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Introduction to percolation 1

Percolation is the study of connectivity of random media – and of other
properties of connected subsets of random media. Fig. 1.1 illustrates a
porous material – a material with holes, pores, of various sizes. These are
examples of random materials with built-in disorder. In this book, we
will address the physical properties of such media, develop the underlying
mathematical theory and the computational and statistical methods
needed to discuss the physical properties of random media. In order to
do that, we will develop a simplified model system – a model porous
medium – for which we can develop a well-founded mathematical theory,
and then afterwards we can apply this model to realistic random systems.

The porous media illustrated in the figure serves as a useful, fundamen-
tal model for random media in general. What characterizes the porous
material in fig. 1.1? The porous medium consists of regions with material
and without material. It is therefore an extreme, binary version of a
random medium. An actual physical porous material will be generated
by some physical process, which will affect the properties of the porous
medium in some way. For example, if the material is generated by sedi-
mentary deposition, details of the deposition process may affect the shape
and connectivity of the pores, or later fractures may generate straight
fractures in addition to more round pores. These features are always
present in the complex geometries found in nature, and they will generate
correlations in the randomness of the material. While these correlations
can be addressed in detailed, specific studies of random materials, we
will here instead start with a simpler class of materials – uncorrelated
random, porous materials.

We will here introduce a simplified model for a random porous material.
We divide the material into cubes (sites) of size d. Each site can be either
filled or empty. We can use this method to characterize an actual porous
medium, as illustrated in fig. 1.1, or we can use it as a model for a random
porous medium if we fill each voxel with a probability p. On average, the

1



2 1 Introduction to percolation

Fig. 1.1 Illustration of a porous material from a nanoporous silicate (SiO2). The colors
inside the pores illustrates the distance to the nearest part of the solid.

volume of the solid part of the material will be Vs = pV , where V is the
volume of the system, and the volume of the pores will be Vp = (1− p)V .
We usually call the relative volume of the pores, the porosity, φ = Vp/V ,
of the material. The solid is called the matrix and the relative volume
of the matrix, Vs/V is called the solid fraction, c = Vs/V . In this case,
we see that p corresponds to the solid fraction. Initially, we will assume
that on the scale of lattice cells, the fill probabilities are statistically
independent – we will study an uncorrelated random medium.

Fig. 1.2 illustrates a two-dimensional system of 4× 4 cells filled with
a probability p. We will call the filled cells occupied or set, and they are
colored black. This system is a 4× 4 matrix, where each cell is filled with
probability p. We can generate such a matrix, m, in matlab using

p = 0.25;
z = rand(4,4);
m = z<p;
imagesc(m);

The resulting matrices are shown in the figure for various values of p.
The left figure illustrates the matrix, m with its various values. A site i is
set as p reaches the value mi in the matrix. (This is similar to changing
the water level and observing what parts of a landscape is above water).

Percolation is the study of connectivity. The simplest question we can
ask is when does a path form from one side of the sample to the other?
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Fig. 1.2 Illustration of an array of 4× 4 random numbers, and the various sites set for
different values of p.

By when, we mean at what value of p. For the particular realization of
the matrix m shown in fig. 1.2 we see that the answer depends on how
we define connectivity. If we want to make a path along the set (black)
sites from one side to another, we must decide on when two sites are
connected. Here, we will typically use nearest neighbor connectivity: Two
sites in a square (cubic) lattice are connected if they are nearest neighbors.
In the square lattice in fig. 1.2 each site has Z = 4 nearest neighbors
and Z = 8 next-nearest neighbors, where the number Z is called the
connectivity. We see that with nearest-neighbor connectivity, we get a
path from the bottom to the top when p = 0.7, but with next-nearest
neighbor connectivity we would get a path from the bottom to the top
already at p = 0.4. We call the value pc, when we first get a path from
one side to another (from the top to the bottom, from the left to the
right, or both) the percolation threshold. For a given realization of the
matrix, there is well-defined value for pc, but for another realization,
there would be another pc. We therefore need to either use statistical
averages to characterize the properties of the percolation system, or we
need to refer to a theoretical – thermodynamic – limit, such as the value
for pc in an infinitely large system. When we use pc here, we will refer to
the thermodynamic value.

In this book, we will develop theories describing various physical prop-
erties of the percolation system as a function of p. We will characterize
the sizes of connected regions, the size of the region connecting one side
to another, the size of the region that contributes to transport (fluid,
thermal or electrical transport), and other geometrical properties of the
system. Most of the features we study will be universal – independent of
many of the details of the system. From fig. 1.2 we see that pc depends
on the details: It depens on the rule for connectivity. It would also de-
pend on the type of lattice used: square, trianglar, hexagonal, etc. The
value of pc is specific. However, many other properties are general. For
example, how the conductivity of the porous medium depends on p near
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pc does not depend on the type of lattice or the choice of connectivity
rule. It is universal. This means that we can choose a system which is
simple to study in order to gain intuition about the general features,
and then apply that intuition to the special cases afterwards. While the
connectivity or type of lattice does not matter, some things do matter.
For example, the dimensionality matters: The behavior of a percolation
system is different in one, two and three dimensions. However, the most
important differences occur between one and two dimensions, where the
difference is dramatic, whereas the difference between two and three
dimension is more of a degree that we can easily handle. Actually, the
percolation problem becomes simpler again in higher dimensions. In two
dimensions, it is possible to go around a hole, and still have connectivity.
But is it not possible to have connectivity of both the pores and the
solid in the same direction at the same time – this is possible in three
dimensions: A two-dimensional creature would have problems with hav-
ing a digestive tract, as it would divide the creature in two, but in three
dimensions this is fully possible. Here, we will therefore focus on two and
three-dimensional systems.

In this book, we will first address percolation in one and infinite
dimensions, since we can solve the problems exactly in these cases. We
will then address percolation in two dimensions - where there is no exact
solutions. However, we will see that if we assume that the cluster density
function has a particular scaling form, we can still address the problem in
two dimension, and make powerful predictions. We will also see that close
to the percolation threshold, the porous medium has a self-affine scaling
structure - it is a fractal. This property has important consequences for
the physical properties of random systems. We will also see how this is
reflected in a systematic change of scales, a renormalization procedure,
which is a general tool that can applied to rescaling in many areas.

1.1 Basic concepts in percolation

Let us initially study a specific example of a random medium. We will
generate an L× L lattice of points that are occupied with probability
p. This corresponds to a coarse-grained porous medium with a porosity
φ = p, if we assume that the occupied sites are considered to be holes in
the porous material.

We can generate a realization of a square L × L system in matlab
using

L = 20;
p = 0.5;
z = rand(L,L);
m = z<p;
imagesc(m);
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The resulting matrix is illustrated in fig. ??. However, this visualization
does not provide us with any insight into the connectivity of the sites in
this system. Let us instead analyze the connected regions in the system.

Definitions
• two sites are connected if they are nearest neighbors (4 neighbors

on square lattice)
• a cluster is a set of connected sites
• a cluster is spanning if it spans from one side to the opposite

side
• a cluster that is spanning is called the spanning cluster
• a system is percolating if there is a spanning cluster in the

system

Fortunately, there are built-in functions in matlab and python that
finds connected regions in an image. The function bwlabel finds clus-
ters based on a given connectivity. For example, with a connectivity
corresponding to 4 we find

[lw,num] = bwlabel(m,4);

This function returns the matrix lw, which for each site in the original
array tells what cluster it belongs to. Clusters are numbered sequentially,
and each cluster is given an index. All the sites with the same index
belongs to the same cluster. The resulting array is shown in fig. 1.3,
where the index for each site is shown and a color is used to indicate the
various clusters. Notice that there is a distribution of cluster sizes, but
no cluster is large enough to reach from one side to another, and as a
result the system does not percolate.

In order to visualize the clusters effectively, we give the various clusters
different colors. This is done by the function label2rgb:

img = label2rgb(lw’,’jet’,’k’,’shuffle);
image(img);

Here, we have specified that we use the color map called jet. However,
we have also specified that the zero value will be colored black – this is
done by including the k. Finally, we have specified that the color map
needs to be in random order. This is important because of a particular
property of the underlying algorithm: Clusters are indexed starting from
the bottom-left of the matrix. Hence, clusters that are close to each
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Fig. 1.3 Illustration of the index array returned by the bwlabel function for a 10× 10
system for p = 0.45.

other will get similar colors and therefore be difficult to discern unless we
shuffle the colormap. (Try removing the shuffle command and see what
happens). The resulting image is shown to the right in fig. 1.3. (Notice
that in these figures we have reversed the ordering of the y-axis. Usually,
the first row is in the top-right corner in your plots – and this will also
be the case in most of the following plots).

Let us now study the effect p on the set of connected clusters. We
vary the value of p for the same underlying random matrix, and plot the
resulting images:

L = 100;
pv = [0.2 0.3 0.4 0.5 0.6 0.7];
z = rand(L,L);
for i = 1:length(pv)

p = pv(i);
m = z<p;
[lw,num] = bwlabel(m,4);
mat = lw;
img = label2rgb(lw,’jet’,’k’,’shuffle’);
subplot(2,3,i)
tit=sprintf(’p=%0.5g’,p);
image(img); axis square;
title(tit);
axis off

end

Fig. 1.4 shows the clusters for a 100× 100 system for p ranging from
0.2 to 0.7 in steps of 0.1. We see that the clusters increase in size as p
increases, but at p = 0.6, there is just one large cluster spanning the
entire region. We have a percolating cluster, and we call this cluster that
spans the system the spanning cluster. However, the transition is very
rapid from p = 0.5 to p = 0.6. We therefore look at this region in more
detail in fig. ??. We see that the size of the largest cluster increases
rapidly as p reaches a value around 0.6, which corresponds to pc for this
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Fig. 1.4 Plot of the clusters in a 100× 100 system for various values of p.

Fig. 1.5 Plot of the clusters in a 100× 100 system for various values of p.

system. At this point, the largest cluster spans the entire system. For
the two-dimensional system illustrated here we know that in an infinite
lattice the percolation threshold is pc ' 0.5927.

The aim of this book is to develop a theory to describe how this random
porous medium behaves close to pc. We will characterize properties such
as the density of the spanning cluster, the geometry of the spanning
cluster, and the conductivity and elastic properties of the spanning cluster.
We will address the distribution of cluster sizes and how various parts of
the clusters are important for particular physical processes. We start by
characterizing the behavior of the spanning cluster near pc.

1.2 Percolation probability

When does the system percolate? When there exists a path conncting one
side to another. This occurs at some value p = pc. However, in a finite
system, like the system we simulated above, the value of pc for a given
realization will vary with each realization. It may be slightly above or
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slightly below the pc we find in an infinite sample. Later, we will develop
a theory to understand how the effective pc in a finite system varies from
the thermodynamic pc in an infinitely large system. But already now,
we realize that as we perform different experiments, we will measure
various values of pc. We can characterize this behavior by introducing a
probability Π(p, L):

Percolation probability

The percolation probability Π(p, L) is the probability for there to
be a connected path from one side to another side as a function of p
in a system of size L.

