Microfabrication

Example: Manufacturing of flow sensor

Electronics and Cybernetics

.

Design and manufacturing of a flow rate sensor step-by-step SensoNor Multi-Project-Wafer MPW process

- Principle of flow sensor
- Step-by-step:
- Lithographic mask layout
- Manufacturing processes
 associated with mask layers

Flow sensor is made from silicon and pyrex glass

Electronics and Cybernetics

The world's leading manufacturing line for tire sensors is used for production of the flow sensor

foundry produces a micro-fluidic element for the first time

Overview of SensoNor MPW process

From idea to chip

- Design the concept
- Design of lithographic masks
- Manufacture quartz / chromium lithographic masks
- Perform all manufacturing steps in clean room
- Saw into dices
- Package

Bulk Silicon Micro machining

TRONIC'S

SensoNor

New Micro Flow Rate Sensor for Standardized Industrial Production

Microsystems and Nanotechnology SINTEF Information and Communication Technology

Electronics and Cybernetics

The miniature flow rate sensor can be used in diverse applications

Safety check of implanted medicine pumps

Reagent flow rates in micro reactor for PET radioactive isotopes

Measuring flow rates of enzymes into bacteria analysis chip

Monitoring the dosing of medicine

SINTEF

Electronics and Cybernetics

Design of sensor

- Inlet/Outlet: through etch top/bottom glass
- Flow channels: etch in glass, RIE-etch in silicon
- Pressure sensor: anisotropic etched membrane with piezoresistive Wheatstone bridge

Volum-strømningsmåler

- Applikasjoner: Dosering, tilføring av reagenter, måle flow gjennom analysesystem
- Væskestrøm gjennom brikken
- Glass-silisium-glass brikke
- Laminær strøm, lave Re tall
- Differensiell trykksensor (membran + piezomotstander)
- Trang kanal med trykkfall, Pouseille strøm
- Trykkfall ~ 100 -200 Pa
- Integrert temperaturmåler

Kanal: 800x1500x10 μm
 Flow rate 2 μl/min

$$\Delta p = \frac{12 \cdot \eta \cdot l \cdot Q}{w \cdot h^3}$$

The new design suggests a low-noise, mechanically robust flow sensor

Determine dimensions: Flow simulations

Finite volume simulations of flow field (CFDRC)

Pressure sensor: Thin circular membrane embedded in a thicker square membrane

SINTEF

Determine dimensions: elastic/mechanical simulations using CoventorWare

Stress distribution caused by: Left 1 bar pressure from the top, top view. Right 1 bar pressure from the bottom, bottom view. Only $\frac{1}{4}$ of the membrane is simulated. The stress shown is the

von Mises stress in MPa.

Production processes for bulk micromechanical devices

- Semiconductor integrated circuits processes oxidation implantation metal deposition
- <u>Silicon 3D etching:</u> Anisotropic wet Dry RIE
- <u>Glass etch:</u>
 Isotropic wet etch
- <u>Wafer bonding</u>
 Glass wafer + silicon wafer
 (anodic bonding)

Mask drawing and production

Draw mask layers

- Some process steps need masks, some do not
- Send design to mask manufacturer
- Get back fused silica (amorphous quartz) plates
- Pattern is in chromium layer

Design of mask layers

(here are all mask layers on top of each other)

Start with silicon wafer: made of single crystal (cubic crystal)

Flats define crystal orientation and doping

Primary and secondary wafer flats are used to identify orientation and type.

- Crystal orientation is important in micromachining because of :
- Wet silicon etch
- Piezoresistors

Start with silicon wafer: made of single crystal cubic crystal

Definition of directions and planes in crystals

Miller indices

- Direction [100]
- Plane perpendicular to this direction (100)
- Equivalent directions <100>
- Equivalent planes {100}

re 3.1. Illustrating the different major crystal planes for a simple cubic lattice of atoms.

Cubic Lattices

Face centred cubic lattice

Silicon: Two face centred cubic lattices. Two atoms per basis

Colorado University

(c)

Silicon crystal structure

- Silicon: Face centred cubic
- + second shifted lattice The second lattice is displaced one quarter along the body diagonal

(silicon has diamond structure)

- Covalent bonds
- (111) planes highest atom density
- silicon atoms in (111) plane bonded to three atoms under plane, one over plane
- silicon atoms in (100) and (110) planes bonded to two atoms below and two atoms over plane

Crystallographic etching

1st process step: Oxidation

- Start with p-type 100, 400 μm thick wafers
- Create "Glass" layer covering silicon wafer
- Silicon dioxide SiO₂
- Protection or dielectric or spacer

Tube furnaces: 850-1200 °C
 Dry oxidation: Pure O₂
 Wet oxidation: Water vapour

Figure 3.4. Thermal oxidation consumes some of the wafer thickness. Only 54% of the final oxide thickness appears as a net increase in wafer thickness. The remaining 46% appears as a conversion of silicon to oxide within the original wafer.

