describe the requirements for the 
affected architectures. 
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ARM and Intel XScale 

On ARM and Intel XScale targets, the -Xcode-absolute-far flag (Wind River 
Compiler (diab)) and the -mlong-calls flag (GNU compiler) may be required to 
compile VxWorks downloadable kernel modules. These flags are required if the 
board you are working with has more memory than can be accessed using relative 
branches. The flags are not automatically passed to the build command and if the 
flags are not added explicitly, the loader may issue a relocation overflow error (this 
happens using both the GNU compiler and the Wind River Compiler).

A macro is already defined for this purpose in the respective compiler definition 
(defs) files and can be included by modifying the compiler settings in your project 
or specifying the appropriate option on the command line when building your 
module. For example:

% make TOOL=tool CPU=cpu ADDED_CFLAGS=$(LONGCALL) 
ADDED_C++FLAGS=$(LONGCALL)

MIPS 

The MIPS Application Binary Interface (ABI) normally uses the jal instruction to 
call functions not accessed through a pointer. Thus, the function call: 

func( );

would cause the compiler to generate the assembly code: 

jal func

However, the bit encoding of the jal instruction contains only a 26-bit field to select 
the word address of the entry point of the routine. Because MIPS instructions are 
all word aligned, it is not necessary to specify the byte address; this implies that a 
28-bit byte address can be inferred from a 26-bit word address, because the lower 
2 bits of the byte address are always 0. The target address of a function call is 
assumed to have the same pattern in the top 4 bits as the jal instruction which 
references it.

The result of this limitation is that special consideration is required to reference 
functions outside the current 512 MB address segment. For unmapped kernels, this 
is rarely an issue because all code typically resides in the 512 MB KSEG0 segment.

However, mapped kernels running in systems with large amounts of memory may 
require special precautions to deal with function call accesses not in the current 
512 MB memory segment.
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Two solutions are possible: Either the routine can be accessed through a pointer 
instead of directly, or the compiler can be instructed to modify the routine calling 
convention to load the 32-bit address of the routine into a register and then use the 
jalr instruction instead of jal.

The first approach requires changing the function call example presented above to 
look something like the following:

{
VOIDFUNCPTR pFunc = func; 
... 
(*pFunc)(); 
... 
}

The second solution requires adding an option to the compiler command line. For 
the Wind River Compiler (diab), the -Xcode-absolute-far option is used, and for 
the GNU compiler (gnu), the option is -mlong-calls. To specify these 
command-line options, modify the compiler settings in your project or specify the 
appropriate option on the command line when building the module. For example:

For the Wind River Compiler, use:

% make TOOL=diab CPU=cpu ADDED_CFLAGS="-Xcode-absolute-far" 
ADDED_C++FLAGS="-Xcode-absolute-far" 

For the GNU compiler, use:

% make TOOL=gnu CPU=cpu ADDED_CFLAGS="-mlong-calls" 
ADDED_C++FLAGS="-mlong-calls" 

Either of the above solutions causes the compiler to generate similar code for 
calling the routine:

lui $24,%hi(func)
addui $24,$24,%lo(func)
jalr $24

PowerPC

On PowerPC targets having more than 32 MB of memory, the -Xcode-absolute-far 
flag (Wind River Compiler (diab)) or the -mlongcall flag (GNU compiler) may be 
required when compiling VxWorks downloadable kernel modules. The flags are 
not automatically passed to the build command and, if the flags are not added 

NOTE:  Code compiled with the -Xcode-absolute-far or -mlong-calls 
command-line option does not require the use of special libraries or linker 
considerations. 
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explicitly, the loader may issue a relocation overflow error (this happens using 
both GNU and the Wind River Compiler (diab)). 

To specify these flags, modify the compiler settings in your project or specify the 
appropriate option on the command line when building the module. For example:

For the Wind River Compiler, use:

% make TOOL=diab CPU=cpu ADDED_CFLAGS="-Xcode-absolute-far" 
ADDED_C++FLAGS="-Xcode-absolute-far" 

For the GNU Compiler, use:

% make TOOL=gnu CPU=cpu ADDED_CFLAGS="-mlongcall" ADDED_C++FLAGS="-mlongcall" 

For more information on relative branching, see 6.4.4 26-bit Address Offset 
Branching, p.146. 

A.3.2  Compiling Modules for RTP Applications on PowerPC 

The pre-defined options used to compile modules for an RTP (real-time process) 
application on a PowerPC target should suffice in most cases. RTPs are compiled 
for the generic 32-bit PowerPC UISA EABI using the CPU=PPC32 macro setting. 
Two general options are available using the TOOL macro to select the 
floating-point mode. When you specify TOOL=diab, hardware floating-point is 
selected. When you specify TOOL=sfdiab, software floating-point is selected. A 
similar distinction is made between TOOL=gnu and TOOL=sfgnu. 

When extra options are required (for example, when you must compile for AltiVec 
or SPE support), the extra options can be specified using the ADDED_CFLAGS 
macro in the BSP makefile. For example, enable AltiVec support in the Wind River 
Compiler (diab) by appending the following line to the end of Makefile for an RTP 
application: 

ADDED_CFLAGS += -tPPC7400FV:vxworks62 

NOTE:  RTPs built with TOOL=sfdiab or sfgnu will run correctly on any PowerPC 
processor, including those that provide hardware floating point support. However, 
RTPs built with soft float options (sfdiab or sfgnu) will not be able to use the 
processor hard float capability. 
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A.4  Additional Compiler Options and Considerations 

This section discusses additional special compiler options and requirements for 
certain target architectures. 

A.4.1  Intel Architecture 

In some cases, special compiler options and considerations are required when 
compiling applications for the Intel Architecture. The following sections discuss 
these instances.

GNU Assembler Compatibility

The -Xemul-gnu-bug option is included in the Wind River Compiler to emulate a 
known behavior in the GNU assembler’s encoding of fdivp, fdivrp, fsubp, and 
fsubrp instructions. The -Xemul-gnu-bug option should only be used when 
assembly code produced by, or written for use with, the GNU toolchain is 
assembled using the Wind River Compiler toolchain assembler. 

If the Wind River assembler is invoked using the compiler driver (dcc), the 
-Xemul-gnu-bug option should be preceded by -Wa so that it is passed to the 
assembler. The appropriate makefiles for the Wind River Compiler (diab) 
toolchain (installDir/vxworks-6.2/target/h/tool/$TOOL/make.$CPU$TOOL and 
installDir/vxworks-6.2/target/usr/tool/$TOOL/make.$CPU$TOOL) include this 
option. 

t

NOTE:  The make rules to build RTPs are in rules.rtp and compiler-specific options 
come from the make fragments in installDir/target/usr/tool/gnu or diab. If the RTP 
source is built with a makefile that includes rules.rtp, simply specifying the 
appropriate CPU and TOOL options will build the RTP using the specified 
compiler. Note that CPU is always defined as PPC32 for RTPs regardless of the 
target processor type. 
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Compiling Modules for Debugging 

To compile C and C++ modules for debugging, you must use the -g compiler flag 
to generate debug information. An example command line for the GNU compiler 
is as follows: 

% ccpentium -mcpu=pentium -IinstallDir/vxworks-6.2/target/h -fno-builtin \
-DCPU=PENTIUM -c -g test.cpp 

In this example, installDir is the location of your VxWorks tree and -DCPU specifies 
the CPU type. An equivalent example for the Wind River Compiler is as follows:

% dcc -tPENTIUMLH:vxworks62 -IinstallDir/vxworks-6.2/target/h \ 
-DCPU=PENTIUM -c -g test.cpp 

A.4.2  MIPS

In some cases, special compiler options and considerations are required when 
compiling applications for MIPS. The following sections discuss these instances.

Small Data Model Support 

Small data model is not currently supported by VxWorks for MIPS.

When using the GNU compiler, Wind River recommends using the 
-mno-branch-likely switch. This switch suppresses the branch-likely version of 
the branch instructions. The -G 0 switch is required. This switch prevents short 
data references from being generated by the GNU compiler. 

NOTE:  Debugging code compiled with optimization is likely to produce 
unexpected behavior, such as breakpoints that are never hit or an inability to set 
breakpoints at some locations. This is because the compiler may re-order 
instructions, expand loops, replace routines with in-line code, and perform other 
code modifications during optimization, making it difficult to correlate a given 
source line to a particular point in the object code. You are advised to be aware of 
these possibilities when attempting to debug optimized code. Alternatively, you 
may choose to debug applications without using compiler optimization. To 
compile without optimization using the GNU compiler, you must compile without 
a -O option or use the -O0 option. To compile without optimization using the 
Wind River Compiler, you must compile without the -XO option or use the 
-Xno-optimized-debug option. 
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-mips2 Compiler Option 

Processors supported with the MIPS32sfgnu and MIPS32sfgnule CPU and TOOL 
combinations use the R4000-compatible cache and eret instructions which are not 
supported when using the -mips2 GNU compiler option. This incompatibility 
does not generally cause a problem because these instructions are typically found 
only in assembly-language kernel library code, not in user-provided code such as 
BSPs. If your code needs to use these instructions, you should choose one of the 
following recommended options:

■ Assemble the file with the Wind River Compiler (diab) toolchain, which 
supports these instructions in -tMIPS2xx:vxworks62 (32-bit, soft float) modes. 

