Elasticity and Structures
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B Elasticity:

m Stress (Mekanisk spenning)
Strain (Tayning)
Elastic constants
Anisotropic materials _
Fracture (brudd) 1“_03
m Thin film stress g
B Structures:

m Beams
m Beam equation
m Solutions for different loads
m Plates (later, in connection with
piezoresistors)
m Plate equation
m Solutions
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Translating biomolecular recognition into
nanomechanics
Science 288, 2000

Fig. 1. Scanning electron micrograph of a sec-
tion of a microfabricated silicon cantilever ar-
ray (eight cantilevers, each 1 pm thick, 500 pm
long, and 100 pmwide, with a pitch of 250 pm,
spring constant 0.02 M m~"; Micro- and Mano-
mechanics Group, IBM Zurich Research Labora-
tory, Switzerland).

Bulk silicon micromachining

Fig. 2. Scheme illustrating the hybridization
experiment. Each cantilevaris functionalized on
one side with a different oligonuclectide base
saquence (red or blue). (&) The differential
signal is set to zero. [B) After injection of the
first complementary oligonuclectide [green],
hybridization ccaurs on the cantilever that pro-
vides the matching ssquence (red), increasirg
the differential sigral Ax. (C) Injection of the
second complementary oligonuclectide | wel-
low ) causes the cantilever functionalized with
the sacord cligonudeotide (blue) to berd.
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simultancous resonance-frequency and bending readout

EM. Battiston™", ].-P. Ramseyer', H.P. Lung“'b, M.K. Baller®, Ch. Gerber",
J.K. Gimzewski®, E. Meyer", H.-J. Giintherodt" ibi

Vawpiute of Phvsies, University of Basel, Kingellepsrasse 52, CHA05 Bael Swirse dand
CIBAM Revecrh Buivich Research Laberayry, Siumerstrasse 4, CH-S803 Riwehiikon, Swirse dasd

A chemical sensor based on a microfabricated cantilever array with R

(ch

Bulk SI|ICOI’] mlcromachlnlng Fig. 1. {a) Dyaamic mode. Absorglion of aalyle molocules in 4 sensor

layier leads 1o shifl n mesonance-frequency ) () labic mode: the cantilever
bends owing 1o alsorplion of analyie melecules and change of surface
sbress al the cantilever surface; (¢} Scanning electron micropraph of a
cantilever array.
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How to manufacture a beam in singl
crystalline silicon

® Silicon wafer:

m Anisotropic etch of membrane fro
back side of wafer (e.g. in TMAH)

m Reactive lon Etch, through-etch of
membrane area around beam.

m Beam remains, surrounded by hole

m Beam thickness equals membrane
thickness

SINTEF



Coventor tutorial, aluminum “bridge”

B Surface micromac hining

lAIm um beam on nitride
silicon substrate

B
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Why study elasticity?

B Will the mechanical element break
due to accelerations and forces?
Fracture

m During production

m During operation due to
environment

B Deflections of sensor and actuator
elements due to forces

B Piezoresistive sensors are based
on measuring stress/strain in
element

SINTEF



ensing principles

Bondpad

B Capacitive, based on displacement e = PP B i conductos
B Piezoresistive, based on
mechanical stress-strain

n-type
epitaxial
layer

p-type
substrate
and frame

Anodically
bonded

Etched cavity / - - Puyll;e}t( .
Backside port substrate

Stationary
polysilicon fingers

Inertial mass

Anchor to
substrate
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Stress

B Stress (= mekanisk spenning)

W Stress = force divided by area
(as area shrinks to zero)

M Stress is a vector acting on a surface

B Direction of both force and surface

given \

B Stress is the convenient mathematical N
description of internal forces in a
medium

B Stress has multiple values at a point in
space, it varies with the orientation of a
surface on which the stress acts

