Electrostatically actuated mirror-array

® Array of micro mirrors
(e.g. 1280x1024 SXGA)

¥ Produced by Texas
Instruments

® “Digital Micro mirror Device”
m “Digital Light Processing”

® Used in projectors, TVs,
movie theaters

® Digital images
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Dimensions of micro mirror array

B Size of mirror: 16pumx16um,
14umx14um, smaller and smaller

B Gap between mirrors 1 um

B Switch more than 50000 times pr
second

B Vacuum packed
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Mirror tilting

B Mirror made in reflective aluminium
Mirror sits on top of Yoke

B Yoke can tilt, supported by torsion
hinges
B Yoke can be attracted to left or

right electrode by electrostatic
forces

B Every electrode for every mirror at
the silicon surface can be
accessed separately

® The voltage between mirror and
electrode is large enough to cause
pull-in

B Yoke is mechanically stopped by
landing tips (no electric contact)
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Fabrication of DMD (from mauf

Hinge post

Sacrificial
CMP
Metal-3 level spacer 1 oxide

Silicon substrate with CMOS circuits
1. Pattern spacer 1 layer

Oxide hinge mask /— Hinge metal

2. Deposit hinge metal; deposit
and pattern oxide hinge mask

Yoke metal Oxide mask

3. Deposit yoke and pattern 6. Pattern mirror and
yoke oxide mask etch sacrificial spacers

Figure 5.4 Fabrication steps of the Texas Instruments’ DMD [2].
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Gap vs. voltage

1.2 W Parallell plates, linear spring
elastic force
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Electrostatic forces

B Forces between charges
Electric potential @ l l l l

B Laplace equation + boundary
conditions (dirichlet)

VD=0
B Electrostatic field: gradient of B Force proportional to electric field
potential L
= F =gE
§=-VO 1
W Forces between parallel plates in
B Electric force normal to capacitor: 477
conductor surface __¢& _
B Charge distribution on surface 2g

conductors related to field q(r)= ‘E(r)‘g
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Pull-in of mirror

Torsional spring

M Electrostatic force dependsontilt 7
B Elastic torque: M=k, ® \| Mirror

E support

Section view along diagonal

Mirror support

B Electrostatic torque: Electrode
Actuation electrode
beneath mirror support
Figure 20.9.  Geometry of the DMD mirror.
= dx
A W(x)]
> x

W Electrostatic torque varies as
T~ 2%

Electrode

Figure 20.10.  Tllustrating the field and capacitance calculation for the titled DMD.

B Pull-in effect also for mirror
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Mechanical and electrostatic equations

B Naviers equation for elastic forces:
(isotropic version)

(A+ )VV - -u+ uV°u=0

B Poisson equation for electrostatic
field:
vip=-F
E
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Electrostatic bending of beam

B Set up voltage AV between beam
and substrate

B Beam bend due to electrostatic N
forces s

B Elastic forces tend to pull beam
back A

B Total force, parallel plates:

—ar? oM

Fnet_ 2g2 +k(g0_g) B

® Equilibrium:

SINTEF
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Pull-in of parallel plates with linear spring

M Increase AV, reach pull-in distance and

voltage
gp =213g, 1
Electrical force ."
~ !
08 4
2 Spring force ,"
| 8kgg o -
Pl — 2 V increasing g
2174 S AN
\’l
W If voltage is larger than pull-in volta 02—
=> no stable solution except g=0 P Suable equilibriumpoint

0

0 02 04 08 08 1
¢
u C=1-9/g, - - ing § -
Figure 6.7, Electrical and spring forces for the voltage-controlled paraliel-plate electrostatic
actuator, plotted for V//Vp; = 0.8.