We can measure Π(p, L) in a finite sample of size L×L, by generating
many random matrices. For each matrix, we perform a cluster analysis for
a sequence of pi values. For each pi we find all the clusters, and pick out
the cluster with the largest extent. If this extent is equal to the system
size, there is a spanning cluster, and the system percolates, and we count
up how many times a system percolates for a given pi, Ni, and then
divide by the total number of experiment, N to estimate the probability
for percolation for a given pi, Π(pi, L) ' Ni/N . We implement this as
follows. First, we generate a sequence of pi values from 0.35 to 1.0 in
steps of 0.01:

p = (0.35:0.01:1.0);

Then we prepare an array for Ni with the same number of elements
as pi:

nx = length(p);
Pi = zeros(nx,1);

We will generate N = 1000 samples:

N = 1000;

We will then loop over all samples, and for each sample we generate
a new random matrix. The for each value of pi we perform the cluster
analysis using bwlabel as we did above. However, we now need to
extract more information from the clusters. This is done by the function
regionprops(lw,’BoundingBox’), which returns a box enclosing the
clusters. For example, for the 6× 6 simulation in fig. 1.6, the bounding
boxes are:
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s = regionprops(lw,’BoundingBox’);
bbox = cat(1,s.BoundingBox)

bbox =

0.5000 2.5000 3.0000 3.0000
0.5000 5.5000 1.0000 1.0000
2.5000 0.5000 1.0000 1.0000
4.5000 0.5000 1.0000 2.0000
4.5000 4.5000 1.0000 1.0000
5.5000 2.5000 1.0000 1.0000

The bounding boxes are given as the top left corner (first two columns)
and then the width and height (last two columns). We can therefore
simply find the maximum of the two last colums – this corresponds to
the maximum extent of any of the clusters

max(max(bbox(:,[3 4])))

ans =
3

Now, we are ready to implement this into a complete program:

p = (0.4:0.01:1.0);
nx = length(p);
Ni = zeros(nx,1);
N = 10;
L = 100;
for i = 1:N

z = rand(L,L);
for ip = 1:nx

m = z<p(ip);
[lw,num] = bwlabel(m,4);
s = regionprops(lw,’BoundingBox’);
bbox = cat(1,s.BoundingBox);
maxsize = max(max(bbox(:,[3 4])));
if (maxsize==L) % Percolation

Ni(ip) = Ni(ip) + 1;
end

end
end
Pi = Ni/N;
plot(p,Pi);

The resulting plot of Π(p, L) is seen in fig. 1.7. The figure shows the
resulting plots as a function of system size L. We see that as the system
size increases, Π(p, L) approaches a step function at p = pc.
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Fig. 1.6 Illustration of the BoundingBox for the clusters in a 6× 6 simulation.
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Fig. 1.7 Plot of Π(p, L), the probability for there to be a connected path from one side
to anther, as a function of p for various system sizes L.

1.3 Spanning cluster

The probability Π(p, L) described the probability for there to be a
spanning cluster, but what about the spanning cluster itself, how can
we characterize it? We see from fig. 1.4 that the spanning cluster grows
quickly around p = pc. Let us therefore characterize the cluster by its
size, MS , or by its density, P (p, L) = MS/L

2, which also corresponds to
the probability for a site to belong the spanning cluster.
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Density of the spanning cluster

The probability P (p, L) for a site to belong to a spanning cluster is
called the density of the spanning cluster, or the order parameter
for the percolation problem.

We can measure P (p, L) by couting the massMi of the spanning cluster
as a function of pi for various values of pi. We can find the mass of the
spanning cluster, by finding a cluster that spans the system (there may be
more than one) as we did above, and then measuring the number of sites
in the cluster using the Area property of regionprops(lw,’Area’).

First, we find a list of clusters that span the system. These are the
clusters that have an extent in the x or the y direction which are equal
to L, the system size. We find these using the find command, which
returns an array with a list of all the cluster numbers that span the
system. The list is empty of no clusters span, and may contain more than
one element if more than one element spans. We need to find clusters
that span either in the x-direction or in the y-direction, which is the
union of the arrays of elements that span in the respective direction, as
illustrated in this code:

[lw,num] = bwlabel(m,4);
s = regionprops(lw,’BoundingBox’);
bbox = cat(1,s.BoundingBox);
jx = find(bbox(:,3)==L);
jy = find(bbox(:,4)==L);
j = union(jx,jy);
if (length(j)>0) % Percolation

Ni(ip) = Ni(ip) + 1;
for jj = 1:length(j)

Mass(ip) = Mass(ip) + area(j(jj));
end

end

Here, we loop through all the clusters that span, and include the mass
of each cluster in the total mass of the spanning cluster. This is one
possible definition of the spanning cluster – you could also have selected
only one of these, for example the largest, to be the spanning cluster.

We implement these features in the following program, which measures
both Π(p, L) and P (p, L) for a given value of L:

p = (0.4:0.01:1.0);
nx = length(p);
Ni = zeros(nx,1);
Mi = zeros(nx,1);
N = 10;
L = 100;
for i = 1:N

z = rand(L,L);
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for ip = 1:nx
m = z<p(ip);
[lw,num] = bwlabel(m,4);
s = regionprops(lw,’BoundingBox’);
bbox = cat(1,s.BoundingBox);
s = regionprops(lw,’Area’);
area = cat(1,s.Area);
jx = find(bbox(:,3)==L);
jy = find(bbox(:,4)==L);
j = union(jx,jy);
if length(j)>0 % Percolation

Ni(ip) = Ni(ip) + 1;
for jj = 1:length(j)

Mi(ip) = Mi(ip) + area(j(jj));
end

end
end

end
subplot(2,1,1)
Pi = Ni/N;
plot(p,Pi); xlabel(’p’),ylabel(’\Pi’)
subplot(2,1,2)
P = Mi/(N*L*L);
plot(p,P); xlabel(’p’),ylabel(’P’)

The resulting plot of P (p, L) is shown in the bottom of fig. 1.7. We
see that P (p, L) changes rapidly around p = pc and that it grows slowly
– approximately linearly – as p → 1. We can understand this linear
behavior: When p is near 1 all the set sites are connected and part of
the spanning cluster. The density of the spanning cluster is therefore
proportional to p in this limit. We will now develop a theory for the
observations of Π(p, L), P (p, L) and other features of the percolation
system. First, we see what insights we can gain from small, finite systems.

1.4 Percolation in small systems

First, we will address the two-dimensional system directly. We will study
a L× L system, and the various physical properties of it. We will start
with L = 1, L = 2, and L = 3, and then try to generalize.

First, let us address L = 1. In this case, the system percolates if the site
is present, which has a probability p, hence the percolation probability is
Π(p, 1) = p. The probability for a site to belong to the spanning cluster
is p, therefore P (p, 1) = 1.

Then, let us examine L = 2. This is still simple, but we now have to
develop a more advanced strategy than for L = 1. Our strategy will be
to list all possible outcomes, find the probability for each outcome, and
then use this to find the probability for the various physical properties
we are interested in. The possible configurations are listed in fig. 1.8.



1.4 Percolation in small systems 13

c=1 c=2 c=3 c=4 c=5 c=6 c=7 c=8

c=9 c=10 c=11 c=12 c=13 c=14 c=15 c=16

c=1
g1=1

c=2
g2=4

c=3
g3=4

c=4
g4=2

c=5
g5=4

c=6
g6=1

Fig. 1.8 The possible configurations for a L = 2 site percolation lattice in two-dimensions.
The configurations are indexed using the cluster configuration number c.

The strategy is to use a basic result from probability theory: If we want
to calculate the probability of an event A, we can do this by summing
the probability of A given B multiplied by the probability for B over all
possible outcomes B.

P (A) =
∑
B

P (A|B)P (B) , (1.1)

where we have used the notation P (A|B) to denote the probability of A
given that B occurs . We can use this to calculate properties such as Π
and P (p, L) by summing over all possible configurations c:

Π(p, L) =
∑
c

Π(p, L|c)P (c) , (1.2)

where Π(p, L|c) is the value of Π for the particular configuration c, and
P (c) is the probability of this configuration.

The configurations for L = 2 have been numbered from c = 1 to
c = 16 in fig. 1.8. However, configurations that are either mirror images
or rotations of each other will have the same probability and the same
physical properties since percolation can take place both in the x and the
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y directions. It is therefore only necessary to group the configurations
into 6 different classes as illustrated in the bottom of fig. 1.8, but we then
need to remember the multiplicity, gc, for each class when we calculate
probabilities. Let us make table of the configurations, the number of such
configurations, the probability of one such configuration, and the value
of Π(p, L|c) for this configuration.

c gc P (c) Π(p, L|c)
1 1 p0(1− p)4 0
2 4 p1(1− p)3 0
3 4 p2(1− p)2 1
4 2 p2(1− p)2 0
5 4 p3(1− p)1 1
6 1 p4(1− p)0 1

We should check that we have actually listed all possible configurations.
The total number of configurations is 24 = 16 = 1 + 4 + 2 + 4 + 4 + 1,
which is ok.

We can then find the probability for Π directly:

Π = 0 · 1 · p0(1− p)4 + 0 · 4 · p1(1− p)3 + 1 · 4 · p2(1− p)2 (1.3)
+ 0 · 2 · p2(1− p)2 + 1 · 4 · p3(1− p)1 + 1 · 1 · p4(1− p)0 . (1.4)

We therefore find the exact value for Π(p, L = 2):

Π(p, L = 2) = 4p2(1− p)2 + 4p3(1− p)1 + p4(1− p)0 , (1.5)

which we can simplify further if we want. The shape of Π(p, L) for L = 1,
andL = 2 is shown in fig. 1.9.

We could characterize p = pc as the number for which Π = 1/2, which
would give pc(L = 2) =, which is better than for L = 1, for which we
got pc(L = 1) = 1/2. Maybe we can just continue doing this type of
calculation for higher and higher L and we will get a better and better
approximation for pc?

We notice that for finite L, Π(p, L) will be a polynomial of order
o = L2 - it is in principle a function we can calculate. However, the
number of possible configurations is 2L2 which increases very rapidly
with L. It is therefore not realistic to use this technique for calculating the
percolation probabilities. We will need to have more powerful techniques,
or simpler problems, in order to perform exact calculations.

However, we can still learn much from a discussion of finite L. For
example, we notice that

Π(p, L) ' LpL + c1p
L+1 + . . .+ cnp

L2
, (1.6)

in the limit of p� 1. The leading order term when p→ 0 is therefore
LpL.
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Fig. 1.9 Plot of Π(p, L) for L = 1 and L = 2 as a function of p.

Similarly, we find that for p→ 1, the leading order term is approxi-
mately

Π(p, L) ' 1− (1− p)L . (1.7)

These two results gives us an indication about how the percolation
probability Π(p, L) is approaching the step function when L→∞.

Similarly, we can calculate P (p, L) for L = 2. However, we leave the
calculation of the L = 3 and the P (p, L) system to the exercises.

1.5 Exercises

Exercise 1.1: Percolation for L = 3
a) Find P (p, L) for L = 1 and L = 2.
b) Categorize all possible configurations for L = 3.
c) Find Π(p, L) and P (p, L) for L = 3.

Exercise 1.2: Counting configurations in small systems
a) Write a program to find all the configurations for L = 2.
b) Use this program to find Π(p, L = 2) and P (p, L = 2). Compare with
the exact results from the previous exercise.
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c) Use you program to find Π(p, L) and P (p, L) for L = 3, 4 and 5.