SINTEF



Hooke’s law, elasticity constants

» Consider elongation of a bar

» Hooke's law simplifies in this case to > X
Opp = EEpy
and L
Sy = —¥pp F «—
Eev ==V
e I7: "spring constant” for change of length Oxx = FIA
. . € =0, IE
e 1> measure of relative shrink —AL/
| - | & =AL/L
e [/ is normally huge (big force, small elongation)
e 7 is typically 0.3 for metals E Youngs modulus,
» Many alternative elasticity parameters exist: elastisitetskonstanten
Lamé constants A and i, shear modulus & v poisson ratio

(= ), bulk modulus K

SINTEF



Material behaviour at large strains

6
Brittle fracture
5t X
&
— ]
8 . Yield
§ 4 B .' / 1e
g
i 3L Ductile fracture
z .
[
= Hardeni
= ardening
g 2t ]
&
Elastomeric or Flow Region
1
0 1 1 L 1
0 1 2 3 4 5 <]

Strain (arbitrary units)

Figure 8.7.  lllustrating brittle and ductile materials.

B Linear elastic behaviour for small
strains
m Slope equals Young’s modulus

B Brittle materials exhibits linear
elasticity until they break

SINTEF

10



Silicon as a mechanical material

Fra. Irqens: Fasthetslare”

S, penm‘vﬁ / t{os m‘nss&l'taram

@ SINTEF

Silicon fracture stress: 7000MPa
theoretical value)

= Special for you: SensoNor single
crystal silicon: under 500MPa is safe

Desirable mechanical properties:

Linear elastic behaviour until brittle
fracture

High fracture stress
Large Young’'s module (E)

Silicon: Brittle material
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Example: Stress in a bar

B Simple example: Uniaxial stress

Stress in a bar
B Two stress values at the same

Example: consider the stress at the bullet point pomt

Foe—tf--m - ‘ ————————————— —=F

M The stress at the bullet point was
in one case F/A (F - force, A -

F e +* ?‘ . area) and in another case O!
W “Stress” means stress at a point on
Fr2 = ~ Fi2
= a surface
FI2 =] = —= Fi2

M The surface orientation (normal
vector n) is needed for stress
vector computations

SINTEF 1



The stress tensor

» The quantity & or a;; in Cauchy’s 1. law is called
the stress tensor

s o contains 9 entries:

Tre Tap T
T=1 Tur Ty Ty
Tex Tzp Tz

e The interpretation of these entries follows from
Cauchy’s 1. law:

1- e = stress vector on p|aﬁe I = const
1.0 = '-T||1 + '?.I'.I'.I._i + '-T.I':k

= 7 1S Normal stress on a plane # = const
= 7.y is shear stress in y direction on a plane

r = const
=% 7. Is shear stress in z direction on a plane
r = const

SINTEF

Example: stress in a bar

F =—

e Uni-axial tension force

e Cutting the body along coordinate planes

e T
SN Y N

Frz =] = = Fr2

Frz = = = Fz

suggests

F/A 00

o = 0O 00

0 00

e Remark: physical reasoning indicates such a
stress tensor, but only a solution of a full model
for elastic deformation can tell if our assumption
of o is correct
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Normal and Shear stresses

¢ One often decomposes the stress vector in a
normal and a shear part

e Normal stress: oy =35 n
e Normal stress vector: N =oyn =(s-n)n
e Shear stress vector: T =s—- N

o Shear stress: o7 = ||T

SINTEF

Stress vector computation

» The stress vector depends on space, time and
the orientation (unit outward normal vector m) of
the surface on which the stress vector acts

» Notation: slz.fn)
(2 varies with 7 parameters!)

» Cauchy’s 1. law makes life simpler:
sir.tnl=n-emr.t)

(= # has a simple (linear) dependence onn)
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Stresses on an Infinitesimal cube

s

FIGURE 2-1. Stress distribution on an infinitesimal volume element.