B Senturia section 6.4.3
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Potential energy of parallel plate

capacitor
B Senturia p 127

B Stored energy

0
W (Q) = [V(Q)dQ

0=CV
W(Q)=0212C =0%gl2eA

E=0/é&A
F=0%g/2¢e4
W(g)=Fg=0gl2eA
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12



Pull-in voltage of tilting mirror

B Energy

Torsional spring

Section view along diagonal

w(6,) = %CVZ

.| Mirror Mirror support
| support |

X L

B Torque: negative gradient with _—
respect o 90 Actuation electrode e
beneath mirror support
 Find charge Q on electrode S —
® Find Capacitance
T= —%C(O)Vz[a1 +3a3902]

B Restoring torque, torsional spring

Electrode

Figure 20.10.  Tllustrating the field and capacitance calculation for the titled DMD.
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Pull-in voltage, torsional mirror

W Force equilibruim

90: k@ _|_\/( k@ Z_i

B 3a,C.V° \ 3a,CV?"  3a,
[ k, jz e B Real solution if
3a,C,V° ) 3a,
N
Vo = [ BafZ c )4 ® Pull-in voltage
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Mirror design with analyzer (tutorial 2)

Figure T3-2 2-D Layout View of Mirror

Figure T3-1 Mirror Model

support rod aluminum mirror

cross-section B
view orientation

electrodel

electrode?

T

cross-section A view orientation
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Charge
distribution
due to tilt
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Two display principles

\ N4
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Tilting Mirror Optical MEMS GLY Diffraction Grating MEMS
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Silicon Light Machines

® Grating Light Valve

Electrostatically deflect ribbons
Distance to wafer A/4
Light is reflected or diffracted

Diffracted light is projected to
screen

B Possible to use pull-in or pull-
control

B Possible to have one row of ribbon
pixels only

@ SINTEF
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Diffraction from a 6-element DLV
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GLV linear array of pixels

B One line of mirror elements only

GLYV array I
(array axis
_into page)

Ribbon ¢ -
axis
<>

Direction of
ribbon motion

Horizontal scan mirror

I \j/ Screen |

Diffracted light path Horizontal image direction
(vertical image direction into page)

Figure 1: A GLV pixel with alternate reflecting ribbons electrostatically deflected
to produce a square-well diffraction grating (vertical deflection greatly exaggerated)

Linear GLV array

Direction of optical scan

Bright State

[ncident light

Diffracted Diffracted
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Pull In hysteresis of mirrors
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Figure 5: To switch a nbbon down requires a voltage differential of V2 volts or more between the ribbon

and a bottom electrode. The nbbon will remain down until the voltage differential falls below V1 volts.

This ribbon hysteresis offers mechanical memory and zero-power pixelstate retention. Switching time is
approximately 20 nanoseconds.
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Different colors diffracted to same spot
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Figure 7: By using different spacing between ribbons, one can ereate color-oriented sub-pixels.
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Linear elastic force

® Partial differential equation for force-
elastic displacement (beam):

0w

El
ox*

=4

B Approximation e.g.
F=kw_,
B Linear relation stress-strain (Always
true for single-crystal silicon):
o=F¢
M Strain is derivative of displacement.
May give non-linear relation

displacement-strain for large
deflections ( geometric effect)

SINTEF
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Resonant frequency of elastic

structure

B Measure resonance frequency in
vacuum

B Damping due to fluid flow around
moving structure

® Simplified dynamical equation:
ma+bv+kx=F

B Dynamic equation for beam

0%u o0*u
——+ E[—= D+ FIL
P ot* ox* fx0)

SINTEF
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Couette flow

B Steady viscous flow between
parallel plates

B One plate is moving parallel to the
other

B Mass conservation, no x-
dependence on flow velocity

W Streamlines parallel to the walls
Stationary flow
® No-slip boundary conditions

U =2U
h

K

UX

Figure 13.4.  Illustrating Couette flow

B Shear stress acting on the plate
as a result of motion: U

T =—N—
W 77h
B Damping coefficient b
A
L
h

SINTEF
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Sgueezed film damping

® Displacement of beam, dynamic
partial differential equation

0%u 0'u F
—+ El—=P(x,t)+—
£ ot? ox* (o) L
- air . ux)
B Flow of gas: Reynolds equation
gives pressure in gap
1277@=V[(1+ 6Kn)h3PVP] B Squeeze film number o
B Characteristic of solution: O Rel_ative importance of viscous to
spring forces
P= b@_u 12nW?
Ot O = ),

g B
B Senturia gives the damping constant 96nL W

for a long beam (L) 43
T 8o
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