Oxidation, Deal-Grove model

Deal-Grove model of layer thickness/time:

$$x_{f} = 0.5 \left[A_{DG} \sqrt{1 + \frac{4B_{DG}}{A_{DG}^{2}}(t + \tau_{DG})} - 1 \right]$$

Reaction limited at thin oxide layers Diffusion limited at thicker oxide layers, oxygen diffuses through oxide

• Calculated dry O₂ oxidation rates using Deal Grove.

BUCON mask (boron doped buried conductors)

- Used for conductors into hermetically sealed cavities, conductors, connection
- Drawn areas define pattern of buried conductors (reverse polarity)

Optical lithography

Figure 3.13. Illustrating contact or proximity photolithography.

Positive Resist

Exposed regions remain soluble

After development and postbake

After etching

Resist is removed

Photolithography (positive resist)

n Si	
Window ↓ n Si	
Diffused region	

. . .

•

Doping (Chapter 3.2.5)

- Boron doping of silicon: charge carriers "HOLES", p-type
- Phosphorous/Arsenic doping of silicon: charge carriers conductor

"ELECTRONS", n-type

igure 3.7. Illustrating the use of a photoresist mask to keep the implant from reaching the ilicon in selected regions.

lon implantation

- Particle accelerator shoots a beam of dopant atoms directly into the wafer
 - Calculate energy/depth of dopant atoms in advance

Implantation or gas doping + diffusion

- Deposition
- Dose [atoms/cm²]
- Annealing or
- Drive-in

Drive-in diffusion of implanted atoms

- High temperature (1000-1150°C)
- Flux of dopants from regions of high concentration to regions of lower concentration
- Sharp dopant profile at time t=0, gaussian profile after time t:

$$N(x,t) = \frac{Q}{\sqrt{\pi D}t} e^{-\frac{x^2}{4Dt}}$$

Junction depth:

Depth at which the concentration of doped atoms equals the background concentration of the wafer Example 2.2

An n-type substrate with a background doping $N_D = 10^{15}$ cm⁻³ is doped by ion implantation with a dose of boron atoms Q of 10^{15} cm⁻², located very close to the surface of the silicon. The wafer is then annealed at 1100°C. How long should the drive-in anneal be to achieve a junction depth of 2 μ m? What is the surface concentration that results?

Solution: Since the equation relating junction depth to diffusion time is transcendental and cannot be algebraically inverted, one can either plot x_j vs. t and read off the required time, or use an iterative numerical solution of the transcendental equation. The graph is shown above, with the result that the anneal time is 10^4 seconds, or 2.8 hours. The surface concentration is found by substituting this value for t into Eq. 3.8, and evaluating N(0, 2.8 hr). The result is $1.8 \times 10^{19} \text{ cm}^{-3}$.

Electronics (Chapter 14.1 - 14.4) Doped resistors

Define a p-type circuit in a n-type wafer

n-type wafer must be at positive potential relative to the p-type circuit

Reverse biased diode \rightarrow no current between circuit and wafer/substrate

SINTEF

P-type electric circuit patterned in surface of n-type silicon wafer

Metal lines on top of p-type doping are visible

Epitaxial silicon layer (2µm thick)

- Single crystalline silicon grown on top of silicon (with doped patterns)
- Silane (SiH₄)
- The underlying silicon serve as template for the deposited material to develop an extension of the single crystal
- Chemical vapor deposition CVD
- Precursor material in heated furnace/plasma
- Chemical reaction on surface of silicon wafer: Deposition
- LPCVD : Low Pressure CVD
- PECVD: Plasma Enhanced CVD, deposition in a glow-discharge plasma (lower temperatures < 400 C)</p>

Buried conductors

- Buried under epitaxial silicon layer
- Used for long-term stability
- Sheet resistivity ca. 500 Ω/

Thin film deposition

- Chemical Vapor Deposition
- LPCVD (low pressure CVD) temperatures in range 500-850 C
- PECVD (plasma enhanced CVD) temperatures below 400 C
- POLYSILICON
- Epitaxial silicon (slow deposition rate)