■ Temporarily alter your ISA selection with the .set option as follows:

.set mips3
eret
.set mips0

■ Substitute a .word assembler directive in place of the required instruction:

# eret /* not supported by GNU compiler */
.word 0x42000018 

Wind River does not support modifying the GNU compiler option from -mips2 to 
-mips3. This may generate instructions that are not supported on all MIPS 
processors, and will cause linkage problems with kernel libraries that are compiled 
with the -mips2 option.

A.4.3  PowerPC 

In some cases, special compiler options and considerations are required when 
compiling applications for PowerPC. The following sections discuss these 
instances.

Signal Processing Engine (SPE) for MPC85XX 

MPC85XX CPUs have a Signal Processing Engine (SPE). The compiler option 
-tPPCE500FG:vxworks62 or -tPPCE500FF:vxworks62 should be used for the 
Wind River Compiler (diab) to generate SPE instructions. For the GNU compiler, 
SPE instruction generation is already enabled by the -mcpu=8540 option. Refer to 
your compiler documentation for more information.
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Compiling Modules for Debugging 

To compile C and C++ modules for debugging, you must use the -g flag to generate 
debug information. An example command line for the GNU compiler is as follows: 

% ccppc -mcpu=603 -IinstallDir/vxworks-6.2/target/h -fno-builtin \
-DCPU=PPC603 -c -g test.cpp 

In this example, installDir is the location of your VxWorks tree and -DCPU specifies 
the CPU type. An equivalent example for the Wind River Compiler is as follows:

% dcc -tPPC603FH:vxwork55 -IinstallDir/vxworks-6.2/target/h \ 
-DCPU=PPC603 -c -g test.cpp 

NOTE:  Debugging code compiled with optimization is likely to produce 
unexpected behavior, such as breakpoints that are never hit or an inability to set 
breakpoints at some locations. This occurs because the compiler may re-order 
instructions, expand loops, replace routines with in-line code, and perform other 
code modifications during optimization, making it difficult to correlate a given 
source line to a particular point in the object code. You are advised to be aware of 
these possibilities when attempting to debug optimized code. Alternatively, you 
can choose to debug applications without using compiler optimization. To compile 
without optimization using the GNU compiler (gnu), compile your code without 
a -O option or use the -O0 option. To compile without optimization using the 
Wind River Compiler, compile your code without the -XO option or use the 
-Xno-optimized-debug option. 



215

Index

Symbols
__fpscr_values 190
__ieee_status( ) 11, 29
_745x 206
_CACHE_ALIGN_SIZE 5, 23
_func_armPageSource 38
_func_excBErrIntAck 176
_func_intConnectHook 177
_func_intDisableRtn 178
_func_intEnableRtn 178
_func_vxMemProbeHook 8, 26, 179
_func_wdbUbcInit 175
_MMU_TLB_TS_0 125, 128
_ppc440_x5 206
_ppc604_745x 206
_pSysBatInitFunc 122
_x5 206

Numerics
routines

vxCr 55
16-bit instruction set (Thumb) 9, 27
26-bit address offset branching

PowerPC 146
26-bit processor mode

ARM 9, 26

32-bit supervisor mode (SVC32)
ARM 9
XScale 26

64-bit
MIPS support 113
timestamp counter 74

A
a.out

Intel Architecture 59
ABI 151
access types

MPC85XX 151
MPC8XX 151
PowerPC 405 150
PowerPC 440 151
PowerPC 603 151
PowerPC 604 151

ADDED_C++FLAGS 207
ADDED_CFLAGS 207, 210
ADJUST_VMA 94
Advanced Programmable Interrupt Controller

see APIC
Advanced RISC Machines

see ARM



VxWorks 
Architecture Supplement, 6.2  

216

AIM 92
model for caches

MIPS 92
model for MMU

MIPS 107
SuperH 189

AltiVec 130
AltiVec-specific routines 131
C++ exception handling 138
enabling keywords 136
extensions to the WTX protocol 137
feature support 130
layout of the EABI stack frame 132
VxWorks run-time support for 130
WTX API routines 138

Altivec
compiling modules with the GNU compiler

137
compiling modules with the Wind River 

Compiler 136
altivecInit( ) 131
altivecProbe( ) 130, 131
altivecRestore( ) 131
altivecSave( ) 131
altivecTaskRegsGet( ) 131
altivecTaskRegsSet( ) 131
altivecTaskRegsShow( ) 131
aoutToBinDec 60
APIC 74
APIC_TIMER_CLOCK_HZ 77
Application Binary Interface

see ABI
Application Specific Standard Product

see ASSP
architecture considerations

ARM 8
Intel Architecture 60
MIPS 95
PowerPC 144
SuperH 181
XScale 26

Architecture-Independent Model
see AIM

architectures
ARM 3

Intel Architecture 47
Intel XScale 21
MIPS 85
PowerPC 115
Renesas SuperH 171

archPpc.h 159
ARM 3

see also XScale
architecture considerations 8
BSP considerations for cache and MMU 15
BSP migration 17

VxWorks 5.5 compatibility 19
byte order 9
cache and memory management interaction

14
cache and MMU routines for individual 

processor types 15
cache coherency 12
cacheLib 5, 7
caches 12
compiling downloadable kernel modules 208
controlling the CPU interrupt mask 6
cret( ) 4
dbgArchLib 6
dbgLib 5
defining cache and MMU types in the BSP 15
divide-by-zero handling 11
enabling backtracing 5
FIQ 11
floating-point library 11
floating-point support 11
hardware-assisted debugger compatibility 5
initializing the interrupt architecture library 7
intALib 6
intArchLib 6
interface variations 4
interrupt handling 6, 10

non-preemptive mode 7
preemptive mode 7

interrupt stack 10
interrupts and exceptions 10
IRQ 11
memory layout 16
MMU 13
processor mode 9



 Index

217

Index

providing an alternate routine for 
vxMemProbe( ) 8

reference material 20
supported ARM architecture versions 4
supported cache and MMU configurations 12
supported instruction sets 9
supported processors 4
SWPB (swap byte) instruction 8, 25
tt( ) 4
unaligned accesses 9
vmLib 5, 7
vxALib 8
vxLib 8

ARM 1136jf-s 4
cache 13

ARM 926ej-s 4
cache 13

arm.h 15, 40
ARMCACHE 15, 40
ARMCACHE_1136JF 15
ARMCACHE_926E 15
ARMCACHE_NONE 15, 40
ARMCACHE_XSCALE 40
ARMMMU 15, 40
ARMMMU_1136JF 15
ARMMMU_926E 15
ARMMMU_NONE 15, 40
ARMMMU_XSCALE 40
ASSP 34
Automatic EOI Mode 69
AUX_CLK_RATE_MAX 77
AUX_CLK_RATE_MIN 77

B
b( ) 173
backtracing

enabling on ARM targets 5
enabling on XScale targets 22

banked registers
SuperH 182

BAT
enabling additional, PowerPC 121
PowerPC 120

bh( )
Intel Architecture 57
MIPS 89
PowerPC 149
SuperH 173

bitmap combinations
SuperH 174

bl 146, 147
bla 146, 147
block address translation

see BAT
blrl 147
BOI 70
Book E processor specification 124
boot floppies

VxWorks for Intel Architecture 61
boot ROMs

MIPS 95, 110
boot sequencing

MPC85XX 127
PowerPC 440 125

BOOT_LINE_OFFSET 19, 44
bootrom

MIPS 95
bootrom.hex

MIPS 95
branch addresses

SuperH 183
branching across large address ranges

PowerPC 146
brcrInit 175
brcrSize 175
breakpoints

Intel Architecture 57
MIPS 89
SuperH 173

BRK_DATARW1 57
BRK_DATARW2 57
BRK_DATARW4 57
BRK_DATAW1 57
BRK_DATAW2 57
BRK_DATAW4 57
BRK_INST 57



VxWorks 
Architecture Supplement, 6.2  

218

BSP considerations for cache and MMU
ARM 15
XScale 40

BSP migration
ARM 17
SuperH 199
XScale 42

bspname.h
MIPS 100, 104

BSPs
pcPentium2 61
pcPentium3 61, 62
pcPentium4 62

build mechanism
PowerPC 168

building applications 201
building kernels

MIPS 92
bus errors

SuperH support for 176
byte order

ARM 9
Intel Architecture 61
MIPS 96
network byte order on Intel Architecture 61
PowerPC 149
SuperH 182
XScale 27