Exercise 1.3: Percolation in small systems in 3d

In this exercise we will study the three-dimensional site percolation
system for small system sizes.

a) How many configurations are there for L = 2?

b) Categorize all possible configurations for L = 2.

c) Find Π(p, L) and P (p, L) for L = 2.

d) Compare your results with your result for the two-dimensional system.
Comment on similarities and differences.
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The percolation problem can be solved exactly in two limits: in the one-
dimensional and the infinite dimensional cases. Here, we will first address
the one-dimensional system. While the one-dimensional system does not
allow us to study the full complexity of the percolation problem, many
of the concepts and measures introduced to study the one-dimensional
problem can be generalized to higher dimensions.

2.1 Percolation probability

Let us first address a one-dimensional lattice of L sites. In this case, there
is a spanning cluster if and only if all the sites are occupied. If only a
single site is empty, there will not be any connecting path from one side
to the other. The percolation probability is therefore

Π(p, L) = pL (2.1)

This has a trivial behavior when L→∞

Π(p,∞) =
{

0 p < 1
1 p = 1 . (2.2)

This shows that the percolation threshold is pc = 1 in one dimension.
However, the one-dimensional system is anomalous, and higher dimen-
sions, we will always have pc < 1, so that we can study the system both
above and below pc. Unfortunately, for the one-dimensional system we
can only study the system below pc.

17
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2.2 Cluster number density

2.2.1 Definition of cluster number density

In the simulations in fig. 1.4 we saw that the percolation system was
characterized by a wide distribution of clusters – regions of connected
sites. The clusters have varying shape and size. If we increase p to
approach pc we saw that the clusters increased in size until they reached
the system size. We can use the one-dimensional system to learn more
about the behavior of clusters as p approaches pc.

Fig. 2.1 illustrates a realization of an L = 16 percolation system in
one dimension below pc = 1. In this case there are 5 clusters of sizes
1,1,4,2,1 measured in the number of sites in each cluster. The clusters are
numbered - indexed - from 1 to 5 as we did for the numerical simulations
in two dimensions. How can we characterize the clusters in a system? In
percolation theory we characterize cluster sizes by asking a particular
question: If you point at a (random) site in the lattice, what is the
probability for this site to belong to a cluster of size s?

P (site is part of cluster of size s) = sn(s, p) . (2.3)

It is common to use the notation sn(s, p) for this probability for a given
site to belong to a cluster of size s. Why is it divided into two parts,
s and n(s, p)? Because we must divide the question into two parts: (1)
What is the probability for a given site to be a specific site in a cluster
of size s, and (2) how many such specific sites are there? What do we
mean by a specific site? For cluster number 3 in fig. 2.1 there are 4 sites.
We could therefore ask the question, what is the probability for a site to
be the left-most site in a cluster of size s. This is what we mean with a
specific site. We could ask the same question about the second left-most,
the third left-most and so on. We call the probability for a site to belong
to a specific site in a cluster of size s (such as the left-most site in the
cluster) the cluster number density, and we use the notation n(s, p)
for this. To find the probability sn(s, p) for a site to belong to any of the
s sites in a cluster of size s we must sum the probabilities for each of the
specific sites. This is illustrated for the case of a cluster of size 4:

P (site to be in cluster of size 4)
= P (site to be left-most site in cluster of size 4)
+ P (site to be second left-most site in cluster of size 4)
+ P (site to be third left-most site in cluster of size 4)
+ P (site to be fourth left-most site in cluster of size 4)
= 4P (site to be left-most site in cluster of size 4)

; .
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L

1 2 3 333 544

Left-most site in cluster of size 4

Empty sites
Fig. 2.1 Realization of a L = 16 percolation system in one dimension. Occupied sites
are marked with black squares.

Because each of these probabilities are the same. What is the probability
for a site to be the left-most site in a cluster of site s in one dimension?
In order for it to be in a cluster of size s, the site must be present, which
has probability p, and then s− 1 sites must also be present to the right
of it, which has probability ps−1. In addition, the site to the left must be
empty (illustrated by an X in fig. 2.1 bottom part), which has probability
(1− p) and the site to the right of the fourth site (illustrated by an X
in fig. 2.1 bottom part), which also has probability (1 − p). Since the
occupation probabilities for each site are independent, the probability
for the site to be the left-most site in a cluster of size s is:

n(s, p) = (1− p)2ps . (2.4)

This is the cluster number density in one dimension.

Cluster number density

The cluster number density n(s, p) is the probability for a site to be
a particular site in a cluster of size s. For example, in 1d, n(s, p) is
the probability for a site to be the left-most site in a cluster of size
s.

We should check that sn(s, p) really is a normalized probability. How
should it be normalized? We know that if we point at a random site in
the system, the probability for that site to be occupied is p. An occupied
site is then either a part of a finite cluster of some size s or it is part
of the inifinite cluster. The probability for a site to be a part of the
infinite cluster is P . This means that we have the following normalization
condition:
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Normalization of the cluster number density

A site is occupied with probability p. An occupied site is either part
of a finite cluster of size s with probability sn(s, p) or it is part of
the infinite (spanning) cluster with probability P :

p =
∞∑
s=1

sn(s, p) + P . (2.5)

Let us check that this is indeed the case for the one dimensional result
we have found by calculating the sum:

∞∑
s=1

sn(s, p) =
∞∑
s=1

sps(1− p)2 = (1− p)2p
∞∑
s=1

sps−1 , (2.6)

where we will now employ a common trick:
∞∑
s=1

sps−1 = d

dp

∞∑
s=0

ps = d

dp

1
1− p = (1− p)−2 , (2.7)

which gives
∞∑
s=1

sn(s, p) = (1− p)2 p
∞∑
s=1

sps−1 = (1− p) p (1− p)−2 = p . (2.8)

Since P = 0 when p < 0 we see that the probability is normalized. We
can use similar tricks to calculate moments of any order.

2.2.2 Measuring the cluster number density

In order to gain further insight into the distribution of cluster sizes, let
us look study fig. 2.1 in more detail. There are 3 clusters of size s = 1,
one cluster of size s = 2, and one cluster of size s = 4. We could therefore
introduce a histogram of cluster sizes, which is what we would do if
we studied the cluster distribution numerically. Let us write Ns as the
number of clusters of size s.

s Ns n(s, p)
1 3 3/16
2 1 1/16
3 0 0/16
4 1 1/16

How can we now estimate sn(s, p), the probability for a given site to be
part of a cluster of size s, from Ns? The probability for a site to belong



2.2 Cluster number density 21

to cluster of size s can be estimated by the number of sites belonging
to a cluster of size s divided by the total number of sites. The number
of sites belonging to a cluster of size s is sNs, and the total number of
sites is Ld, where L is the system size and d is the dimensionality. (Here,
d = 1). This means that we can estimate the probability sn(s, p) from

sn(s, p) = sNs

Ld
, (2.9)

where we use a bar to show that this is an estimated quantity and not
the actual probability. We divide by s on both sides, and find

n(s, p) = Ns

Ld
. (2.10)

This argument and the result is valid in any dimension, not only for
d = 1. We have therefore found a method to estimate the cluster number
density:

Measuring the cluster number density

We can measure n(s, p) in a simulation by measuring Ns, the number
of clusters of size s, and then calculate n(s, p) from

n(s, p) = Ns

Ld
. (2.11)

For the clusters in fig. 1.8 we find that

n(1, p) = N1

L1 = 3
16 , (2.12)

n(2, p) = N2

L1 = 1
16 , (2.13)

n(3, p) = N3

L1 = 0
16 , (2.14)

n(4, p) = N4

L1 = 1
16 , (2.15)

which is our estimate of n(s, p) based on this single realization.
We check the consistency of the result by ensuring that the estimated

probabilities also are normalized:∑
s

sn(s, p) = 1 · 3
16 + 2 · 1

16 + 3 · 0 + 4 · 1
16 = 9

16 = p , (2.16)

where p is estimated from number of present sites divided by the total
number of sites.
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In order to produce good statistical estimates for n(s, p) we must
sample from many random realization of the system. If we sample from
M realizations, and then measure the total number of clusters of size s,
Ns(M), summed over all the realizations, we estimate the cluster number
density from

n(s, p) = Ns(M)
MLd

. (2.17)

Notice that all simulations are for finite L, and we would therefore
expect deviations due to L as well as randomness due to the finite number
of samples. However, we expect the estimated n(s, p;L) to approach the
underlying n(s, p) as M and L approaches infinity.

2.2.3 Shape of the cluster number density

We found that the cluster number density in one dimension is

n(s, p) = (1− p)2ps . (2.18)

In fig. 2.2 we have plotted n(s, p) for various values of p. In order to
compare see the s-dependence of the plot directly for various p-values
we plot

G(s) = (1− p)2 n(s, p) = ps , (2.19)

as a function of s. We notice that (1−p)2n(s, p) is approximately constant
for a wide range of s, and then falls off rapidly for some characteristic
value sξ which increases as p approaches pc = 1. We can understand this
behavior better by rewriting n(s, p) as

n(s, p) = (1− p)2es ln p = (1− p)2e−s/sξ , (2.20)

where we have introduced the cut-off cluster size

sξ = −1
ln p . (2.21)

What we are seeing in fig. 2.2 is therefore the exponential cut-off curve,
where the cut-off sξ(p) increases as p→ 1. We call it a cut-off because
the value of n(s, p) decays very rapidly (exponentially) when s is larger
than sξ.

How does sξ depend on p?. We see from eq. 2.21 that as p approaches
pc = 1, the characteristic cluster size sξ will diverge. The form of the
divergence can be determined in more detail through a Taylor expansion:

sξ = − 1
ln p (2.22)

when p is close to 1, 1− p� 1 and we can write
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Fig. 2.2 (Top) A plot of n(s, p)(1− p)2 as a function of s for various values of p for a
one-dimensional percolation system shows that the cut-off increases as a function of s.
(Bottom) When the s axis is rescaled by s/sξ all the curves fall onto a common scaling
function, that is, n(s, p) = (1− p)2F (s/sξ).

ln p = ln(1− (1− p)) ' −(1− p) , (2.23)

where we have used that ln(1 − x) = −x + o(x2), which is simply the
Taylor expansion of the logarithm. As a result

sξ '
1

1− p = 1
pc − p

= |p− pc|−1/σ . (2.24)

This shows that the divergence of sξ as p approaches pc is a power-law
with exponent −1. This is a feature which is general in percolation theory.

Scaling behavior of the characteristic cluster size

The characteristic clustes size sξ diverges as

sξ ∝ |p− pc|−1/σ , (2.25)

when p→ pc. In one dimension, σ = 1.

The value of the exponent σ depends on the lattice dimensionality,
but it does not depend on the details of the lattice. It would, for example,
be the same also for next-nearest neighbor connectivity - a problem we
leave for the reader to solve as an exercise.
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The functional form we have found is also an example of a data
collapse. We see that if we plot (1− p)−2n(s, p) as a function of s/sξ,
all data-points for various values of p should fall onto a single curve, as
illustrated in fig. 2.2:

n(s, p) = (1− p)2e−s/sξ , (2.26)

This is what we call a data-collapse. We have one behavior for small s
and then a rapid cut-off when s reaches sξ. We can rewrite n(s, p) so
that all the sξ dependence is in the cut-off function by realizing that
since sξ ' (1− p)−1 we have that (1− p)2 = s−2

ξ . This gives

n(s, p) = s−2
ξ e−s/sξ = s−2

(
s

sξ

)2

e
− s
sξ = s−2F

(
s

sξ

)
. (2.27)

where F (u) = u2e−u. We will see later that this form is general – it is
valid for percolation in any dimesion, although with other values for the
exponent −2. In parcoluation theory, we call this exponent τ :

n(s, p) = s−τF (s/sxi) , (2.28)

where τ = 2 in two dimensions. The exponent τ is another example
of a universal exponent that does not depend on details such as the
connectivity rule, but it does depend on the dimensionality of the system.

