Exercise: Aluminum Beam Accelerometer

For a clamped cantilever aluminum beam the deflection function can be calculated by integrating the general differential equation for a beam and applying appropriate boundary conditions:

$$w(x) = \frac{q_0 x^2}{24EI}(x^2 + 6L^2 - 4Lx)$$

Here, q_0 is a uniformly distributed load (per unit length along the beam), E is Young's modulus, I is the moment of inertia, and L is the length of the beam. Note that the beam is clamped at x = 0, with a free end at x = L. The cross section of the beam has rectangular shape,

$$-b/2 \le y \le b/2$$
, $-h/2 \le z \le h/2$

where the z axis points in the opposite direction of the force q_0 . I is then $bh^3/12$. An important stress measure is the normal stress on a surface perpendicular to the axis of the beam:

$$\sigma_{xx} = zEw''(x)$$

The beam is a part of a system that is subjected to an acceleration a.

Suitable data for the problem are a = 50g, g = 9.81 m/s², L = 80 μ m, b = 10 μ m, $h = 0.5\mu$ m, E = 77 GPa. The density in the beam is taken as $\varrho = 2300$ kg/m³.

- (a) Draw the cross section in the y, z plane.
- (b) What is the force q_0 acting on the beam per unit length when the external acceleration is a? (Hint: The acceleration can be treated as a fictitious force in an accelerated coordinate system in which the deflected beam is at rest.)
- (c) Plot the deflection w(x) along the beam $(0 \le x \le L)$.
- (d) Where is the maximum deflection, and how large is this deflection?
- (e) Draw σ_{xx} as function of z for a = 50g and x = 0.
- (f) What is the physical interpretation of the quantity σ_{xx} ? Plot σ_{xx} as a function of x for the z value which gives the largest stress in an arbitrary cross section. Find where σ_{xx} reaches its maximum value.
- (g) Plot the maximum deflection as a function of a when $0 \le a \le 50$ and x = L.