C
C language

extensions for vector types
AltiVec 134
SPE 142

C++ modules
cross-linking 202

cache
AIM model for

PowerPC 155
ARM 12
configuration

ARM 12
XScale 29

Intel Architecture 63
locking

ARM 5, 13
MIPS 92
XScale 23, 30

memory management interaction
ARM 14
XScale 38

MIPS 91
PowerPC 153
SuperH 190

libraries and supported processors 190
cache coherency

ARM 12
PowerPC 119
XScale 30

CACHE_COPYBACK 13
CACHE_COPYBACK_P1 187
CACHE_WRITETHROUGH 13, 30, 162
cacheArchAlignSize 5, 23
cacheArchIntMask 16, 41
cacheArm1136jfLibInstall( ) 15
cacheArm926eLibInstall( ) 15
cacheArmXScaleLibInstall( ) 40
cacheClear( ) 13, 30, 155
cacheDisable( ) 91
cacheEnable( ) 14, 38, 91, 155
cacheInvalidate( ) 13, 30
cacheLib

ARM 5, 7
Intel Architecture 63
MIPS 92
PowerPC 153, 155
XScale 23, 25

cacheLibInit( ) 16, 41
cacheLock( ) 5, 13, 23, 30
cachePpcReadOrigin 153
cachetypeLibInstall( ) 15, 39
cacheUnlock( ) 5, 13, 23, 30
CC_ARCH_SPEC 207
Celeron processors 61
chanCnt 175
command-line build

enabling extended-call exception 
vectors on PowerPC 148



 Index

219

Index

compiler options
adding using make variables 207

compiling
downloadable kernel modules 207
modules for debugging

Intel Architecture 212
PowerPC 214

RTP applications
PowerPC 210

config.h
ARM 19
Intel Architecture 68
MIPS 90, 93, 94, 110
PowerPC 147, 148, 161
SuperH 187, 199
XScale 41, 44

configAll.h
PowerPC 147
SuperH 185, 197

context switching
Intel Architecture 72

converting to network byte order
Intel Architecture 61

coprocessor abstraction
PowerPC 129

coprocessors
PowerPC 129

coprocTaskRegsGet( ) 63
coprocTaskRegsSet( ) 63
counters

Intel Architecture 73
cpsr( ) 6, 24
CPU 202
CPU interrupt mask

ARM 6
XScale 24

CPU_VARIANT 206
cpuPwrLightMgr 80
cpuPwrMgrEnable( ) 80
cpuPwrMgrIsEnabled( ) 80
cret( ) 4, 22
cross-linking of C++ modules 202

D
data cache

PowerPC 153
XScale 30

data MMU
PowerPC 118

data segment alignment
MIPS 91

data types
long long 113

dbgArchLib
ARM 6
MIPS 89
SuperH 172
XScale 23

dbgLib
ARM 5
SuperH 173
XScale 23

dcbst 153
DEC timer 166
DEFAULT_POWER_MGT_MODE 192
defining CPU variants for PowerPC 206
defining the CPU and TOOL make variables 202
diab 202
disassembler

Intel Architecture 58
divide-by-zero handling

ARM 11
PowerPC 145
SuperH 177
XScale 28

dtrGet( ) 56
dynamic model

MPC85XX 128
PowerPC 440 126

E
EABI 152

Motorola AltiVec EABI specification 137
Early EOI Issue 69
eax( ) 56



VxWorks 
Architecture Supplement, 6.2  

220

-EB 180
ebp( ) 56
ebx( ) 56
ecx( ) 56
edi( ) 56
edx( ) 56
eflags( ) 56
efsadd 145
efsdiv 145
efsmul 145
efssub 145
-EL 180
ELF

Intel Architecture 59
Embedded Application Binary Interface

see EABI
enabling backtracing

ARM 5
XScale 22

enabling extended-call exception vectors
command-line builds

PowerPC 148
project builds

PowerPC 149
ENTIRE_CACHE 13
EOI 70
error detection and reporting

Intel Architecture 66
PowerPC 166

esi( ) 56
esp( ) 56
evfsadd 145
evfsdiv 145
evfsmul 145
evfssub 145
EVT

see exception vector table
EXC_MSG_OFFSET 19, 44
excArchLib

SuperH 176
excBErrVecInit( ) 176
excConnect( ) 161, 162
excCrtConnect( ) 161, 162
excEnt( ) 164
exception vector table 166

exception vectors
relocated vectors on PowerPC 164

exceptions
ARM 10
C++ exception handling and AltiVec support

138
floating-point on PowerPC 145
FPU on Intel Architecture 64
Intel Architecture 71
machine check architecture (MCA) 72
mapping onto software signals for MIPS 97
MIPS 97
PowerPC 161
SPE 145
SPE unavailable exception 145
SuperH 183
XScale 27, 28

excExtendedVectors 148, 149
excInit( ) 164
excIntConnect( ) 161, 162
excIntConnectTimer( ) 161, 164
excIntCrtConnect( ) 161, 162
excLib 105
excMchkConnect( ) 162
excVecGet( ) 10, 28, 164
excVecInit( ) 148, 149, 164
excVecSet( ) 10, 28, 161, 164
extended interrupts

MIPS RM9000 processors 104
extended-call exception vector support

PowerPC 147
extensions to the WTX protocol

AltiVec 137
SPE 144

EXTRA_DEFINE 93

F
fast interrupt 11, 28
fast interval timer 164
fdivp 211
fdivrp 211
FIQ

see fast interrupt



 Index

221

Index

FIT
see fast interval timer

floating-point
ARM 11
exceptions, PowerPC 145
library

ARM 11
XScale 29

MIPS 98
PowerPC 157
software floating-point emulation

Intel Architecture 79
SPE floating-point 145
SuperH 190
XScale 28

-fno-omit-frame-pointer 5, 22
formatted input and output of vector types

AltiVec 134
SPE 143

fppArchInit( ) 63
fppArchSwitchHook( ) 64
fppArchSwitchHookEnable( ) 51, 64
fppCtxShow( ) 51
fppCtxToRegs( ) 63
fppProbe( ) 50
FPPREG_SET 63
fppRegListShow( ) 51
fppRegsToCtx( ) 63
fppRestore( ) 63, 191
fppSave( ) 63, 191
fppTaskRegsGet( ) 64
fppTaskRegsSet( ) 64
fppXctxToRegs( ) 63
fppXregsToCtx( ) 63
fppXrestore( ) 63
fppXsave( ) 63
fpscrInitValue 191
fpscrSet( ) 190
fsubp 211
fsubrp 211
Fully Nested Mode 69

G
-G 0 96, 117, 212
G2_LE core 206
gbr( ) 172
GDT 66, 68
GDT_BASE_OFFSET 66
GDTR 59
Get( ) 55
routines

vx 56
vx 56
global descriptor table

see GDT
global variables

_func_vxMemProbeHook 8
Intel Architecture 49
intLockMask 58
ioApicBase 76
ioApicData 76
sysCoprocessor 50
sysCpuId 50
sysCsExc 50, 71
sysCsInt 50
sysCsSuper 50
sysIntIdtType 50, 70
sysPhysMemDescNumEnt 94, 95
sysProcessor 50
sysStrayIntCount 71

gnu 202
GNU assembler

-little 180
-relax 180
-small 180
SuperH-specific options 180

GNU compiler 146
compiling modules to use the AltiVec unit 137
compiling modules to use the SPE unit 143
enabling backtracing for ARM targets 5
enabling backtracing for XScale targets 22
-fno-omit-frame-pointer 5, 22
-G 0 96, 117, 212
-m4 179
-maltivec 137, 138
-mb 179



VxWorks 
Architecture Supplement, 6.2  

222

-mbigtable 179
-mcpu=8540 213
-mcpu=power4 -Wa 137
-mdalign 179
-mieee 179
-mips2 213
-misize 179
-ml 179
-mlongcall 146, 209
-mlong-calls 208, 209
-mno-branch-likely 212
-mno-ieee 179
-mppc64bridge 137
-mrelax 179
-msdata 117
-O 212, 214
-O0 212, 214
small data area

PowerPC 117
SuperH-specific options 179
-Wa 137

GNU linker
-EB 180
-EL 180
SuperH-specific options 180

gp-rel addressing 96

H
hardware breakpoints

Intel Architecture 57
MIPS 89
SuperH 173

BSP requirements 175
hardware floating-point

MIPS 98
hexDec 60
HI 118
HIADJ 118
htons( ) 61
hWtx 138, 144

I
base 175
I/O APIC/xAPIC

Intel Architecture 76
i8259Intr.c 58
IA32_APIC_BASE 75
IDT

see interrupt descriptor table
IDT_INT_GATE 58
IDT_TASK_GATE 58
IDT_TRAP_GATE 58
IDTR 59
include file

MIPS board-specific 101
INCLUDE_440X5_DCACHE_RECOVERY 162
INCLUDE_440X5_MCH_LOGGER 162
INCLUDE_440X5_PARITY_RECOVERY 162
INCLUDE_440X5_TLB_RECOVERY 162
INCLUDE_440X5_TLB_RECOVERY_MAX 162
INCLUDE_CACHE_ENABLE 30, 153, 154
INCLUDE_CACHE_MODE 30
INCLUDE_CPU_LIGHT_PWR_MGR 80
INCLUDE_DEBUG 173
INCLUDE_EDR_PM 166
INCLUDE_EXC_EXTENDED_VECTORS 149
INCLUDE_EXC_HANDLING 162
INCLUDE_HW_FP 63, 190
INCLUDE_KERNEL 81, 166
INCLUDE_KERNEL_HARDENING 19, 44
INCLUDE_LOCK_TEXT_SECTION 189
INCLUDE_MAPPED_KERNEL 90, 93, 94
INCLUDE_MEMORY_CONFIG 17, 42, 81, 166
INCLUDE_MMU_BASIC 34, 66, 94, 95, 127, 162, 