2.2.4 Numerical measurement of the cluster number density

Let us now test the measurement method and the theory through a
numerical study of the cluster number density. According to the theory
developed above we can estimate the cluster number density n(s, p) from

n(s, p) = Ns(M)
L2 ·M

, (2.29)

where Ns(M) is the number of clusters of size s measured in M re-
alizations of the percolation system. We generate a one-dimensional
percolation system and index the clusters using

L = 20;
p = 0.90;
z = rand(L,1);
m = z<p;
[lw,num] = bwlabel(m,4);

Now, lw contains the indecies for all the clusters. We can extract
the size of the clusters using the Area-property of the regionprops
command:
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s = regionprops(lw,’Area’);
area = cat(1,s.Area);

The resulting list of areas for one sample is

>> lw’

ans =
Columns 1 through 20

1 0 2 0 3 3 3 3 0 0 4 0 0 5 5 5 5 0 6 0

>> area’

ans =

1 1 4 1 4 1

We need to collect all the areas of all the clusters for many realizations,
and then calculate the number of cluster of each size s based on this long
list of areas. This is all brought together by continuously appending the
area-array to the end of an array allarea that contains the areas of all
the clusters.

nsamp = 1000;
L = 1000;
p = 0.90;
allarea = [];
for i = 1:nsamp

z = rand(L,1);
m = z<p;
[lw,num] = bwlabel(m,4);
s = regionprops(lw,’Area’);
area = cat(1,s.Area);
allarea = cat(1,allarea,area);

end
[n,s]=hist(allarea,L);
nsp = n/(L*nsamp);
sxi = -1.0/log(p);
nsptheory = (1-p)^2*exp(-s/sxi);
i = find(n>0);
plot(s(i),nsp(i),’ok’,s,nsptheory,’-k’);
xlabel(’s’); ylabel(’n(s,p)’);

This scipt also calculates Ns using the histogram function with enough
bins to ensure that there is at least one bin for each value of s:

[n,s]=hist(allarea,L);

And we then calculate n(s, p) from
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nsp = n/(L*nsamp);

We find the theoretically predicted form for n(s, p), which is n(s, p) =
(1− p)2 exp(−s/sξ), where sξ = −1/lnp. This is calculated for the same
values of s as found from the histogram using:

sxi = -1.0/log(p);
nsptheory = (1-p)^2*exp(-s/sxi);

When we use the histogram function with many bins, we risk that
many of the bins contain zero elements. To remove these elements from
the plot, we can use the find function to find the indecies of the elements
of n that are non-zero:

i = find(n>0);

And then we only plot the values of n(s, p) at these indicides. The
values for the theoretical n(s, p) are calculated for all values of s.

plot(s(i),nsp(i),’ok’,s,nsptheory,’-k’);

The resulting plot is shown in fig. 2.3. We see that the measured
results and the theoretical values fit nicely, even though the theory is for
infinite system sizes, and the simulations where performed at L = 1000.
We also see that for larger values of s there are fewer observed values. It
may therefore be a good idea to make the bins used for the histogram
larger for larger values of s. We will return to this when we measure the
cluster number density in two-dimensional systems in chapter 4.

2.2.5 Average cluster size

Since we have a precise form of the cluster number density, n(s, p) we
can use it to calculate the average cluster size. However, what do we
mean by the average cluster size in this case? In percolation theory it is
common to define the average cluster size as the average size of a cluster
connected to a given (random) site in our system. That is, we will use the
cluster number density, n(s, p), as the basic distribution for calculating
the moments.

Average cluster size

The average cluster size S(p) is defined as
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Fig. 2.3 Plot of the predicted n(s, p), based on M = 1000 sampls of a L = 1000 system
with p = 0.9, and the theoretical n(s, p) curve on a linear scale (top) and a semilogarithmic
scale (bottom). The semilogarithmic plot clearly shows that n(s, p) follows an exponential
curve.

S(p) = 〈s〉 =
∑
s

s( sn(s, p)∑
s sn(s, p)) , (2.30)

The normalization sum in the denominator is equal to p when p < pc.
We can therefore write this as

S(p) =
∑
s

s(sn(s, p)
p

) . (2.31)

Similarly, we can define the k-th moment to be

Sk = 〈sk〉 =
∑

sk(sn(s, p)
p

) . (2.32)

Let us calculate the first moment, corresponding to k = 1, the average
cluster size.
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S = 1
p

∑
s

s2n(s, p) (2.33)

= (1− p)2

p

∑
s

s2ps (2.34)

= (1− p)2

p

∑
s

p
∂

∂p
p
∂

∂p
ps (2.35)

= (1− p)2

p
p
∂

∂p
p
∂

∂p

∑
s

ps (2.36)

= (1− p)2

p
p
∂

∂p

p

(1− p)2 ( from
∑
s

sn(s, p) ) (2.37)

= (1− p)2 ∂

∂p

p

(1− p)2 (2.38)

= (1− p)2( 1
(1− p)2 + 2p

(1− p)3 ) (2.39)

= 1 + p

1− p (2.40)

where we have used the trick introduced in eq. 2.7 to move the derivation
out through the sum. In addition, we have also used our previous result
from

∑
s sn(s, p) directly.

This shows that we can write

S = 1 + p

1− p = Γ

|p− pc|γ
, (2.41)

with γ = 1 and Γ (p) = 1 + p. That is, the average cluster size also
diverges as a power-law when p approaches pc. The exponent γ = 1 of
the power-law is again universal. That is, it depends on features such as
dimensionality, but not on details such as the lattice structure.

Later, we will observe that we have a similar behavior for percolation
in any dimension, although with other values of γ.

We will leave it as an exercise for our reader to find the behavior for
higher moments, Sk, using a similar argument.

2.3 Spanning cluster

The density of the spanning cluster, P (p;L), is similarly simple to find
and discuss. The spanning cluster only exists for p ≥ pc. The discussion
for P (p;L) is therefore not that interesting for the one-dimensional case.
However, we can still introduce some of the general notions.

The behavior of P (p;∞) in one dimension is given as
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P (p;∞) =
{

0 p < 1
1 p = 1 . (2.42)

We could introduce a similar finite size scaling discussion also for P (p;L).
However, we will here concentrate on the relation between P (p;L) and
the distribution of cluster sizes. The distribution of the size of a finite
cluster is described by sn(s, p), which is the probability that a given
site belongs to a cluster of size s. If we look at a given site, that site is
occupied with probability p. If a site is occupied it is either part of a
finite cluster of size s or it is part of the spanning cluster. Since these
two events cannot occur at the same time, the probability for a site to
be set must be the sum of the probability to belong to a finite cluster
and to belong to the infinite cluster. The probability to belong to a finite
cluster is the sum of the probability to belong to a cluster of s for all s.
We therefore have the equality:

p = P (p;L) +
∑
s

sn(s, p;L) , (2.43)

which is not only valid in the one-dimensional case, but also for percolation
problems in general.

We can use this relation to find the density of the spanning cluster
from the cluster number density n(s, p) through

P (p) = p−
∑
s

sn(s, p) . (2.44)

This illustrates that the cluster number density n(s, p) is a fundamental
property, which can be used to deduce many of the other properties of
the percolation system.

2.4 Correlation length

From the simulations in fig. 1.4 we see that the size of the clusters increases
as p→ pc. We expect a similar behavior for the one-dimensional system.
We have already seen that the mass (or area) of the clusters diverges as
p→ pc. However, the characteristic cluster size sξ characterizes the mass
(or area) of a cluster. How can we characterize the extent of a cluster?

To characterize the linear extent of a cluster, we find the probability for
two sites at a distance r to be part of the same cluster. This probability
is called the correlation function, g(r):
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L

r
a b

Fig. 2.4 An illustration of the distance r between two sites a and b. The two sites a and
b are connected if and only if all the sites between a and b are occupied.

The correlation function g(r) describes the conditional probability
that two sites a and b, which both are occupied and are separated
by a distance r belong to the same cluster.

For one-dimensional percolation, two sites a and b only can be part of
the same cluster if all the points in between a and b are occupied. If r
denotes the number of points between a and b (not counting the start
and end positions) as illustrated in fig. 2.4, we find that the correlation
function is

g(r) = pr = e−r/ξ , (2.45)

where ξ = − 1
ln p is called the correlation length. The correlation length

diverges as p→ pc = 1. We can again find the way in which it diverges
through by using that when p→ 1

ln p = ln(1− (1− p)) ' −(1− p) . (2.46)

We find that the correlation length is

ξ = ξ0(pc − p)−ν , (2.47)

with ν = 1. The correlation length therefore diverges as a power-law when
p→ pc = 1. This behavior is general for percolation theory, although the
particular value of the exponent ν depends on the dimensionality.

We can use the correlation function to strengthen our interpretation
of when a finite system size becomes relevant. As long as ξ � L, we will
not notice the effect of a finite system, because no cluster is large enough
to notice the finite system size. However, when ξ � L, the behavior is
dominated by the system size L, and we are no longer able to determine
how close we are to percolation.

2.5 (Advanced) Finite size effects

We have so far not discussed the effects of a finite lattice size L. We have
implicitly assumed that the lattice size L is so large that the corrections
will be small and can be ignored. However, we have now observed that
the average cluster size S, the characteristic cluster size sξ, and the
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correlation length ξ diverges when p approaches pc. We will therefore
eventually start observing effects of the finite system size as p approaches
pc.

We have essentially ignored two effects:

• (a) the upper limit for cluster sizes is L and not ∞
• (b) there are corrections to n(s, p;L) due to the finite lattice size

The effect of (b) becomes clear as p approaches pc: As sξ increases it will
eventually be larger than L, which in one dimension also provides an
upper limit for s. This is indeed observed in the scaling collapse plot for
n(s, p), where we for finite lattice sizes will find a cross-over cluster size
sL, which depends on the lattice size L.

What will be the effect of including a finite upper limit L for all the
sums? This will imply that the result of the sum

∑
s p

s will be

L∑
s=1

ps = 1− pL
1− p , (2.48)

instead of 1/(1 − p) when L is infinite. Indeed, this sum approaches
1/(1− p) as L→∞. This implies that S will approach L when p→ pc,
as can be seen by applying l’Hopital’s rule to find the limit as p→ pc.
However, as long as ξ � L, we will still observe that S ∝ 1/(1− p). We
will make these types of arguments more precise when we discuss finite
size scaling further on.