SINTEF

Cube Is at rest

Normal stresses on opposite sides
are equal

No translational motion

Shear stresses c,,= 64,

No rotation
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Stress tensor

The stress tensor is symmetric

e The stress tensor m;; is all the information we
need to find the stress on an arbitrary surface

¢ Derivation of Cauchy’s 1. law: Study the force
equilibrium of a tetrahedron

e Cauchy's 2. law:
Tip = T (symmelric tensor)

derived from moment equilibrium of an arbitrary
volume

e With the 2. law. we can rewrite the 1. law:

S=R-F=ao-n

Alternative stress tensor notation

Instead of writing the stress tensor as a matrix,

Ty Ty Tpe
o= | Tpr Opy Oy
Top Top Tz

It is sometimes convenient to collect the six
distinct entries in a vector:

|'/ Trr \1
Ty
Oz
Try

Ty

\ 0z /

SINTEF
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Strain

« Strain is a non-dimensional measure of relative
deformations

« Strain is the type of deformation that relates
directly to stress

+ Deformation = rotation + change of shape

« Pure rotation does not cause internal stress

+ Strain 1s a precise measure of “change of shape”

« Strain is represented by the greek letter ¢

» Strain is a tensor: £; or g

Examples on strain

» Elongation of a bar: = = AL/L
e £ is here relative change of length
e Generalization to 3D strain:

- £ relative change of length in 2 dir.

~ Egw

. relative change of length in 2 dir.
- £..: relative change of length in = dir.

- £ry° Change of the right angle between lines
originally in z and y direction
- £... change of angle
- £... change of angle
e The strain tensor is symmetric

s Strain is related to displacement:

(ﬁ?_} + r_}”.':) or = l}lvﬂ + I:-":"ﬂ]q-]

SINTEF
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Example: Deformation of a square

« Deformation: u = i1

+ No relative change of lengths of the sides =

Eap = Egy =
« Change of angle: 7 =54y =1y

« The strain tensor: only £ = 7y Is non-zero

SINTEF
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Example on computing normal/shear
stress

« Consider
/" F

§ == o i
F ~=— /‘]4] ....... —= F A

T = o6 ¢1 + 8 ¢

« Stress tensor: ,
s Normal stress:

FfA 00 F
o = 00 .::I'_~.;=,,5'-ﬂ.=—q"q’]‘-.‘l'.‘f|;{l
000 g

or with a direction vector:
= Normal vector on the plane:

o F oy
1= coa ¢d + fin g N=I_£-n]ﬂ=7111m'¢n
» Stress vector on the plane: » Shear stress:
FfA 00 08 ¢ 1 o N = (P el b — e it b (11T
<10 0o fin =E1ﬁ“¢ 0 T=s = (F[A) cosdisin” d, — oos dsin o, () |
(0o ( ' (l
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Basic quantities in elasticity

® Primary interest: stress tensor &
» Secondary interest: deformation field u

» Primary unknown in FEM programs:
X displacement w(r. 1)

e First compute displacement, then find stress
from simple differentiation

e “Inside” elasticity models we will also meet the
concept of strain

SINTEF
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Fundamental quantities

® plx): density

» ulx. 1) displacement (at time ¢) of a point with
initial location &

o @ 1) stress tensor

SINTEF
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General: Finite Element Analysis

Solve Navier’s eq uation Figure T1-20 Viewing the mechanical mesh

Ezxilernal Surface
Contaurs

(partial differential equation) :

(A+)V(V-0)+ uVii=0

Divide domain into elements

Approximation of function
(solution to partial differential
equation) over domain

Simple function over each
element (linear, parabolic)

Connect elements at nodes

SINTEF
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The mathematical framework of 3D
elasticity

e Newton's second law:

P
E(—a =V-a+ b
at> (1= a0 a 0 )
(b: body forces, e.g., external acceleration) I = 1 1y (]
* Hooke's law for an isotropic elastic medium: __ El-n l ,i?... :: E:
_ (141 —2r) =]
[T\ (Eax ) symmetric g (]
T £ L
1 iy \ ll__"uj
Trx - D irr | B
Ty Exy « [ Young's modulus
Ty Epz . . .
\ Tz / \ £z / e . Poisson's ratio

e D: elasticity coefficients (compliance matrix)

s Strain-displacement relation:

= %["E’u + (V)"

e Can eliminate stress and strain and get a
system of partial differential equations for w, this
Is the system that is solved in FEM packages

SINTEF »



Relation between stress and strain

In a coordinate system with

axes equivalent to the axes of the unit
cell, cubic crystal




Elastic constants

Table 8.1. Mechanical property data for selected microelectronic materials. (Sources: [52, 54,

55, 561)

Mawrl  pm B v ar o, Comment ® Silicon is anisotropic
kg/m® GPa pstrain/K MPa .

Silicon 2331 page 193 28 Cubic m Cubic crystal

a-Quartz 2648  page 573 7.4,13.6 Hexagonal .

Quartz (fused) 2196 72 .16 0.5 Amorphous

Polysilicon 2331 160 ~0.2 2.8 Varies Random grains . N e e d th re e I n d e p e n d e nt

Silicon dioxide ~ 2200 69 17 0.7 -300 Thermal :

Siliconnitride 3170 270 27 2.3 #1100 Stoichiometric elastic constants
3000 270 27 23 -50 - +800  Silicon rich

Aluminum 2697 70 ~.3 23.1 varies Polycrystalline

————————— - =

Cl 1 012 C12 0 0 0
Cie Cip Cio O 0 0
C12 Clz C11 0 0 0
C= 0 0 0 Cyu O 0 (8.28)
0 0 0 0 Cy O
0 0 0 0 0 Cu
where
01 1 = 166 GPa
Cys = 64 GPa
Cyy = 80 GPa

SINTEF
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Silicon anisotropic elasticity constants

Z Z B Silicon elasticity constants for
y S crystal directions:

L7 - a E[110]=168GPa
(110) plane (111) plane B E:111:1866Pa

re 3.1. llustrating the different major crystal planes for a simple cubic lattice of atoms.

SINTEF 2



Beam model

» 1he mathematics is based on pure bending

» The models are successfully applied far beyond
the mathematical assumptions

# Only a 1D Hooke's law is needed (7., = Fc,..)
so Isotropy I1s not an assumption

» The model consists of a differential equation for
the deflection of the beam

SINTEF
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Remarks to beam equation

¢ Although we allow for shear (Q), o... is the only
stress component used in the derivation...

e The z axis must coincide with the neutral line
(line with no strain)

o The neutral line goes through the centroid of the
cross section (easy to compute)

e w(x,t) is the deflection from the neutral line,
positive downwards in our derivations

¢ In the derivation of the beam equations, we
assume the stress tensor is like the one in
uni-axial elongation:

Cz 00
o=| 0 00], C=const
0 00

SINTEF
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Types of support and loads of beams

fixed, clamped

point load

free

distributed load
| (uniform |f)ad) |

pinned

simply supported

SINTEF
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Example: beam with end load

mC
) FI? (a2
w(r) = —= (%) (3—=z/L)
e Assumption: constant rectangular cross section, o
width a and height b e Moment:
e By integration or from tables: I = ab3/12 M(z)=F(L-x)

Loads: ¢ = 0, end load D prescribed
* _q _ P e Shear force (constant here):
e Governing equation:

e Qz)=F
dx* e Normal stress in a cross section:
e Clamped left end z = 0: w(0) =w'(0) =0 F
. . . m . Ogr = Z_(L - )
e Right end with load: ETw"(L)=F, s" =0 I
» Integrate differential equation four times: e Largest stress at » = 0 and for z = +b/2

w(z) = 01933 + OQ,’,U? + Csx + Oy

e Determine (', ..., () from end conditions:
FI? rx\2
wl@) =557 Z) (B—=/L)

SINTEF
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