199
INCLUDE_PCI 68
INCLUDE_RTP 94
INCLUDE_SHOW_ROUTINES 34
INCLUDE_SM_OBJ 160
INCLUDE_SPE 140
INCLUDE_SW_FP 79
INCLUDE_SYS_HW_INIT_0 148
INCLUDE_WDB 17, 42, 81, 165



 Index

223

Index

instruction cache
PowerPC 153
XScale 30

instruction MMU
PowerPC 118

INT_NON_PREEMPT_MODEL 7, 24
INT_PREEMPT_MODEL 7, 24
intALib

ARM 6
XScale 24

intArchLib
ARM 6
Intel Architecture 58
MIPS 90
SuperH 177
XScale 24

intConnect( ) 10, 27, 100, 101, 177, 184
intDisable( ) 7, 25, 100, 178
Intel 8259 PIC 69
Intel Architecture 47

a.out and ELF-specific tools 59
Advanced Programmable Interrupt Controller 

(APIC) 74
architecture considerations 60
architecture-specific global variables 49
architecture-specific routines 51
beginning-of-interrupt and end-of-interrupt 

routines (BOI and EOI) 70
breakpoints and the bh( ) routine 57
cache 63
cacheLib 63
compiling modules for debugging 212
context switching 72
converting to network byte order (big-

endian) 61
counters 73
disassembler, l( ) 58
error detection and reporting 66
exceptions 71
FPU exceptions 64
FPU support 63
getting and setting control register values 59
getting and setting the debug registers 59
getting and setting the EFLAGS register 59
getting and setting the task register 59

getting code, data, and stack segment 
values 59

getting CPU information 59
GNU assembler compatibility 211
I/O mapped devices 78
intArchLib 58
interface variations 49
interrupt descriptor table (IDT) 70
interrupt lock level, intLock( ) and 

intUnlock( ) 58
interrupts 68
ISA/EISA bus 79
machine check architecture (MCA) 72
mathALib 49
memory considerations for VME 78
memory layout 80
memory mapped devices 78
memory probe, vxMemProbe( ) 58
memory type range register (MTRR) 72
mixing MMX and FPU instructions 65
mixing SSE/SSE2 and FPU/MMX 

instructions 65
MMX technology support 63
model-specific register (MSR) 73
OSM stack 70
P5 architecture (Pentium) 48, 63
P6 architecture (PentiumPro, Pentium II, 

Pentium III, Pentium M) 48, 63, 67
P7 architecture (Pentium 4) 48, 63, 67
paging with MMU 66
PC104 bus 79
PCI bus 79
pciConfigLib 79
performance monitoring counters (PMCs) 73
power management 59, 79
real-time processes (RTPs) 66
reference material 84
registers 72
ring level protection 68
segmentation 66
setting the local descriptor table 59
software floating-point emulation 79
SSE and SSE2 support 63
stack management 71
supported interrupt modes 71



VxWorks 
Architecture Supplement, 6.2  

224

supported processors 47
timestamp counter (TSC) 74
vxAlib 59
vxLib 59
VxWorks boot floppies 61

Intel StrongARM 31
Intel XScale

see XScale
intEnable( ) 7, 25, 100, 178
intEnt( ) 70, 71, 164
interface variations

ARM 4
Intel Architecture 49
MIPS 88
PowerPC 117
SuperH 172
XScale 22

interrupt conditions
acknowledging on MIPS processors 102

interrupt control modules 10, 27
interrupt controller

8259A interrupt controller 76
interrupt controller drivers 6, 24, 58, 69
interrupt descriptor table 70
interrupt handling

ARM 6
Intel Architecture 69
multiple interrupts

SuperH 184
VMEbus on MIPS processors 104
XScale 24, 27

interrupt inversion
MIPS 102

interrupt lock level
Intel Architecture 58

interrupt mode
Intel Architecture 71

interrupt stack
ARM 10
Intel Architecture 68
overflow and underflow protection

Intel Architecture 70
SuperH 185
XScale 28

interrupts
ARM 10
Intel Architecture 68
machine check interrupt 162
MIPS 99
NMI interrupt 69
normal and critical 161, 162
PowerPC 161
stack

size
SuperH 185

SuperH 183
intExit( ) 70, 71
intIFLock( ) 6, 24
intIFUnLock( ) 6, 24
intLevelSet( ) 90, 100, 177
intLibInit( ) 7, 24
intLock( ) 6, 24, 58, 69, 100, 178
intLockLevelGet( ) 7, 25
intLockLevelSet( ) 7, 25
intLockMask 58
intPrioTable 101, 102, 104, 105
intrCtl

ARM 10
Intel Architecture 58
XScale 27

intStackEnable( ) 51, 69
intUninitVecSet( ) 7, 25
intUnlock( ) 6, 24, 58, 69, 100
intVecBaseGet( ) 7, 25, 185
intVecBaseSet( ) 7, 25, 90, 101
intVecGet( ) 7, 25, 58
intVecGet2( ) 58
intVecSet( ) 7, 25, 58, 100, 101, 177
intVecSet2( ) 58
intVecShow( ) 7, 25
INUM_FPU_EXCEPTION 193
INUM_ILLEGAL_INST_GENERAL 193
INUM_ILLEGAL_INST_SLOT 193
INUM_READ_ADDRESS_ERROR 193
INUM_TLB_READ_MISS 192
INUM_TLB_READ_PROTECTED 193
INUM_TLB_WRITE_INITIAL_MISS 193
INUM_TLB_WRITE_MISS 192
INUM_TLB_WRITE_PROTECTED 193



 Index

225

Index

INUM_TRAP_1 193
INUM_WRITE_ADDRESS_ERROR 193
IOAPIC_BASE 75
ioApicBase 76
ioApicData 76
ioApicEnable( ) 77
ioApicIntr.c 58
ioApicIrqSet( ) 77
ioApicRed0_15 76
ioApicRed16_23 77
ioApicRedGet( ) 77
ioApicRedSet( ) 77
ioApicShow( ) 77
IRQ 11, 28
ISA/EISA bus

Intel Architecture 79
ISR_STACK_SIZE 71, 81, 166, 185
IV_ADEL_VEC 97
IV_ADES_VEC 97
IV_BP_VEC 97
IV_CPU_VEC 97
IV_DBUS_VEC 97
IV_FPA_DIV0_VEC 97
IV_FPA_INV_VEC 97
IV_FPA_OVF_VEC 98
IV_FPA_PREC_VEC 98
IV_FPA_UFL_VEC 98
IV_FPA_UNIMP_VEC 97
IV_IBUS_VEC 97
IV_RESVDINST_VEC 97
IV_SYSCALL_VEC 97
IV_TLBL_VEC 97
IV_TLBMOD_VEC 97
IV_TLBS_VEC 97
ivMips.h 100, 101
ivSh.h 177

J
jal 208

K
kernel build

configuration
MIPS default (unmapped) 92
MIPS mapped 93

MIPS mapped kernel details 93
MIPS mapped kernel precautions 94

kernel mode
MIPS 106

kernel text segment static mapping
MIPS 91

kernelInit( ) 100, 185

L
l( ) 58
LDTR 59
libraries

cacheLib 63, 92, 153, 155
dbgArchLib 6, 23, 89, 172
dbgLib 5, 23, 173
excArchLib 176
excLib 105
intALib 6, 24
intArchLib 6, 24, 58, 90, 177
mathALib 49
mathLib 178
MIPS32sfdiable 96
MIPS32sfgnule 96
MIPS64diable 96
MIPS64gnule 96
pciConfigLib 79
pentiumALib 58
pentiumLib 58
pgMgrLib 193
taskArchLib 90
vmLib 5, 7, 23, 25, 107, 120, 156, 189
vxALib 8, 25, 59
vxLib 8, 26, 59, 129, 179

line allocation policy 32
-little 180
LOAPIC_BASE 75
loApicInit( ) 75, 76



VxWorks 
Architecture Supplement, 6.2  

226

loApicMpShow( ) 75
loApicShow( ) 75
local APIC timer

Intel Architecture 77
local APIC/xAPIC

Intel Architecture 74
LOCAL_MEM_AUTOSIZE 199
LOCAL_MEM_LOCAL_ADRS 17, 42, 66, 70, 81, 

93, 94, 110, 166, 199
LOCAL_MEM_SIZE 110, 199
long long data type 113

M
-m4 179
mach( ) 172
machine check architecture 58, 72
machine check interrupt 161, 162
macl( ) 172
macros

ARMCACHE 15, 40
ARMMMU 15, 40
HI 118
HIADJ 118
INCLUDE_440X5_DCACHE_RECOVERY

162
INCLUDE_440X5_MCH_LOGGER 162
INCLUDE_440X5_PARITY_RECOVERY 162
INCLUDE_440X5_TLB_RECOVERY 162
INCLUDE_440X5_TLB_RECOVERY_MAX