Chemical vapor deposition CVD

- Silicon films : Silane (SiH₄)
- Nitride films: Diclorosilane + ammonia

LPCVD

- Low pressure chemical vapor deposition
- High temperatures (500-850 C)

PECVD

- Plasma enhanched chamical vapor deposition
- Low temperatures (to 40 C)

TIKOX mask (thick oxide)

- Drawn areas define pattern of thick 4000 Å passivation oxide
- Used to isolate buried conductors and crossing metal lines, reduces spiking
 Grow thin oxide 1000 Å afte

SUCON mask (boron doped surface conductor)

- Drawn areas define pattern of the surface conductors
- Used as vertical connection to BUCON and conductors to surface resistors

SURES-mask (boron doped surface resistors)

- Drawn areas define pattern of the surface resistors
- Used as piezo-resistors for stress detection in thin membrane
 Lower p-doping concentration than conductors

Surface Piezo-resistors

- Diffused into epi-layer surface
- Offers highest sensitivity
- Sheet resistivity ca. 800 Ω/
- Particularly suited on thin springs

COHOL mask (oxide etch)

- Drawn areas define
 the contact holes
- Used for electrical connection between metal and SUCON

MCOND-mask

- Drawn areas define the pattern of Aluminium wiring and bond pads
- Used for conductors in glass cavities and bond pads; in combination with BUCON and SUCON

Physical vapor deposition PVD

- Sputtering
 - Plasma (argon ionized in glow discharge)
 - lons accelerated by electric field
 - Atoms from target knocked out
 - Deposit of target material on substrate
- High deposition rates **Metallisation**

PC forbehandling av loggedata og 10 kW Power

prosessoversikt

Byttes til moderne PLC m/skjerm

BETCH mask

- Drawn areas define the mask opening for the anisotropic backside etch
- Used for membrane, and through etch

Wet anisotropic etch

Isotropic vs anisotropic etch

.

Crystallographic etching

(111) planes

- (111) planes etch the slowest, tend to be cleavage planes
- 54.74° (111) wrt (100)

•

Masking

- assume bulk crystalline (100) silicon substrate combined with anisotropic etch
 - results in pyramidal shape
- bounding (111) planes can be reached using a variety of mask shapes
 - square mask opening, (100) wafer orientation, side of square is aligned to the (110) flat
 - what happens if you use a <u>circular</u> mask opening?
 - undercutting of the mask occurs until the (111) planes are reached
 - still forms a pyramidal pit!

.

TMAH etch of silicon (100)

Electronics and Cybernetics

 •

BETCH mask electrochemical etch stop

• Layer BETCH: Seen in the cross section view: The size of the backside etched membranes has to be calculated with the etch calculator

RETCH mask

- Drawn areas define
 the RIE etched area
- Used for definition of recess etch and through etch

Electronics and Cybernetics

Dry Release Etch (RIE)

- Allows shallow channels in silicon surface
- Allows moving structures
- Allows fluid flow through wafer
- Through epi-thick membranes only (3μm)

Dry silicon etch

Bosch process -photography by Alcatel

- Plasma assisted etching
- Simultaneous chemical reaction and physical directional bombardment etching
- Vertical (or controlled) walls
- Deep RIE
- Alternating:
- Etch of surface (SF₆)
- Deposition of polymer (C₄ F₈)

Alcatel AMS 200

- Production Tool
- Etch rates up to 20 µm/min
- Uniformity < ±5%</p>
- ICP High Density Source
- Chuck: ESC or mechanical clamp
- Wafer sizes: 100 200 mm
- Dry Pumping Package

TOGE mask

- Drawn areas define the mask opening on the top glass facing the chip
- Used for channels, cavitie part of through etch

Top Glass

- Single-sided structuring of top glass for:
- reference cavity formation
- bond-pad area
- allow movement of structures
- gas/fluid channels

Glass etch

- Glass etch:
 Cross section
- Isotropic glass etch causes a large underetch, which has to be considered in design

TOGEF mask

- Drawn areas define the mask opening of the isotropically etched top glass on the top side
- Used for through etch of top glass

BOGEF mask

- Drawn areas define the mask opening on the bottom glass facing the chip
- Used for channels, cavities, upper part of through etch

BOGEB mask

- Drawn areas define the mask opening of the isotropically etched bottom glass on the bottom side
- Used for through etch

All layers

Check again whether they are drawn according the *layout rules* and the *design limitations*!!

Electronics and Cybernetics

Measured flow rate

Stepper syringe pump

. . . .

