Exercise: Aluminum Beam Accelerometer

For a clamped cantilever aluminum beam the deflection function can be calculated by integrating the general differential equation for a beam and applying appropriate boundary conditions:

$$
w(x)=\frac{q_{0} x^{2}}{24 E I}\left(x^{2}+6 L^{2}-4 L x\right)
$$

Here, q_{0} is a uniformly distributed load (per unit length along the beam), E is Young's modulus, I is the moment of inertia, and L is the length of the beam. Note that the beam is clamped at $x=0$, with a free end at $x=L$. The cross section of the beam has rectangular shape,

$$
-b / 2 \leq y \leq b / 2, \quad-h / 2 \leq z \leq h / 2
$$

where the z axis points in the opposite direction of the force $q_{0} . I$ is then $b h^{3} / 12$. An important stress measure is the normal stress on a surface perpendicular to the axis of the beam:

$$
\sigma_{x x}=z E w^{\prime \prime}(x)
$$

The beam is a part of a system that is subjected to an acceleration a.
Suitable data for the problem are $a=50 g, g=9.81 \mathrm{~m} / \mathrm{s}^{2}, L=80 \mu \mathrm{~m}, b=10 \mu \mathrm{~m}, h=0.5 \mu \mathrm{~m}$, $E=77 \mathrm{GPa}$. The density in the beam is taken as $\varrho=2300 \mathrm{~kg} / \mathrm{m}^{3}$.
(a) Draw the cross section in the y, z plane.
(b) What is the force q_{0} acting on the beam per unit length when the external acceleration is a ? (Hint: The acceleration can be treated as a fictitious force in an accelerated coordinate system in which the deflected beam is at rest.)
(c) Plot the deflection $w(x)$ along the beam $(0 \leq x \leq L)$.
(d) Where is the maximum deflection, and how large is this deflection?
(e) Draw $\sigma_{x x}$ as function of z for $a=50 g$ and $x=0$.
(f) What is the physical interpretation of the quantity $\sigma_{x x}$? Plot $\sigma_{x x}$ as a function of x for the z value which gives the largest stress in an arbitrary cross section. Find where $\sigma_{x x}$ reaches its maximum value.
(g) Plot the maximum deflection as a function of a when $0 \leq a \leq 50$ and $x=L$.