162
INCLUDE_HW_FP 63, 190
ISR_STACK_SIZE 71, 81, 166, 185

make variables
CPU and TOOL 202
support for additional compiler options 207

Makefile
MIPS 90, 93, 110
PowerPC 210

-maltivec 137, 138
mapped kernel build details for MIPS 93
mapped kernel build precautions for MIPS 94
mapped kernels

MIPS 92

mapping of MIPS exceptions onto 
software signals 97

mathALib
Intel Architecture 49

mathHardInit( ) 190
mathLib

SuperH 178
-mb 179
-mbigtable 179
MCA

see machine check architecture
-mcpu=8540 213
-mcpu=power4 -Wa 137
-mdalign 179
memory allocation

PowerPC 604 132
memory coherency page state

PowerPC 119
memory considerations for VME

Intel Architecture 78
memory layout

ARM 16
Intel Architecture 80
MIPS 110
MIPS mapped kernel 110
MIPS unmapped kernel 110
PowerPC 165
SuperH 196
XScale 41

memory management unit
see MMU

memory map
MIPS mapped kernel 109
MIPS unmapped kernel 108
MPC85XX 127
MPC8XX 128
PowerPC 405 123
PowerPC 440 124
SH-4 186

memory probe
Intel Architecture 58

memory protection attributes
PowerPC 119

memory type range register 58, 72
-mieee 179



 Index

227

Index

MIPS 85
64-bit support 113
acknowledging the interrupt condition 102
AIM model for caches 92
AIM model for MMU 107
architecture considerations 95
building kernels 92
cache locking 92
cache support 91
cacheLib 92
compiling downloadable kernel modules 208
data segment alignment 91
dbgArchLib 89
debugging MIPS targets 96
default (unmapped) build configuration 92
exceptions 97
extended interrupts on the RM9000 104
floating-point support 98
gp-rel addressing 96
hardware breakpoints and the bh( ) routine 89
intArchLib 90
interface variations 88
interrupt inversion 102
interrupt support routines (ISRs) 100
interrupts 99
ISA level 86
kernel mode 106
kernel text segment static mapping 91
mapped build configuration 93
mapped kernel build details 93
mapped kernel build precautions 94
mapped kernel memory map 109
memory layout 110

mapped kernel 110
unmapped kernel 110

memory management unit (MMU) 90
-mips2 compiler option 213
MMU support 106
reference material 113
reserved registers 97
signal support 97
small data model support 212
supervisor mode 106
supported devices and libraries 86
supported processors 85

taskArchLib 90
tt( ) 89, 96
unmapped kernel memory map 108
virtual memory mapping 107
vmLib 107

MIPS VMEbus interrupt handling 104
-mips2 213
-mips3 213
MIPS32sf 86
MIPS32sfdiable 96
MIPS32sfgnule 96
MIPS64 86
MIPS64diable 96
MIPS64gnule 96
-misize 179
-ml 179
-mlongcall 146, 209
-mlong-calls 208, 209
MMU 13

AIM model
MIPS 107
PowerPC 156
SuperH 189

ARM 13
configurations

ARM 12
XScale 29

MIPS 90, 106
paging with Intel Architecture 66
PowerPC 118
SH-4-specific attributes 188
SuperH 185

default page size 185
translation model

PowerPC 119
valid MMU attribute combinations 

for SH-4 196
XScale 30

MMU_ATTR_CACHE_COHERENCY 119, 129
MMU_ATTR_CACHE_COPYBACK 67
MMU_ATTR_CACHE_DEFAULT 119
MMU_ATTR_CACHE_GUARDED 119
MMU_ATTR_CACHE_OFF 67, 119, 129
MMU_ATTR_CACHE_WRITETHRU 119
MMU_ATTR_PROT_SUP_EXE 119



VxWorks 
Architecture Supplement, 6.2  

228

MMU_ATTR_PROT_SUP_READ 119
MMU_ATTR_SPL_0 188
MMU_ATTR_SPL_1 188
MMU_ATTR_SPL_2 188
MMU_ATTR_SPL_3 188
MMU_ATTR_SUP_RWX 119
MMU_ATTR_VALID_NOT 189
MMU_STATE_CACHEABLE_MINICACHE

31, 33
mmu440Lib.h 126
mmu603Lib.h 121
mmuArm1136jfLibInstall( ) 15
mmuArm926eLibInstall( ) 15
mmuArmXScaleLibInstall( ) 40
mmuArmXSCALEPBit 35
mmuArmXSCALEPBitGet( ) 37
mmuArmXSCALEPBitSet( ) 35
mmuE500Lib.h 128
mmuLibInit( ) 39
mmuPArmXSCALEBitClear( ) 36
mmuPBitClear( ) 37
mmuPBitSet( ) 37
mmuPhysToVirt( ) 16, 40
mmuReadId( ) 8, 25
mmutypeLibInstall( ) 15, 39
mmuVirtToPhys( ) 16, 41
MMX technology 48
-mno-branch-likely 212
-mno-ieee 179
model specific register 58, 73
MPC744X

CPU variants 206
MPC745X

CPU variants 206
MPC827X

CPU variants 206
MPC828X

CPU variants 206
MPC834X

CPU variants 206
MPC836X

CPU variants 206
MPC85XX

exceptions and interrupts 161, 162
floating-point support 158

hardware breakpoints 151
interrupt vector offset register settings 163
SPE 213

MPC85XX access types 151
MPC8XX

access types 151
floating-point support 157
hardware breakpoints 151

-mppc64bridge 137
-mrelax 179
-msdata 117
-mspace

GNU compiler
-mspace 179

MSR
see model specific register 73

MTRR
see memory type range register 58

N
network byte order 61
NMI interrupt 69
non-preemptive mode

ARM 7
XScale 24

null dereference pointer detection
SuperH 189

NUM_L1_DESCS 34

O
-O 212, 214
-O0 212, 214
objcopypentium 60
operating mode

Intel Architecture 61
SuperH 181

OSM stack 70



 Index

229

Index

P
P bit 31

setting in virtual memory regions 37
setting in VxWorks 34

P5 architecture 48, 63
model-specific registers (MSRs) 73
performance monitoring counters (PMCs) 73
timestamp counter (TSC) 74

P6 architecture 48, 63
I/O APIC/xAPIC module 76
local APIC/xAPIC module 74
memory type range registers (MTRRs) 72
MMU 67
model-specific registers (MSRs) 73
performance monitoring counters (PMCs) 73
timestamp counter (TSC) 74

P7 architecture 48, 63
I/O APIC/xAPIC module 76
local APIC/xAPIC module 74
memory type range registers (MTRRs) 72
MMU 67
model-specific registers (MSRs) 73
timestamp counter (TSC) 74

pBRCR 175
PC104 bus

Intel Architecture 79
PCI bus

Intel Architecture 79
pciConfigLib

Intel Architecture 79
pciIntConnect( ) 100
Pentium

see Intel Architecture
Pentium II 63
Pentium III 63
Pentium M 62

model-specific registers (MSRs) 73
supported chipset 62

pentiumALib 58
pentiumBtc( ) 51
pentiumBts( ) 51
pentiumLib 58
pentiumMcaEnable( ) 51, 72
pentiumMcaShow( ) 51

pentiumMsrGet( ) 52, 72
pentiumMsrInit( ) 52
pentiumMsrSet( ) 52, 72
pentiumMsrShow( ) 52
pentiumMtrrDisable( ) 52
pentiumMtrrEnable( ) 52
pentiumMtrrGet( ) 52
pentiumMtrrSet( ) 52
pentiumPmcGet( ) 53
pentiumPmcGet0( ) 53
pentiumPmcGet1( ) 53
pentiumPmcReset( ) 53
pentiumPmcReset0( ) 53
pentiumPmcReset1( ) 53
pentiumPmcShow( ) 53
pentiumPmcStart( ) 52
pentiumPmcStart0( ) 52
pentiumPmcStart1( ) 52
pentiumPmcStop( ) 52
pentiumPmcStop0( ) 53
pentiumPmcStop1( ) 53
PentiumPro 63
pentiumSerialize( ) 53
pentiumTlbFlush( ) 53
pentiumTscGet32( ) 53
pentiumTscGet64( ) 53
pentiumTscReset( ) 53
PERF_MON

see performance monitor
performance

PowerPC 405 124
PowerPC 440 126

performance monitor (PERF_MON) 165
performance monitoring counter 58, 73
periodic interval timer 164
pgMgrLib

SuperH 193
PIT

see periodic interval timer
PIT0_FOR_AUX 77
PM_RESERVED_MEM 166
PMC 58

see performance monitoring counter 58
power management

Intel Architecture 59, 79



VxWorks 
Architecture Supplement, 6.2  

230

PowerPC 166
SuperH 191
support for SH-4A processors 192

PowerPC 115
26-bit address offset branching 146
AIM Model for caches 155
AIM model for MMU 156
alignment constraints for SPE stack frames

