FYS4230 - Høst 2005

Report - oblig II Jostein Ekre - josteiek
 Exercise: Silicon Beam Accelerometer

For a clamped cantilever silicon beam the deflection function can be calculated by integrating the general differential equation for a beam and applying appropriate boundary conditions:
$\omega(\mathrm{x})=\frac{q_{0} \cdot x^{2}}{24 E I}\left(. x^{2}+6 L^{2}-4 L X\right)$
Here, q_{0} is a uniformly distributed load (per unit length along the beam), E is Young's modulus, I is the moment of inertia, and L is the length of the beam. Note that the beam is clamped at $x=0$, with a free end at $x=L$. The cross section of the beam has rectangular shape:

$$
-b / 2 \leq y \leq b / 2,-h / 2 \leq z \leq h / 2
$$

where the z axis points in the opposite direction of the force q0. I is then $b^{3} / 12$. An important stress measure is the normal stress on a surface perpendicular to the axis of the beam:

$$
\sigma_{x x}=z E \omega^{\prime \prime}(x)
$$

The beam is a part of a system that is subjected to an acceleration a.
Suitable data for the problem are $a=50 \mathrm{~g}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s} 2$, $\mathrm{L}=$ $3 \mathrm{~mm}, \mathrm{~b}=50 \mu \mathrm{~m}, \mathrm{~h}=10 \mu \mathrm{~m}, \mathrm{E}=168 \mathrm{GPa}$. The density can be taken as $\rho=2300 \mathrm{~kg} / \mathrm{m} 3$.
(a) Draw the cross section in the $y ; ~ z$ plane.

(b) What is the force $q 0$ acting on the beam per unit length when the external acceleration is a? (Hint: The acceleration can be treated as a fictitious force in an accelerated coordinate system in which the deflected beam is at rest.)
$\mathrm{V}=(\mathrm{b}) \star(\mathrm{L}) *(\mathrm{~h})=1.5 \mathrm{pm}^{3} \quad$ (volume)
$M=D * V=2.3 * 10^{6} \mathrm{~g} / \mathrm{m}^{3} * 1.5 * 10^{-12}=3.45 \mu g_{r}$ (weight)
$\mathrm{a}=50 * \mathrm{~g}=50 * 9.81=490.5 \mathrm{~m} / \mathrm{S}^{2}$ (acceleration)
$\mathrm{F}=\mathrm{M} . \mathrm{a}=3.45 * 10^{-6} \star 490.5=1.6922 \mathrm{~m} \cdot \mathrm{~g}_{\mathrm{r}} / \mathrm{S}^{2}$ (force)
$F=1.6922 \mu \mathrm{~N}$
$q_{0}=F / L=1.6922\left(\mu N^{\prime}\right) / 3 * 10^{-3}=564 \mu N / m$ (force per unit length)
(c) Plot the deflection $w(x)$ along the beam ($0 \leq x \leq L$).

Abstract

(d) Where is the maximum defleqtion, and how large is this deflection?
$\omega_{\max }$ would be at the end of the beam and in the $-Z$ direction

$$
\mathrm{L}=3000 \mu \mathrm{~m}
$$

$\omega_{\max }(\mathrm{L})=\frac{q_{0} \cdot L^{2}}{24 E I}\left(L^{2}+6 L^{2}-4 L^{2}\right)=\frac{q_{0} \cdot L^{4}}{8 E I}$

$$
\omega_{\max (L)}=8.1589 \mu \mathrm{~m}
$$

(e) Draw $\sigma_{x x}$ as function of z for $a=50 \mathrm{~g}$ and $\mathrm{x}=0$. $\sigma_{x x}=z E \omega^{\prime \prime}(x)$
$\sigma_{x x}=\frac{Z \cdot q_{0}}{2 I}\left(x^{2}-2 L x^{2}+L^{2}\right)$
$\mathrm{x}=0 \quad \sigma_{x x-\max }=\frac{Z \cdot q_{0}}{2 I}\left(L^{2}\right) \quad \sigma_{x x-\max }= \pm 3.046 * 10^{6} \frac{P_{a}}{m}$

Middle of Support point

(f) What is the physical interpretation of the quantity $\sigma_{x x}$?

The maximum tensile strain $\boldsymbol{\mathcal { E }}$ is at top surface and the maximum compressive strain will be at the bottom surface of the X, Y plain (x direction). The maximum stress on the surface of X, Y is identified σ_{Xx} as ($-\mathrm{X}, \mathrm{X}$ direction).

Plot $\sigma_{x x}$ as a function of x for the z value which gives the largest stress in an arbitrary cross section.

The graph shows the stress $\sigma_{x x}$ around top surface at $h=+Z / 2$ on the $X Z$ plain (on the surface XY as tensile strain) and along the X direction to maximum X at $L=3 \mathrm{~mm}$. It would be the same as $h=-Z / 2$ but as compressive strain.

Find where $\sigma_{x x}$ reaches its maximum value.

$= \pm 3.046005$
 a
 m

$\sigma_{x x}$ reaches its maximum at 2 points. First at maximum strain $\left(\sigma_{\sigma_{x-\max }}=-3.046005 \frac{\mathrm{MP}_{\mathrm{a}}}{m}\right)$ at the top surface of X, y at $\mathrm{X}, \mathrm{Z}(0, \mathrm{~h} / 2=+5 \mu \mathrm{~m})$. Secondly it reaches its maximum compressive strain $\left(\sigma_{x-\max }=+3.046005 \frac{\mathrm{MP}_{\mathrm{a}}}{m}\right)$ at the bottom plain of $x y$ at $X, Z(0,-h / 2=5 \mu m)$.

(g) Plot the max deflection as a function of a when $0 \leq a \leq 50 g$ and $x=L$.

Deflection $w(x)$ would be linear at L proportional to a in the -Z direction.