2.5.1 Finite size effects in Π(p, L) and pc
So far we have only addressed the behavior of an infinite system, We
have found that Π(p, L) = pL. From this, we find that

Π ′ = dΠ

dp
= LpL−1 . (2.49)

What is the interpretation of Π ′? We can write

Π ′(p, L)dp = Π(p+ dp, L)−Π(p, L) , (2.50)

where the right hand term is the probability that the system became
spanning when p increased from p to p+ dp. That is, it is the probability
that the spanning cluster appeared for the first time for p between p and
p+ dp. We can therefore interpret Π ′ as the probability density for p′,
which is the p when a spanning cluster appears.

What can we learn from the form of Π ′? If we perform numerical
experiments to find pc, we see that for finite system sizes L, we might
observe a pc which is lower than 1. We can use Π ′ to find the average p′
found - this will be done generally further on. Here, we will only study
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the width of the distribution Π ′, which will give us an idea about the
possible deviation when we measure pc by a measurement of p′. We define
the width as the value px for which Π ′ has reached 1/2 (or some other
value you like).

Π ′(px, L) = LpL−1
x = 1/2 . (2.51)

This gives
ln px = − ln 2

L− 1 , (2.52)

We will now use a standard approximation for ln x, when x is close to 1,
by writing

ln px = ln(1− (1− px)) ' −(1− px) , (2.53)

where we have used that ln(1−x) ' −x, when x� 1. This gives us that

(1− px) ' ln 2
L− 1 , (2.54)

and consequently,
px = pc −

ln 2
L− 1 . (2.55)

We will therefore have an L dependence in the effective pc which is
measured for a finite system. We will address this topic in much more
depth later on under finite size scaling in chap. 6.

We can also find a similar scaling for Π(p, L), because

Π(p, L) = pL = eL ln p = e−L/ξ , (2.56)

where we have defined ξ = −1/ ln p. We notice that ξ → ∞ when
p→ pc = 1. We can therefore classify the behavior of Π according to the
relative sizes of the length ξ and L:

Π(p, L) =
{

1 L� ξ
0 L� ξ

, (2.57)

We have therefore found an important length scale ξ in our problem that
appears whenever the length L appears.

2.6 Exercises

Exercise 2.1: Next-nearest neighbor connectivity in 1d

Assume that connectivity is to the next-nearest neighbors for an infinite
one-dimensional percolation system.

a) Find Π(p, L) for a system of length L.

b) What is pc for this system?
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c) Find n(s, p) for an infinite system.

Exercise 2.2: Higher moments of s

The k’th moment of s is defined as

〈sk〉 =
∑
s

sk(sn(s, p)
p

) . (2.58)

a) Find the second moment of s as a function of p.

b) Calculate the first moment of s numerically from M = 1000 samples
for p = 0.90, 0.95, 0.975 and 0.99. Compare with the theoretical result.

c) Calculate the second moment of s numerically fromM = 1000 samples
for p = 0.90, 0.95, 0.975 and 0.99. Compare with the theoretical result.
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We have now seen how the percolation problem can be solved exactly for
a one-dimensional system. However, in this case the percolation threshold
is pc = 1, and we were not able to address the behavior of the system
for p > pc. There is, however, another system in which many features of
the percolation problem can be solved exactly, and this is percolation
on a regular tree structure on which there are no loops. The condition
of no loops is essential. This is also why we call this system a system of
infinite dimensions, because we need an infinite number of dimensions in
Euclidean space in order to embed a tree without loops. In this section,
we will provide explicit solution to the percolation lattice on a particular
tree structure called the Bethe lattice.

The Bethe lattice, which is also called the Cayley tree, is a tree
structure in which each node has Z neighbors. This structure has no loops.
If we start from the central point and draw the lattice, the perimeter
grows as fast as the bulk. Generally, we will call Z the coordination
number. The Bethe lattice is illustrated in fig. 3.1.

35
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Central point
Branch 1

Branch 2 Branch 3

(a) (b)

Fig. 3.1 Illustration of four generations of the Bethe lattice with number of neighbors
Z = 3.

3.1 Percolation threshold

If we start from the center and move along a branch, we will generate
(Z − 1) new neighbors from each of the branches. To get a spanning
cluster, we need to ensure that at least one of the Z−1 sites are occupied
on average. That is, the occupation probability, p, must be:

p(Z − 1) ≥ 1 , (3.1)

in order for this process to continue indefinitely.
We associate pc with the value for p where the cluster is on the verge

of dying out, that is
pc = 1

Z − 1 . (3.2)

For Z = 2 we regain the one-dimensional system, with percolation
threshold pc = 1. However, when Z > 2, we obtain a finite percolation
threshold, that is, pc < 1, which means that we can observe the behavior
both above and below pc.

In the following, we will use a set of standard techniques to find the
density of the spanning cluster, P (p), the average cluster size S, before
we address the full scaling behavior of the cluster density n(s, p).

3.2 Spanning cluster

We will use a standard approach to find the density P (p) of the spanning
cluster when p > pc. The technique is based on starting from a “central”
site, and then address the probability that a given branch is connected
to infinity.

We can use a strictly technical approach to find P by noting that P
can be found from
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p = P +
∑
s

sn(s, p) , (3.3)

where the sum is the probability that the site is part of a finite cluster,
that is, it is the probability that the site is not connected to infinity. Let
us use Q to denote the probability that a branch does not lead to infinity.
The concept of a central point and a branch is illustrated in fig. 3.1.

We can arrive at this result by noticing that the probability that at site
is not connected to infinity in a particular direction is Q. The probability
that the site is not connected to infinity in any direction is therefore QZ .
The probability that the site is connected to infinity is therefore 1−QZ .
In addition, we need to include the probability p that the site is occupied.
The probability that a given site is connected to infinity, that is, that it
is part of the spanning cluster, is therefore

P = p(1−QZ) . (3.4)

It now remains to find an expression for Q(p). We will determine Q
through a consistency equation. Let us assume that we are moving
along a branch, and that we have come to a point k. Then, Q gives the
probability that this branch does not lead to infinity. This can occur by
either the site k not being occupied, with probability (1− p), or by site k
being occupied with probability p, and all of the Z − 1 branches leading
out of k not being connected to infinity, with probability QZ−1. The
probability Q for the branch not to be connected to infinity is therefore

Q = (1− p) + pQZ−1 . (3.5)

We can check this equation by looking at the case when Z = 2, which
should correspond to the one-dimensional system. In this case we have
Q = 1− p+ pQ, which gives, (1− p)Q = (1− p), where we see that when
p 6= 1, Q = 1. That is, when p < 1 all branches are not connected to
infinity, implying that there is no spanning cluster. We regain the results
from one-dimensional percolation theory.

We could solve this equation for general Z. However, for simplicity
we will restrict ourselves to Z = 3, which is the smallest Z that gives a
behavior different from the one-dimensional system. In this case

Q = 1− p+ pQ2 , (3.6)

pQ2 −Q+ 1− p = 0 . (3.7)

The solution of this second order equation is

Q = 1±
√

(2p− 1)2

2p =
{

1 p < pc
1−p
p p > pc

. (3.8)
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Fig. 3.2 (Top) A plot of P (p) as a function of p for the Bethe lattice with Z = 3. The
tangent at p = pc is illustrated by a straight line. (Bottom) A plot of the average cluster
size, S(p), as a function of p for the Bethe lattice with Z = 3. The average cluster size
diverges when p→ pc = 1/2 both from below and above.

There are two possible solutions. We recognize that the solution
(1− p)/p is 1 for p = pc = 1/2, and is larger than 1 for smaller values of
p, we must therefore use the other solution of Q = 1 for p < pc = 1/2.
These results confirm the value pc = 1/2 as the percolation threshold.
When p ≤ pc, we find that Q = 1, that is, no branch propagates to
infinity. Whereas, when p > pc, Q becomes smaller than 1, and there is
a finite probability for a branch to continue to infinity.

We insert this back into the equation for P (p) and find that for p > pc:

P = p(1−Q3) (3.9)

= p(1− (1− p
p

)3) (3.10)

= p(1− 1− p
p

)(1 + 1− p
p

+ (1− p
p

)2) . (3.11)

This result is illustrated in fig. 3.2.
From this we observe the expected result that when p→ 1, P (p) ∝ p.

We can rewrite the equation as

P = 2(p− 1
2)(1 + 1− p

p
+ (1− p

p
)2) , (3.12)
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From this we can immediately find the leading order behavior when
p→ pc = 1/2. In this case we have

P ' 6(p− pc) + o((p− pc)2) . (3.13)

We have therefore found that for p > pc

P (p) ' B(p− pc)β , (3.14)

where B = 6, and the exponent β = 1. The density of the spanning
cluster is therefore a power-law in (p−pc) with exponent β. The exponent
depends on the dimensionality of the lattice, but should not depend on
lattice details, such as the number of neighbors Z. We will leave it to
the reader as an exercise to show that β is the same for Z = 4.

We notice in passing that our approach is an example of a mean field
solution, or a self-consistency solution: We assume that we know Q, and
then solve to find Q. We will use similar methods further on in this
course.

3.3 Average cluster size

We will use a similar method to find the average cluster size, S(p). Let
us introduce T (p) as the average number of sites connected to a given
site on a specific branch, such as in branch 1 in fig. 3.1. The average
cluster size S is then given as

S = 1 + ZT , (3.15)

where the 1 represents the central point, and T is the average number
of sites on each branch. We will again find a self-consistent equation for
T , starting from a center site. The average cluster size T is found from
summing the probability that the next site k is empty, 1− p, multiplied
with the contribution to the average in this case (0), plus the probability
that the next site is occupied, p, multiplied with the contribution in this
case, which is the contribution from the site (1) and the contribution of
the remaining Z − 1 subbranches. In total:

T = (1− p)0 + p(1 + (Z − 1)T ) , (3.16)

We can solve this directly for T , finding

T = p

1− p(Z − 1) , (3.17)

where we recognize that the value pc = 1/(Z − 1) plays a special role
because the average size of the branch diverges when p → pc. We find
the average cluster size S to be:
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S = 1 + ZT = 1 + p

1− (Z − 1)p = pc(1 + p)
pc − p

, (3.18)

which is illustrated in fig. 3.2. The expression for S(p) can therefore be
written on the general form

S = Γ

(pc − p)γ
, (3.19)

where our argument determines pc = 1/(Z − 1), and the exponent γ = 1.
The average cluster size S therefore diverges as a power-law when p
approaches pc. The exponent γ characterizes the behavior, and the value
of γ depends on the dimensionality, but not on the details of the lattice.
Here, we notice in particular that γ does not depend on Z.

3.4 Cluster number density

In order to find the cluster number density for the Bethe lattice, we need
to address how we in general can find the cluster number density. In
general, in order to find the cluster number density for a given s, we
need to find all possible configurations of clusters of size s, and sum up
their probability:

n(s, p) =
∑
c(s)

ps(1− p)t(c) (3.20)

Here we have included the term ps, because we know that we must have
all the s sites of the cluster present, and we have included the term
(1− p)t, because all the neighboring sites must be unoccupied, and there
are t(c) neighbors for configuration c. Based on this, we realize that we
could instead make a sum over all t, but then we need to include the
effect that there are several clusters that can have the same t. We will
then have to introduce the degeneracy factor gs,t which gives the number
of different clusters that have size s and a number of neighbors equal to
t. The cluster number density can then be written as

n(s, p) = ps
∑
t

gs,t(1− p)t . (3.21)

This can be illustrated for two-dimensional percolation. Let us study
the case when s = 3. In this case there are 6 possible clusters for size
s = 3, as illustrated in fig. 3.3.