142
AltiVec support 130
architecture considerations 144
branching across large address ranges 146
build mechanism 168
building applications

backward compatibility 207
byte order 149
C language extensions for vector types 

(AltiVec) 134
C language extensions for vector types 

(SPE) 142
C++ exception handling and AltiVec support

138
cache coherency 119
cache information 153
cacheLib 153, 155
compiling downloadable kernel modules 209
compiling modules for debugging 214
compiling modules for RTP applications 210
compiling modules to use the AltiVec unit 

(GNU compiler) 137
compiling modules to use the AltiVec unit 

(Wind River Compiler) 136
compiling modules to use the SPE unit 

(GNU compiler) 143
compiling modules to use the SPE unit 

(Wind River Compiler) 143
configuring VMEbus TAS 160
coprocessor abstraction 129
CPU_VARIANT 206
divide-by-zero handling 145
enabling additional BATs 121
error detection and reporting 166
exception vector table (EVT) 166
exceptions and interrupts 161
excVecGet( ) and excVecSet( ) 164

extended-call exception vector support 147
extensions to the WTX protocol for 

AltiVec support 137
extensions to the WTX protocol for 

SPE support 144
floating-point exceptions 145
floating-point support 157
formatted input and output of vector types 

(AltiVec) 134
formatted input and output of vector types 

(SPE) 143
hardware breakpoints 149
HI and HIADJ macros 118
instruction and data MMU 118
interface variations 117
layout of the AltiVec EABI stack frame 132
layout of the SPE EABI stack frame 141
memory coherency page state 119
memory layout 165
memory management unit (MMU) 118
MMU translation model 119
MPC85XX boot sequencing 127
MPC85XX dynamic model 128
MPC85XX memory mapping 127
MPC85XX run-time support 127
MPC85XX static model 127
MPC8XX memory mapping 128
MPC8XX RTP limitation 129
page table size for PowerPC 604 123
power management 166
PowerPC 405 memory mapping 123
PowerPC 405 performance 124
PowerPC 440 boot sequencing 125
PowerPC 440 dynamic model 126
PowerPC 440 memory mapping 124
PowerPC 440 performance 126
PowerPC 440 run-time support 125
PowerPC 440 static model 125
PowerPC 603/604 block address 

translation model 120
PowerPC 603/604 Segment Model 122
PowerPC 604 memory allocation 132
PowerPC 60x memory mapping 120
PowerPC 970 130
reference material 169



 Index

231

Index

register usage 151
relocated exception vectors 164
restrictions on multi-board configurations 161
signal processing engine (SPE) support 140
small data area (SDA) 117
SPE exceptions under likely 

overflow/underflow conditions 145
SPE for MPC85XX 213
SPE unavailable exception 145
stack frame alignment 117
supported processors 116
vmLib 120, 156
vxLib 129
VxMP support for Motorola PowerPC boards

160
VxWorks run-time support for AltiVec 130
VxWorks run-time support for the SPE 140

PowerPC 405
access types 150
cache 154
exceptions and interrupts 161
floating-point support 157
hardware breakpoints 149

PowerPC 440
access types 151
cache 154
CPU variants 206
exceptions and interrupts 161
floating-point support 157, 159
hardware breakpoints 151
performance 126

PowerPC 603
access types 151
cache 155
hardware breakpoints 150

PowerPC 604
access types 151
cache 155
hardware breakpoints 151
page table size 123

PowerPC 60x
floating-point support 159
memory mapping 120
segment model 122

PowerPC 60x memory mapping 120

PowerPC 970
see also AltiVec
architecture-specific routines 131
cache 155
floating-point support 159
hardware breakpoints 151
VxWorks run-time support for 130

PowerQUICC Pro 206
PPC_FPSCR_VE 159
PPC32 168, 210
pr( ) 172
preemptive mode

ARM 7
XScale 24

printf( ) 134, 137, 143
processor mode

ARM 9
XScale 26

project builds
enabling extended-call exception vectors 149

psrShow( ) 6, 23

R
r0( ) 172
RAM_HI_ADRS 110
RAM_HIGH_ADRS 93, 94, 111
RAM_LOW_ADRS 93, 94, 110, 111
real-time processes

see RTPs
reference material

ARM 20
Intel Architecture 84
MIPS 113
PowerPC 169
SuperH 200
XScale 44

register routines
Intel Architecture 56
SuperH 172

register usage
PowerPC 151
SuperH 182



VxWorks 
Architecture Supplement, 6.2  

232

registers
Intel Architecture 72
PowerPC 152

-relax 180
Renesas SuperH

see SuperH
reserved registers

MIPS 97
resetEntry( ) 125, 127
ring level protection

Intel Architecture 68
RM9000

extended interrupts 104
ROM_TEXT_ADRS 110
romInit( ) 120, 125

SuperH 185
romInit.s

ARM 14
PowerPC 125, 127
XScale 39

routines
altivecInit( ) 131
altivecProbe( ) 130, 131
altivecRestore( ) 131
altivecSave( ) 131
altivecTaskRegsGet( ) 131
altivecTaskRegsSet( ) 131
altivecTaskRegsShow( ) 131
b( ) 173
bh( ) 57, 89, 149, 173
cacheArm1136jfLibInstall( ) 15
cacheArm926eLibInstall( ) 15
cacheArmXScaleLibInstall( ) 40
cacheClear( ) 13, 30, 155
cacheDisable( ) 91
cacheEnable( ) 14, 38, 91, 155
cacheInvalidate( ) 13, 30
cacheLibInit( ) 16, 41
cacheLock( ) 5, 13, 30
cacheUnlock( ) 5, 13, 30
coprocTaskRegsGet( ) 63
coprocTaskRegsSet( ) 63
cpsr( ) 6, 24
cpuPwrMgrEnable( ) 80
cpuPwrMgrIsEnabled( ) 80

cret( ) 4, 22
eax( ) 56
ebp( ) 56
ebx( ) 56
ecx( ) 56
edi( ) 56
edx( ) 56
eflags( ) 56
esi( ) 56
esp( ) 56
excBErrVecInit( ) 176
excConnect( ) 161, 162
excCrtConnect( ) 161, 162
excEnt( ) 164
excInit( ) 164
excIntConnect( ) 161, 162
excIntConnectTimer( ) 161, 164
excIntCrtConnect( ) 161, 162
excMchkConnect( ) 162
excVecGet( ) 10, 28, 164
excVecInit( ) 148, 149, 164
excVecSet( ) 10, 28, 161, 164
fppArchInit( ) 63
fppArchSwitchHook( ) 64
fppArchSwitchHookEnable( ) 51, 64
fppCtxShow( ) 51
fppCtxToRegs( ) 63
fppProbe( ) 50
fppRegListShow( ) 51
fppRegsToCtx( ) 63
fppRestore( ) 63, 191
fppSave( ) 63, 191
fppTaskRegsGet( ) 64
fppTaskRegsSet( ) 64
fppXctxToRegs( ) 63
fppXregsToCtx( ) 63
fppXrestore( ) 63
fppXsave( ) 63
fpscrSet( ) 190
gbr( ) 172
htons( ) 61
intConnect( ) 10, 27, 100, 101, 177, 184
intDisable( ) 7, 25, 100, 178
Intel Architecture 51

register routines 56



 Index

233

Index

intEnable( ) 7, 25, 100, 178
intEnt( ) 70, 71, 164
intExit( ) 70, 71
intFLock( ) 6, 24
intIFUnLock( ) 6, 24
intLevelSet( ) 90, 100, 177
intLibInit( ) 7, 24
intLock( ) 6, 24, 58, 69, 100, 178
intLockLevelGet( ) 7, 25
intLockLevelSet( ) 7, 25
intStackEnable( ) 51, 69
intUninitVecSet( ) 7, 25
intUnlock( ) 6, 24, 58, 69, 100
intVecBaseGet( ) 7, 25, 185
intVecBaseSet( ) 7, 25, 90, 101
intVecGet( ) 7, 25, 58
intVecGet2( ) 58
intVecSet( ) 7, 25, 58, 100, 101, 177
intVecSet2( ) 58
intVecShow( ) 7, 25
ioApicEnable( ) 77
ioApicIrqSet( ) 77
ioApicRedGet( ) 77
ioApicRedSet( ) 77
ioApicShow( ) 77
kernelInit( ) 100, 185
l( ) 58
loApicInit( ) 75, 76
loApicMpShow( ) 75
loApicShow( ) 75
mach( ) 172
macl( ) 172
mathHardInit( ) 190
mmuArm1136jfLibInstall( ) 15
mmuArm926eLibInstall( ) 15
mmuArmXScaleLibInstall( ) 40
mmuLibInit( ) 39
mmuPBitClear( ) 37
mmuPBitSet( ) 37
mmuPhysToVirt( ) 16, 40
mmuReadId( ) 8, 25
mmuVirtToPhys( ) 16, 41
pciIntConnect( ) 100
pentiumBtc( ) 51
pentiumBts( ) 51

pentiumMcaEnable( ) 51, 72
pentiumMcaShow( ) 51
pentiumMsrGet( ) 52, 72
pentiumMsrInit( ) 52
pentiumMsrSet( ) 52, 72
pentiumMsrShow( ) 52
pentiumMtrrDisable( ) 52
pentiumMtrrEnable( ) 52
pentiumMtrrGet( ) 52
pentiumMtrrSet( ) 52
pentiumPmcGet( ) 53
pentiumPmcGet0( ) 53
pentiumPmcGet1( ) 53
pentiumPmcReset( ) 53
pentiumPmcReset0( ) 53
pentiumPmcReset1( ) 53
pentiumPmcShow( ) 53
pentiumPmcStart( ) 52
pentiumPmcStart0( ) 52
pentiumPmcStart1( ) 52
pentiumPmcStop( ) 52
pentiumPmcStop0( ) 53
pentiumPmcStop1( ) 53
pentiumSerialize( ) 53
pentiumTlbFlush( ) 53
pentiumTscGet32( ) 53
pentiumTscGet64( ) 53
pentiumTscReset( ) 53
pr( ) 172
printf( ) 134, 137, 143
processor-specific ARM cache and MMU 

routines 15
processor-specific XScale cache and MMU 

routines 40
psrShow( ) 6, 23
r0( ) 172
resetEntry( ) 125, 127
romInit( ) 120, 125
scanf( ) 134, 137, 143
semTake( ) 100
speInit( ) 140
speProbe( ) 140
speRestore( ) 141
speSave( ) 141
speTaskRegsShow( ) 141



VxWorks 
Architecture Supplement, 6.2  

234

sr( ) 172
sysAutoAck( ) 102
sysAuxClkRateSet( ) 77
sysBusIntAck( ) 104
sysBusTas( ) 129, 160, 179
sysBusTasClear( ) 160
sysClkRateSet( ) 77
sysCpuProbe( ) 50, 54
sysDelay( ) 55
sysInByte( ) 54, 78
sysInLong( ) 54, 78
sysInLongString( ) 54, 78
sysIntConnect( ) 177
sysIntDisablePIC( ) 55, 69
sysIntEnablePIC( ) 55, 69
sysInWord( ) 54, 78
sysInWordString( ) 54, 78
sysMemTop( ) 17, 42, 68, 81, 166
sysOSMTaskGateInit( ) 55
sysOutByte( ) 54, 78
sysOutLong( ) 54, 78
sysOutLongString( ) 54, 78
sysOutWord( ) 54, 78
sysOutWordString( ) 54, 78
sysUbcInit( ) 175
taskDelay( ) 100
taskSpawn( ) 131, 141
taskSRInit( ) 90, 100
taskSRSet( ) 59
tt( ) 4, 22, 89
usrInit( ) 17, 42, 81, 165, 185, 197
usrRoot( ) 17, 42, 81, 165, 190, 197
usrSpeInit( ) 140
vbr( ) 172
vec_calloc( ) 132
vec_free( ) 132
vec_malloc( ) 132
vec_realloc( ) 132
vmContextShow( ) 34
vmLibInit( ) 16, 41
vmPageLock( ) 107, 156, 185, 189
vmPageOptimize( ) 156
vmStateSet( ) 33
vxCpuShow( ) 55, 59, 61, 62
vxCr0Get( ) 59

vxCr2Get( ) 59
vxCr3Get( ) 59
vxCr4Get( ) 59
vxCsGet( ) 59
vxDrGet( ) 55, 59
vxDrSet( ) 55, 59
vxDrShow( ) 55, 59
vxDsGet( ) 59
vxEflagsGet( ) 56, 59
vxEflagsSet( ) 56, 59
vxFpscrGet( ) 159
vxFpscrSet( ) 159
vxGdtrGet( ) 59
vxIdtrGet( ) 59
vxLdtrGet( ) 59
vxLdtrSet( ) 59
vxMemProbe( ) 8, 26, 58, 179
vxMsrGet( ) 159
vxMsrSet( ) 159
vxPowerModeGet( ) 56, 59, 80
vxPowerModeSet( ) 56, 59, 80, 192
vxSseShow( ) 56
vxSsGet( ) 59
vxTas( ) 8, 25, 129, 179
vxTssGet( ) 56, 59
vxTssSet( ) 56, 59
workQPanic( ) 100, 102
WTX API routines for AltiVec support 138
WTX API routines for SPE support 144
wtxTargetHasAltivecGet( ) 138
wtxTargetHasSpeGet( ) 144

RTPs
CPU and TOOL definitions for PowerPC 169
Intel Architecture 66
limitation on MPC8XX 129
maximum number for SuperH targets 189
PowerPC 119

rules.rtp 211
run-time support

AltiVec 130
MPC85XX 127
PowerPC 440 125
PowerPC 970 130
VxWorks run-time support for the SPE 140



 Index

235

Index

S
scanf( ) 134, 137, 143
SDA

see small data area
segment model

PowerPC 603/604 122
segmentation

Intel Architecture 66
SELECT_MMU 118
semTake( ) 100
Set( ) 55
setting the P bit

in virtual memory regions 37
in VxWorks (XScale) 34

SH7751
on-chip PCI window mapping 193

SIGBUS 97
SIGFPE 97, 193
SIGILL 97, 193
signal processing engine

see SPE 140
signal support

MIPS 97
SuperH 192

SIGSEGV 97, 192
SIGTRAP 97
SIMD processing unit 140
SM_ANCHOR_OFFSET 19, 44
SM_OFF_BOARD 161
SM_TAS_HARD 160
SM_TAS_TYPE 160
-small 180
small data area

PowerPC 117
software breakpoints

ARM 5
Intel Architecture 57
SuperH 173
XScale 23

SPE
alignment constraints for stack frames 142
compiling modules with the GNU compiler

143

compiling modules with the Wind River 
Compiler 143

exceptions under likely overflow/underflow 
conditions 145

extensions to the WTX protocol 144
layout of the EABI stack frame 141
MPC85XX 213
run-time detection of 140
saving and restoring the general purpose 

register contents 141
SPE unavailable exception 140, 145
support 140
unit initialization 140
VxWorks run-time support for 140
WTX API routines 144

Special Fully Nested Mode 69
Special Mask Mode 69
speInit( ) 140
speProbe( ) 140
speRestore( ) 141
speSave( ) 141
speTaskRegsShow( ) 141
sr( ) 172
SSE 48

see also streaming SIMD extensions (SSE)
SSE2 48

see also streaming SIMD extensions 2 (SSE2)
stack frame

alignment
PowerPC 117
SPE constraints 142

layout for routines that use the AltiVec 
registers 133

layout for routines that use the SPE 
registers 142

stack trace
SuperH 173

static model
MPC85XX 127
PowerPC 440 125

streaming SIMD extensions (SSE) 48
streaming SIMD extensions 2 (SSE2) 48
SuperH 171

AIM model for MMU 189
architecture considerations 181
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banked registers 182
bitmap combinations 174
branch addresses 183
BSP migration 199
byte order 182
cache 190
dbgArchLib 172
dbgLib 173
divide-by-zero handling 177
excArchLib 176
exception to software signal mapping 192
exceptions and interrupts 183
floating-point support 190
getting register values 172
handling multiple interrupts 184
hardware breakpoints 173
intArchLib 177
intConnect( ) parameters 177
intEnable( ) and intDisable( ) parameters 178
interface variations 172
interrupt stack 185
intLevelSet( ) parameters 177
intLock( ) return values 178
mathLib 178
maximum number of RTPs 189
memory layout 196
memory protection 199
MMU 185
null dereference pointer detection 189
operating mode 181
pgMgrLib 193
power management 191
reference material 200
register routines 172
register usage 182
saving and restoring extended floating-point 

registers 191
setting the power mode 192
SH7751 on-chip PCI window mapping 193
signal support 192
software breakpoints 173
SuperH-specific tool options 179
support for bus errors 176
supported processors 171

valid MMU attribute combinations 
for SH-4 196

vmLib 189
vxLib 179
VxWorks virtual memory mapping 194

supervisor mode
MIPS 106

supported processors
ARM 4
Intel Architecture 47
MIPS 85
PowerPC 116
SuperH 171
XScale 22

SW_MMU_ENABLE 94, 95
SYMMETRIC_IO_MODE 75, 76
SYS_CLK_RATE_MAX 77
SYS_CLK_RATE_MIN 77
sysALib.s

ARM 14
Intel Architecture 49, 66, 68, 78
MIPS 94, 104
XScale 39

sysAutoAck( ) 102
sysAuxClkRateSet( ) 77
sysBusIntAck( ) 104
sysBusTas( ) 129, 160, 179
sysBusTasClear( ) 160
sysCacheFlushReadArea 14, 39
sysCacheLibInit 190
sysClkRateSet( ) 77
sysCoprocessor 50
sysCpuId 50
sysCpuProbe( ) 50, 54
sysCsExc 50, 58, 71
sysCsInt 50, 58
sysCsSuper 50
sysDelay( ) 55
sysHashOrder 101, 106
sysHwInit( )