There are two clusters with t = 8, and four clusters with t = 7. There
are no other clusters of size s = 3. We can therefore conclude that for
the two-dimensional lattice, we have g3,8 = 2, and g3,7 = 4, and g3,t = 0
for all other values of t.

For the Bethe lattice, there is a particularly simple relation between
the number of sites, and the number of neighbors. We can see this by
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t=8 t=8 t=7 t=7 t=7 t=7
Fig. 3.3 Illustration of the 6 possible configurations for a two-dimensional cluster of size
s = 3.

looking at the first few generation of a Bethe lattice grown from a central
seed. For s = 1, the number of neighbors are t1 = Z. When we add one
more site, we remove one neighbor from what we had previously, in order
to add a new site, and then we add Z − 1 new neighbors: s = 2, and
t2 = t1 + (Z − 2). Consequently,

tk = tk−1 + (Z − 2) , (3.22)

and therefore:
ts = s(Z − 2) + 2 . (3.23)

The cluster number density, given by the sum over all t, is therefore
reduced to only a single term for the Bethe lattice

n(s, p) = gs,tsp
s(1− p)ts , (3.24)

For simplicity, we will write gs = gs,ts . In general, we do not know gs,
but we will show that we still can learn quite a lot about the behavior of
n(s, p).

The cluster density can therefore be written as

n(s, p) = gsp
s(1− p)2+(Z−2)s . (3.25)

We rewrite this as a common factor to the power s:

n(s, p) = gs[p(1− p)Z−2]s(1− p)2 , (3.26)

which, for Z = 3 becomes

n(s, p) = gs[p(1− p)]s(1− p)2 . (3.27)

However, we can use a general Z for our argument. We will study
n(s, p) for p close to pc. In this range, we will do a Taylor expansion
of the term f(p) = p(1 − p)Z−2, which is raised to the power s in the
equation for n(s, p). The shape of f(p) as a function of p is shown in
fig. 3.4. The maximum of f(p) occurs for p = pc = 1/(Z − 1). This is
also easily seen from the first derivative of f(p).
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Fig. 3.4 A plot f(p) = p(1 − p)Z−2, which is a term in the cluster number density
n(s, p) = gs[p(1 − p)Z−2]s(1 − p)2 for the Bethe lattice. We notice that f(p) has a
maximum at p = pc, and that the second derivative, f ′′(p), is zero in this point. A Taylor
expansion of f(p) around p = pc will therefore have a second order term in (p− pc) as
the lowest-order term - to lowest order it is a parabola at p = pc. It is this second order
term which determines the exponent σ, which consequently is independent of Z.

f ′(p) = (1− p)Z−2 − p(Z − 2)(1− p)Z−3 = (3.28)
= (1− p)Z−3(1− p− p(Z − 2)) = (3.29)
= (1− p)Z−3(1− (Z − 1)p) (3.30)

which shows that f ′(pc) = 0. We leave it to the reader to show that
f ′′(pc) < 0.

The Taylor expansion can be written as

f(p) = f(pc) + f ′(pc)(p− pc) + 1
2f
′′(pc)(p− pc)2 + o((p− pc)3) , (3.31)

where we already have found the the first order term, f ′(pc) = 0. We can
therefore write

f(p) ' f(pc)−
1
2f
′′(pc)(p− pc)2 = A(1−B(p− pc)2) . (3.32)

The cluster number density is

n(s, p) = gs[f(p)]s(1− p)2 = gse
s ln f(p)(1− p)2 , (3.33)

where we now insert f(p) ' A(1−B(p− pc)2) to get

n(s, p) ' gsA
ses ln(1−B(p−pc)2)(1− p)2 . (3.34)

We use the first order of the Taylor expansion of ln(1− x) ' −x, to get

n(s, p) ' gsA
se−sB(p−pc)2(1− p)2 . (3.35)

Consequently, for p = pc we get

n(s, pc) = gsA
s(1− p)2 . (3.36)
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As a result, we can rewrite the cluster density in terms of n(s, pc),
giving

n(s, p) = n(s, pc)e−sB(p−pc)2
, (3.37)

when p is close to pc. The exponential term we could again rewrite as

n(s, p) = n(s, pc)e−s/sξ , (3.38)

where the characteristic cluster size sξ is

sξ = B−1(p− pc)−2 , (3.39)

which implies that the characteristic cluster size diverges as a power-law
with exponent 1/σ = 2. The general scaling form for the characteristic
cluster size sξ is

sξ ∝ |p− pc|−1/σ , (3.40)

where the exponent σ is universal, meaning that is does not depend
on lattice details such a Z, as we have demonstrated here, but it does
depend on lattice dimensionality. It will therefore be a different value for
two-dimensional percolation.

The next step is to address the behavior at p = pc, when the charac-
teristic cluster size is diverging.

We have already found some limits on the behavior of the cluster
density n(s, p), because we have found S and P (p), which can be related
to the cluster number density. We will use these relations two find limits
on the behavior of n(s, pc).

The average cluster size at p = pc is

S = Γ

pc − p
, (3.41)

which should diverge, that is

S =
∑

s2n(s, pc)→∞ , (3.42)

if we go the the limit of a continuous n(s, pc), the integral

S =
∫ ∞

0
s2n(s, pc)ds→∞ , (3.43)

should diverge. We can therefore conclude that n(s, pc) is not an expo-
nential, since that would lead to convergence. We can make a scaling
ansatz

n(s, pc) ' Cs−τ , (3.44)

for s� 1. We can include this into the restrictions that∑
s

sn(s, p) = p− P , (3.45)
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which should converge, and∑
s

s2n(s, pc)→∞ , (3.46)

which should not converge. This provides a set of limits on the possible
values of τ , because∑

s

sn(s, pc) '
∑
s

s1−τ <∞ ⇒ τ − 1 > 1 , (3.47)

and ∑
s2n(s, pc) '

∑
s

s2−τ >∞ ⇒ τ − 2 ≤ 1 , (3.48)

which therefore implies that

2 < τ ≤ 3 . (3.49)

We can therefore sum up our arguments so far in the relation

n(s, p) = n(s, pc)e−B(p−pc)2s = Cs−τe−B(p−pc)2s = Cs−τe−s/sξ . (3.50)

We will now use this expression to calculate S, for which we know the
exact scaling behavior, and then again use this to find the value for τ

S = C
∑
s

s2−τe−s/sξ → C

∫ ∞
1

s2−τe−s/sξds . (3.51)

We could now make a very rough estimate. This is useful, since it is
in the spirit of this course, and it also provides the correct behavior. We
could assume that

S = C

∫ ∞
1

s2−τe−s/sξds ∼ C

∫ sξ

1
s2−τds ∼ s3−τ

ξ , (3.52)

which actually provides the correct result. We can do it slightly more
elaborately:

S ' C

∫ ∞
1

s2−τe−s/sξds , (3.53)

we change variables by introducing, u = s/sξ, which gives

S ' s3−τ
ξ

∫ ∞
1/sξ

u2−τe−udu . (3.54)

Where the integral is now a number, since 1/sξ → 0, when p→ pc. The
asymptotic scaling behavior in the limit p→ pc is therefore

S ∼ s3−τ
ξ ∼ (p− pc)−2(3−τ) ∼ (p− pc)−1 , (3.55)

where we have used that
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Fig. 3.5 A plot of n(s, p) = s−τ exp(−s(p− pc)2) as a function of s for various values
of p illustrates how the characteristic cluster size sξ appears as a cut-off in the cluster
number density that scales with p− pc.

sξ ∼ (p− pc)−2 , (3.56)

and that
S ∼ (p− pc)−1 . (3.57)

Direct solution therefore shows that

τ = 5
2 . (3.58)

This relation also satisfies the exponent relations we found above, since
2 < 5/2 ≤ 3. A plot of the scaling form is shown in fig. 3.5.

This provides us with a preliminary scaling theory for the cluster
density. We will spend time now trying to verify this scaling relation for
percolation in other dimensionalities. We have found that in the vicinity
of pc, we do not expect deviations until we reach large s, that is, before
we reach a characteristic cluster size sξ that increases as p → pc. We
therefore expect a general form of the cluster density

n(s, p) = n(s, pc)F ( s
sξ

) , (3.59)

where
n(s, pc) = Cs−τ , (3.60)

and
sξ = s0|p− pc|−1/σ . (3.61)

In addition, we have the following scaling relations:

P (p) ∼ (p− pc)β , (3.62)

ξ ∼ |p− pc|−ν , (3.63)
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and
S ∼ |p− pc|−γ , (3.64)

with a possible non-trivial behavior for higher moments of the cluster
density.

3.5 Advanced: Embedding dimension

Why is it difficult to embed such a structure in a d+1-dimensional space?
Because for an Euclidean structure of dimension d, the volume, V grows
as

V ∝ Ld , (3.65)

and the surface, S, grows as

S ∝ Ld−1 , (3.66)

where L is the linear dimension of the system. This means that

S ∝ V 1− 1
d . (3.67)

However, for the Bethe lattice, the surface is proportional to the volume,
S ∝ V , which would imply that d→∞.

3.6 Exercises

Exercise 3.1: P (p) for Z = 4

Find P (p) for Z = 4 and determine β for this value of Z.
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For the one-dimensional and the infinite-dimensional systems we have
been able to find exact results for the percolation probability, Π(p), for
P (p), the probability for a site to belong to an infinite cluster, and we have
characterized the behavior using the distribution of cluster sizes, n(s, p)
and its cut-off, sξ. In both one and infinite dimensions we have been able
to calculate these functions exactly. However, in two and three dimensions
– which are the most relevant for our world – we are unfortunately not able
to find exact solutions. We saw above that the number of configurations
in a Ld system in d-dimensions increases very rapidly with L – so rapidly
that a complete enumeration is impossible. But can we still use what we
learned from the one and inifinite-dimensional systems?

In the one-dimensional case it was simple to find Π(p, L) because
there is only one possible path from one side to another. We cannot
generalize this to two dimensions, since in two-dimensions there are many
paths from one side to another – and we need to include all to estimate
the probability for percolation. Similarly, it was simple to find n(s, p),
because all clusters only have two neighboring sites – the surface is always
of size 2. This is also not generalizable to higher dimensions.

In the infinite-dimensional system, we were able to find P (p) because
we could separate the cluster into different paths that never can intersect
expect in a single point, because there are no loops in the Bethe lattice.
This is not the case in two and three dimensions, where there will always
be the possibility for loops. When there are loops present, we cannot use
the arguments we used for the Bethe lattice, because a branch cut off at
one point may be connected again further out. For the Bethe lattice, we
could also estimate the multiplicity g(s, t) of the clusters, the number of
possible clusters of size s and surface t, since t was a function of s. In a
two- or three-dimensional system this is not similarly simple, because the
multiplicity g(s, t) is not simple even in two dimensions, as illustrated in
fig. 4.1.

47
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Fig. 4.1 Illustration of the 6 possible configurations for a two-dimensional cluster of size
s = 3.

This means that the solution methods used for the one and the
infinite dimensional systems cannot be exteded to address two or three
dimensional systems. However, several of the techniques and observations
we have made for the one-dimensional and the Bethe lattice systems, can
be used as the basis for a generalized theory that can be applied in any
dimension. Here, we will therefore pursue the more general features of
the percolation system, starting with the cluster number density, n(s, p).
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4.1 Cluster number density

We have found that the cluster number density plays a fundamental role
in our understanding of the percolation problem, and we will use it here
as our basis for the scaling theory for percolation.

When we discussed the Bethe lattice, we found that we could write
the cluster number density as a sum over all possible configurations of
cluster size, s:

n(s, p) =
∑
j

ps(1− p)tj , (4.1)

where j runs over all different configurations, and tj denotes the number
of neighbors for this particular configuration. We can simplify this by
rewrite the sum to be over all possible number of neighbors, t, and include
the degeneracy gs,t, the number of configurations with t neighbors:

n(s, p) =
∑
t

gs,tp
s(1− p)t . (4.2)

The values of gs,t have been tabulated up to s = 40. However, while
this may give us interesting information about the smaller cluster, and
therefore for smaller values of p, it does not help us to develop a theory
for the behavior for p close to pc.

In order to address the cluster number density, we will need to study the
characteristics of n(s, p), for example by generating numerical estimates
for its scaling behavior, and then propose a general scaling form which
will be tested in various settings.

4.1.1 Numerical estimation of n(s, p)

We discussed how to measure n(s, p) from a set of numerical simulations
in chap. 2. We can use the same method in two and higher dimensions.
We estimate n(s, p;L) using

n(s, p;L) = Ns

M · Ld
, (4.3)

where Ns is the total number of clusters of size s measured for M
simulations in a system of size Ld and for a given value of p. We perform
these simulations just as we did in one dimension, using the following
program:

M = 1000;
L = 200;
p = 0.58;
allarea = [];
for i = 1:M

z = rand(L,L);
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m = z<p;
[lw,num] = bwlabel(m,4);
s = regionprops(lw,’Area’);
area = cat(1,s.Area);
allarea = cat(1,allarea,area);

end
[n,s]=hist(allarea,L^2);
nsp = n/(L^2*M);
i = find(n>0);
subplot(2,1,1)
plot(s(i),nsp(i),’ok’);
xlabel(’s’); ylabel(’n(s,p)’);
subplot(2,1,2)
loglog(s(i),nsp(i),’ok’);
xlabel(’s’); ylabel(’n(s,p)’);

The resulting plot of n(s, p;L) for L = 200 is shown in fig. 4.2a,b.
Unfortunately, this plot is not very useful. The problem is that there are
many values of s for which we have little or no data at all! For small
values of s we have many clusters for each value of s and the statistics
is good. But for large values of s, such as for clusters of size s = 104

and above, we have less than one data point for each value of s. Our
measured distribution n(s, p;L) is therefore a poor representation of the
real n(s, p;L) in this range.

4.1.2 Measuring probabilty densities of rare events

The problem with the measured results in fig. 4.2 occur because we have
chosen a very small bin size for the histogram. However, we see that for
small values of s we want to have a small bin size, since the statistics
here is good, but for large values of s we want to have larger bin sizes.
This is often solved by using logarithmic binning: We make the bin edges
ai, where a is the basis for the bins and i is bin number. If we chose
a = 2 as the basis for the bins, the bin edges will be 20, 21, 22, 23, . . .,
that is 1, 2, 4, 8, . . .. (Maybe we should instead have called the method
exponential binning). We then count how many events occur in each such
bin. If we number the bins by i, then the edges of the bins are si = ai,
and the width of bin i is ∆si = si+1−si. We then count how many event,
Ni, occuring in the range from si to si +∆si, and we use this to find the
cluster number density n(s, p;L). However, since we now look at ranges
of s values, we need to be precise: We want to measure the probability
for a cluster to belong to a specific site of a cluster in the range from s
to s+∆s, that is, we want to measure n(s, p;L)∆s, which we estimate
from

n(si, p;L)∆si = Ni

MLd
, (4.4)

and we find n(s, p;L) from
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n(si, p;L) = Ni

MLd∆si
. (4.5)

It is important to remember to divide by ∆si when the bin sizes are not
all the same! We implement this by generating an array of all the bin
edges. First, we find an upper limit to the bins, that is, we find an im so
that

aim > max(s) ⇒ loga aim > loga max(s) , (4.6)

im > loga max(s) . (4.7)

We can for example round the right hand side up to the nearest integer

imax = ceil(log(max(allarea))/log(a));

where allarea corresponds to all the s-values. We can then generate
an array of indecies from 1 to this maximum value

bins = a.^(0:1:logamax);

And we can further generate the histogram with this set of bin edges

nl = histc(allarea,bins);

And we must then find the bin sizes and the bin centers

ds = diff(bins);
sl = (bins(1:end-1)+bins(2:end))*0.5;

And we calculate the estimated value for n(s, p;L):

nsl = nl(1:end-1)’./(M*L^2*ds);

Finally we plot the results. The complete code for this analysis is
found in the following script

a = 1.2;
logamax = ceil(log(max(s))/log(a));
bins = a.^(0:1:logamax);
nl = histc(allarea,bins);
ds = diff(bins);
sl = (bins(1:end-1)+bins(2:end))*0.5;
nsl = nl(1:end-1)’./(M*L^2*ds);
subplot(3,1,3)
loglog(sl,nsl,’ok’);
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Fig. 4.2 Plot of n(s, p;L) estimated from M = 1000 samples for p = 0.58 and L = 200.
(a) Direct plot. (b) Log-log plot. (c) Plot of the logarithmically binned distribution.

The resulting plot for a = 1.2 is shown in fig. 4.2c. Notice that the
resulting plot now is much easier to interpret than the linearly binned plot.
(You should, however, always reflect on whether your binning method
may influence the resulting plot in some way, since there may be cases
where your choice of binning method may affect the results you get.
Although this is not expected to play any role in your measurements in
this book.) We will therefore in the following adapt logarithmic binning
strategies whenever we measure a dataset which is sparse.

4.1.3 Measurements of n(s, p) when p→ pc

What happens to n(s, p : L) when we change p so that it approaches pc.
We perform a sequence of simulations for various values of pc and plot
the resulting values for n(s, p;L). The resulting plot is shown in fig. 4.3.

Since the plot is double-logarithmic, a straight line corresponds to a
power-law type behavior, n(s, p) ∝ s−τ . We see that as p approaches pc
the cluster number density n(s, p) more and more approaches a power-law
behavior. For a value of p which is away from pc, the n(s, p) curve follows
the power-law behavior for some time, but then deviates by dropping
rapidly. This is an effect of the characteristic cluster size, which also
can be visually observed in fig. 1.4 and fig. 1.5, where we see that the
characteristic cluster size increases as p approaches pc. How can we
characterize the characteristic cluster size based on this measurement of
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Fig. 4.3 (a) Plot of n(s, p;L) as a function of s for various values of p for a 512× 512
lattice. (b) Plot of sξ(p) measured from the plot of n(s, p) corresponding to the points
shown in circles in (a).

n(s, p)? When s reaches sξ, it falls off from the power-law type behavior
observed as p → pc. So, we could measure sξ directly from the lot, by
drawing a straight line parallel to the behavior of n(s, pc), but below
the n(s, pc) line, as illustrated in fig. 4.3. When the measured, n(s, p)
intersects this drawn line, n(s, p) has fallen by a constant factor below
n(s, pc) and we define this as sξ, and we measure it by reading the
values from the s-axis. The resulting set of sξ values are plotted as a
function of p in fig. 4.3. We see that sξ increases and possibly diverges as
p approaches pc. This is an effect we also found in the one-dimensional
and the infinite-dimensional case, where we found that

sξ ∝ |p− pc|−1/σ (4.8)

where σ was 1 is one dimension. We will now use this to develop a theory
for both n(s, p;L) and sξ based on our experience from one and infinite
dimensional percolation.

4.1.4 Scaling theory for n(s, p)

When we develop a theory, we realize that we are only interested in the
limit p → pc, that is |p − pc| � 1, and s � 1. In this limit, we expect
that sξ marks the cross-over between two different behaviors. There is a
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Fig. 4.4 A plot of n(s, p)sτ as a function of |p− pc|1/σs shows that the cluster number
density satisfies the scaling ansatz of eq. 4.12.

common behavior for small s, up to a cut-off, sξ, as we also observe in
fig. 4.3: The curves for all p are approximately equal for small s.

Based on what we observed in one-dimension and infinite-dimensions,
we expect and propose the following form for n(s, p):

n(s, p) = n(s, pc)F ( s
sξ

) , (4.9)

n(s, pc) = Cs−τ , (4.10)

sξ = s0|p− pc|−1/σ . (4.11)

The best estimates for the exponents for various systems are listed in
the following table: .

d β τ σ γ ν D µ Dmin Dmax DB
1 2 1 1 1
2 5/36 187/91 36/91 43/18 4/3 91/48 1.30 1.13 1.4 1.6
3 0.41 2.18 0.45 1.80 0.88 2.53 2.0 1.34 1.6 1.7
4 0.64 2.31 0.48 1.44 0.68 3.06 2.4 1.5 1.7 1.9

Bethe 1 5/2 1/2 1 1/2 4 3 2 2 2

We will often simplify the scaling form by writing it on the form:

n(s, p) = s−τF (s/sξ) = s−τF ((p− pc)1/σs) . (4.12)

What can we expect from the scaling function F (x) ?
This is essentially the prediction of a data-collapse . If we plot sτn(s, p)

as a function of s|p− pc|1/σ we would expect to get the scaling function
F (x), which should be a universal curve, as illustrated in fig. 4.4.

An alternative scaling form is

n(s, p) = s−τ F̂ ((p− pc)sσ) , (4.13)

where we have introduced the function F̂ (u) = F (uσ). These forms are
equivalent, but in some cases this form produces simpler calculations.
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This scaling form should in particular be valid for both the 1d and
the Bethe lattice cases - let us check this in detail.

4.1.5 Scaling ansatz for 1d percolation
In the case of one-dimensional percolation, we know that we can write
the cluster density exactly as

n(s, p) = (1− p)2e−s/sξ . (4.14)

We showed that we could rewrite this as

n(s, p) = s−2F ( s
sξ

) , (4.15)

where F (u) = u2e−u. This is indeed in the general scaling form with
τ = 2.

4.1.6 Scaling ansatz for Bethe lattice
For the Bethe lattice we found that the cluster density was approximately
on the form

n(s, p) ∝ s−τe−s/sξ , (4.16)

which is already on the wanted form, so that

n(s, p) = s−τF (s/sξ) . (4.17)

4.2 Consequences of the scaling ansatz

The scaling ansatz is simple, but it has powerful consequences. Here, we
address the consequences of the scaling ansatz, and test the validity of
the scaling ansatz by comparing the consequences of the scaling ansatz
with known and measured results.

4.2.1 Average cluster size
Let us first use the scaling ansatz to calculate the scaling of the average
cluster size, and then also of other moments of the cluster size.

The average cluster size is found from

S(p) =
∑
s

s2n(s, p) =
∫
s2n(s, p)ds , (4.18)

where we now will insert the scaling form for n(s, p)
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n(s, p) = s−τ F̂ ((p− pc)sσ) , (4.19)

where we are now studying the system for p < pc, although an identical
calculation can be made for p > pc.