Intel Architecture 72, 73
MIPS 100
PowerPC 154
SuperH 175, 191
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sysHwInit0( )
ARM 16
PowerPC 148
XScale 37, 41

sysHwInit2( )
ARM 7
XScale 24

sysInByte( ) 54, 78
sysInLong( ) 54, 78
sysInLongString( ) 54, 78
sysIntConnect( ) 177
sysIntDisablePIC( ) 55, 69
sysIntEnablePIC( ) 55, 69
sysIntIdtType 50, 70
sysInWord( ) 54, 78
sysInWordString( ) 54, 78
sysLib.c

ARM 12, 13, 14
Intel Architecture 49, 67
MIPS 94, 101, 104
PowerPC 119, 121, 125, 127, 153
SuperH 189
XScale 30, 31, 37, 39, 41

sysMemTop( ) 17, 42, 68, 81, 166
sysMinicacheFlushReadArea 39
sysOSMTaskGateInit( ) 55
sysOutByte( ) 54, 78
sysOutLong( ) 54, 78
sysOutLongString( ) 54, 78
sysOutWord( ) 54, 78
sysOutWordString( ) 54, 78
sysPhysMemDescNumEnt 94, 95
sysProcessor 50
sysStrayIntCount 71
sysUbcInit( ) 175
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-t 96
T2_BOOTROM_COMPATIBILITY 19, 44
target.ref

Intel Architecture 61
SuperH 199

TAS 160

tas.b 179
taskArchLib

MIPS 90
taskDelay( ) 100
taskSpawn( ) 131, 141
taskSRInit( ) 90, 100
taskSRSet( ) 59
Thumb instruction set 3, 9, 27
timestamp counter 58, 74
TLB 91, 106

see also translation lookaside buffer (TLB)
TOOL 202
-tPPC7400FV 136
-tPPC970FV 136
-tPPCE500FF 213
-tPPCE500FG 213
-tPPCE500FS 158
translation lookaside buffer (TLB) 91, 106, 185
TSC

see timestamp counter
-tSH4EH 180
-tSH4LH 180
tt( ) 4, 22, 89, 96, 173
type extension (TEX) field 32

U
unaligned accesses

ARM 9
XScale 27

unmapped kernels
MIPS 92

USER_D_CACHE_ENABLE 30, 153, 154
USER_D_CACHE_MODE 13, 162, 187
USER_D_MMU_ENABLE 118, 154
USER_I_CACHE_ENABLE 30, 153, 154
USER_I_CACHE_MODE 13, 30
USER_I_MMU_ENABLE 118, 124, 126, 154
usrConfig.c

SuperH 190
usrInit( ) 17, 42, 81, 165, 185, 197
usrRoot( ) 17, 42, 81, 140, 165, 190, 197
usrSpe.c 140
usrSpeInit( ) 140
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vbr( ) 172
VEC_BASE_ADRS 185
vec_calloc( ) 132
vec_free( ) 132
vec_malloc( ) 132
vec_realloc( ) 132
vector data types

AltiVec 134
SPE 142

vector format conversion specifications
AltiVec 134
SPE 143

vector types
C language extensions

AltiVec 134
SPE 142

formatted input and output
AltiVec 134
SPE 143

virtual memory mapping
MIPS 107
SuperH 194

VIRTUAL_WIRE_MODE 75
VM_PAGE_SIZE 68, 185
VM_STATE_CACHEABLE 119
VM_STATE_CACHEABLE_MINICACHE 31, 33
VM_STATE_CACHEABLE_NOT 67, 119, 129
VM_STATE_CACHEABLE_WRITETHROUGH

119
VM_STATE_EX_BUFFERABLE 33, 34
VM_STATE_EX_BUFFERABLE_NOT 33, 34
VM_STATE_EX_CACHEABLE 33, 34
VM_STATE_EX_CACHEABLE_NOT 33, 34
VM_STATE_GLOBAL 67
VM_STATE_GLOBAL_NOT 67
VM_STATE_GUARDED 119
VM_STATE_MASK_EX_BUFFERABLE 33
VM_STATE_MASK_EX_CACHEABLE 33
VM_STATE_MEM_COHERENCY 119, 129
VM_STATE_VALID_NOT 189
VM_STATE_WBACK 67
VM_STATE_WRITEABLE 119
VM_STATE_WRITEABLE_NOT 119

vmContextShow( ) 34
VME

Intel Architecture 78
VMEbus

configuring TAS 160
interrupt handling on MIPS 104

vmLib
ARM 5, 7
MIPS 107
PowerPC 120, 156
SuperH 189
XScale 23, 25

vmLib.h
XScale 33

vmLibInit( ) 16, 41
vmPageLock( ) 107, 156, 185, 189
vmPageOptimize( ) 156
vmStateSet( ) 33
VX_ALTIVEC_TASK 129, 130
VX_FP_TASK 64, 65, 99, 129, 145, 159, 190, 191
VX_POWER_MODE_DEEP_SLEEP 192
VX_POWER_MODE_DISABLE 192
VX_POWER_MODE_SLEEP 192
VX_POWER_MODE_USER 192
VX_SPE_TASK 129, 140, 145
vxALib

ARM 8
Intel Architecture 59
XScale 25

vxCpuShow( ) 55, 59, 61, 62
vxCr0Get( ) 59
vxCr2Get( ) 59
vxCr3Get( ) 59
vxCr4Get( ) 59
vxCsGet( ) 59
vxDrGet( ) 55, 59
vxDrSet( ) 55, 59
vxDrShow( ) 55, 59
vxDsGet( ) 59
vxEflagsGet( ) 56, 59
vxEflagsSet( ) 56, 59
vxFpscrGet( ) 159
vxFpscrSet( ) 159
vxGdtrGet( ) 59
vxIdtrGet( ) 59



 Index

239

Index

vxLdtrGet( ) 59
vxLdtrSet( ) 59
vxLib

ARM 8
Intel Architecture 59
PowerPC 129
SuperH 179
XScale 26

vxMemProbe( ) 8, 26, 58, 179
VxMP 160

support for Motorola PowerPC boards 160
vxMsrGet( ) 159
vxMsrSet( ) 159
vxPowerModeGet( ) 56, 59, 80
vxPowerModeSet( ) 56, 59, 80, 192
vxprj 201
vxSseShow( ) 56
vxSsGet( ) 59
vxTas( ) 8, 25, 129, 179
vxTssGet( ) 56, 59
vxTssSet( ) 56, 59
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-Wa 137
watchpoints 89
WDB memory pool

increasing the size on PowerPC 147
WDB_POOL_SIZE 17, 42, 81, 147, 165
Wind River assembler

SuperH-specific options 180
-Xalign-power2 180

Wind River Compiler
branching across large address ranges 147
compiling modules to use the AltiVec unit 136
compiling modules to use the SPE unit 143
enabling backtracing for ARM targets 5
enabling backtracing for XScale targets 22
small data area, PowerPC 117
SuperH-specific options 180
-t 96
-tPPC7400FV 136
-tPPC970FV 136
-tPPCE500FF 213

-tPPCE500FG 213
-tPPCE500FS 158
-tSH4EH 180
-tSH4LH 180
-Xcode-absolute-far 208, 209
-Xemul-gnu-bug 211
-Xkeywords 136
-Xno-optimized-debug 212, 214
-XO 212, 214
-Xsmall-const 117
-Xsmall-data 117

Wind River linker
SuperH-specific options 181

workQPanic( ) 100, 102
write policy 32
wtxTargetHasAltivecGet( ) 138
wtxTargetHasSpeGet( ) 144

X
X bit 31
-Xalign-power2 180
XB- 34
XB+ 34
XC- 34
XC+ 34
-Xcode-absolute-far 208, 209
-Xemul-gnu-bug 211
-Xkeywords 136
XMM registers 65
-Xno-optimized-debug 212, 214
-XO 212, 214
XScale 21

see also ARM
architecture considerations 26
BSP considerations for cache and MMU 40
BSP migration 42

VxWorks 5.5 compatibility 42
byte order 27
cache and memory management interaction

38
cache and MMU routines for individual 

processor types 40
cache coherency 30
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cacheLib 23, 25
caches 29
compiling downloadable kernel modules 208
controlling the CPU interrupt mask 24
cret( ) 22
data cache 30
dbgArchLib 23
dbgLib 23
defining cache and MMU types in the BSP 40
divide-by-zero handling 28
enabling backtracing 22
FIQ 28
floating-point library 29
floating-point support 28
hardware-assisted debugger compatibility 23
initializing the interrupt architecture library

24
instruction cache 30
intALib 24
intArchLib 24
interface variations 22
interrupt handling 24, 27

non-preemptive mode 24
preemptive mode 24

interrupt stack 28
interrupts and exceptions 27
IRQ 28
memory layout 41
memory management extensions and 

VxWorks 31
MMU 30
P bit 31
processor mode 26
providing an alternate routine for 

vxMemProbe( ) 26
reference material 44
supported cache and MMU configurations 29
supported instruction sets 27
supported processors 22
tt( ) 22
type extension (TEX) field 32
unaligned accesses 27
vmLib 23, 25
vxALib 25
vxLib 26

X bit 31
-Xsmall-const 117
-Xsmall-data 117
xsymDec 60