S(p) =
∫ ∞

1
s2−τ F̂ ((p− pc)sσ)ds , (4.20)

where we substitute y = s(pc − p)1/σ:

S(p) = (pc − p)
τ−3
σ

∫ ∞
(pc−p)1/σ

y2−τ F̂ (−yσ)dy . (4.21)

Our scaling assumption is that the scaling function F̂ (u) goes expo-
nentially fast to zero - we can therefore replace the integral by an integral
with an upper limit 1, and in this range we can replace F̂ by a constant.

This implies that the value of the integral is∫ 1

(pc−p)1/σ
y2−τdy ' Γ (pc − p)

3−τ
σ . (4.22)

And the result for the average cluster size is therefore

S(p) ∝ Γ (pc − p)
τ−3
σ ∝ Γ

(pc − p)γ
, (4.23)

which gives a scaling relation for γ:

γ = 3− τ
σ

. (4.24)

We recall that we found that 2 ≤ τ < 3, which is a result that is valid
in all dimensions. Consequently, we notice that γ is positive. As a simple
exercise, you can check that this scaling relation holds for the Bethe
lattice and one-dimensional percolation.

4.2.2 Density of spanning cluster

We can use a similar argument to find the behavior of P (p), because we
have the general relation∑

s

sn(s, p) + P (p) = p , (4.25)

which is just a general way for formulating that if we pick a site at
random, that site is occupied with probability p (right hand side), and
this corresponds to a site picked at random to either be in a finite cluster
of size s or to be in the infinite cluster.

We can therefore find P (p) from
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P (p) = p−
∑
s

sn(s, p) . (4.26)

We will now use a standard trick, which is that

P (pc) = pc −
∑
s

sn(s, pc) = 0 . (4.27)

Subtracting eq. ?? from eq. 4.27, we find that

P (p) = p− pc −
∑
s

s[n(s, p)− n(s, pc)] . (4.28)

In this case we are only interested in p > pc, and we can write the sum
using our scaling ansatz∑

s

sn(s, p) =
∑
s

s1−τ F̂ ((p− pc)sσ) . (4.29)

∑
s

sn(s, p) ' (p− pc)
τ−2
σ

∫ ∞
(p−pc)1/σ

y1−τ F̂ (yσ)dy , (4.30)

where we will again use our assumption that F̂ has a rapid cross-over
and an exponential decay for large y, so that we can write the integral as∫ 1

(p−pc)1/σ)
y1−τdy ∝ c1 − c2(p− pc)

2−τ
σ , (4.31)

where we again remember that 2 ≤ τ < 3.
The sum is therefore∑

s

sn(s, p) ∝ c1(p− pc)
τ−2
σ + c2 . (4.32)

Inserting into P (p) produces:

P (p) = ca(p− pc)1 + cb(p− pc)
τ−2
σ , (4.33)

where the second term is dominating, giving a scaling relation for β since

P (p) ∝ (p− pc)β . (4.34)

β = τ − 2
σ

. (4.35)

We have demonstrated the use of the scaling ansatz for the cluster
number density to calculate several measures of interest. Similar cal-
culations can also be made of higher moments of the cluster number
density.
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4.3 Percolation thresholds

While the exponents are universal – independent of the details of the
lattice but dependent on the dimensionality – the percolation threshold,
pc, depends on all the details of the system. The percolation threshold
depends on the lattice type and the type of percolation. We typically
discern between site percolation, where percolation is on the sites of
a lattice, and bond percolation, where the bonds between the sites
determines the connectivity. The following table provides our best know
values for the percolation thresholds for various dimenions and lattice
types. (For d = 1, the percolation threshold is pc = 1 for all lattice types.)

Lattice type Site Bond
d = 2
Square 0.592746 0.50000

Triangular 0.500000 0.34729
d = 3
Cubic 0.3116 0.2488
FCC 0.198 0.119
BCC 0.246 0.1803
d = 4
Cubic 0.197 0.1601
d = 5
Cubic 0.141 0.1182
d = 6
Cubic 0.107 0.0942
d = 7
Cubic 0.089 0.0787

4.4 Exercises

Exercise 4.1: Generating percolation clusters
In this exercise we will use Matlab to generate and visualize percolation
clusters. We generate a L × L matrix of random numbers, and will
examine clusters for a occupation probability p.

We generate the percolation matrix consisting of occupied (1) and
unoccupied (0) sites, using

L = 100;
r = rand(L,L);
p = 0.6;
z = r<p; % This generates the binary array
[lw,num] = bwlabel(z,4);

We have then produced the array lw that contains labels for each of
the connected clusters, and the variable num that contains the number of
clusters.
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a) Familiarize yourself with labeling by looking at lw, and by studying
the second example in the Matlab help system on the image analysis
toolbox.

We can examine the array directly by mapping the labels onto a
color-map, using label2rgb.

img = label2rgb(lw);
image(img);

We can extract information about the labeled image using
regionprops, for example, we can extract an array of the areas
of the clusters using

s = regionprops(lw,’Area’);
area = cat(1,s.Area);

You can also extract information about the BoundingBox and other
properties of clusters using similar commands

s = regionprops(lw,’BoundingBox’);
bbox = cat(1,s.BoundingBox);

b) Using these features, you should make a program to calculate P (p, L)
for various p.

Hint: you can use either BoundingBox or intersect and union to
find the spanning cluster.
c) How robust is your algorithm to changes in boundary conditions?
Could you do a rectangular grid where Lx � Ly? Could you do a more
complicated set of boundaries? Can you think of a simple method to
ensure that you can calculate P for any boundary geometry?

Exercise 4.2: Finding Π(p, L) and P (p, L)
a) Write a program to find P (p, L) and Π(p, L) for L =
2, 4, 8, 16, 32, 64, 128. Comment on the number of samples you need to
make to det a good estimate for P and Π.
b) Test the program for small L by comparing with the exact results
from above. Comment on the results?

Exercise 4.3: Determining β
We know that when p > pc, the probability P (p, L) for a given site to
belong to the percolation cluster, has the form
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P (p, L) ∼ (p− pc)β . (4.36)

Use the data from above to find an expression for β. For this you may
need that pc = 0.59275.

Exercise 4.4: Determining the exponent of power-law
distributions

In this exercise you will build tools to analyse power-law type probability
densities.

Generate the following set of data-points in Matlab:

z = rand(1e6,1).^(-3+1);

Your task is to determine the distribution function fZ(z) for this
distribution. Hint: the distribution is on the form f(u) ∝ uα.

a) Find the cumulative distribution, that is, P (Z > z). You can then
find the actual distribution from

fZ(z) = dP (Z > z)
dz

. (4.37)

b) Generate a method to do logarithmic binning in Matlab. That is, you
estimate the density by doing a histogram with bin-sizes that increase
exponentially in size. Hint: Remember to divide by the correct bin-size.

Exercise 4.5: Cluster number density n(s, p)

We will generate the cluster number density n(s, p) from the two-
dimensional data-set.

a) Estimate n(s, p) for a sequence of p values approaching pc = 0.59275
from above and below.

Hint 1: The cluster sizes are extracted using .Area as described in a
previous exercise.

Hint 2: Remember to remove the percolating cluster.
Hint 3: Use logarithmic binning.

b) Estimate n(s, pc;L) for L = 2k for k = 4, . . . , 9. Use this plot to
estimate τ .

c) Can you estimate the scaling of sξ ∼ |p− pc|−1/σ using this data-set?
Hint 1: Use n(s, p)/n(s, pc) = F (s/sξ) = 0.5 as the definition of sξ.
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Exercise 4.6: Average cluster size

a) Find the average (finite) cluster size S(p) for p close to pc, for p above
and below pc.

b) Determine the scaling exponent S(p) ∼ |p− pc|−γ .

c) In what ways can you generate S(k)(p)? What do you think is the
best way?
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We have seen how we can characterize clusters by their mass, s. Fig. ??
shows that as p approaches pc, the typical cluster size s increases. From
this figure we also see that the characteristic diameter of the clusters
increase. In this chapter we will discuss the geometry of clusters, and by
geometry we will mean how the number of sites in a cluster is related to
the linear size of the cluster. We will introduce a measure to characterize
the spatial extent, the characteristic diameter, of clusters; how the char-
acteristic length behaves as p approaches pc; and how the characteristic
length is related to the characteristic mass, s, of a cluster.

5.1 Characteristic cluster size

We have so far studied the clusters in our model porous material, the
percolation system, through the distribution of cluster sizes, n(s, p),
and derivatives of this, such as the average cluster size, S and the
characteristic cluster size, sξ. However, clusters with the same mass,
s, can have very different shapes. Fig. 5.1 illustrates three clusters all
with s = 20 sites. (The linear and the compact clusters are unlikely, but
possible realizations). How can we characterize the diameter or radius of
these clusters?

There are many ways to define the extent of a cluster. We could, for
example, define the maximum distance between any two points in the
cluster (Rmax) to be the extent of the cluster, or we could use the average
distance between two points in the cluster. However, we usually introduce
a measure which is similar to the standard deviation used to characterize
the spread in a random variable: We use the standard deviation in the
position, which is also known as the radius of gyration of a cluster:

The radius of gyration, Ri for a particular cluster i of size si, with
sites rj for j = 1, . . . , si, is defined as

63
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Fig. 5.1 Illustrations of three clusters all with s = 24.

R2
i = 1

si

si∑
j=1

(rj − rcm,i)2 , (5.1)

where rcm,j is the center of mass of cluster i. An equivalent definition is

R2
i = 1

2s2
i

∑
n,m

(rn − rm)2 , (5.2)

where the sum is over all sites n and m in cluster i, and we have divided
by 2s2

i because each site is counted twice and the number of components
in the sum is s2

i . The radius of gyration of the clusters in Fig. 5.1 is
illustrated by the circles in the figures1.

This provides a measure of the radius of a cluster i. As we see from
Fig. 5.1, clusters of the same size s can have different radii. How can we
then find a characteristic size for a given cluster size s? We find that by
averaging over all clusters of the same size s.

R2
s = 〈R2

i 〉i . (5.3)

where the average is over all clusters of the same size.

5.1.1 Analytical results in one dimension

We can use the one-dimensional percolation system to gain insight into
how we expect Rs to depend on s. For the one-dimensional system, there
is just one cluster for a given size s corresponding to a line of length s.
If the cluster runs from 1 to s, the center of mass is at s/2, and the sum
over all sites runs from 1 to s:

R2
s = 1

s

s∑
i=1

(i− s/2)2 , (5.4)

1 Notice that we could have used another moment q to define the radius. Higher
moments will put more emphasis on the sites that are far from the center of mass.
As the order q approaches infinity, the radius will approach the maximum size of
the cluster, Rmax.
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where we assume that s is so large that we only need to address the
leading term in s, and we do not have to treat even and odd s separately.
This can be expanded to

R2
s = 1

s
[
s∑
i=1

i2 − is+ s2

4 ] (5.5)

= 1
s

[s
3

3 − s
s(s+ 1)

2 + s
s2

4 (5.6)

∝ s2 (5.7)

We have therefore found the result that s ∝ Rs in one dimension —
which is what we expected.

5.1.2 Numerical results in two dimensions

For the one-dimensional system we found that s ∝ Rs. How does this
generalize to higher dimensions? We start by measuring the behavior for
a finite system of size L and with a percolation threshold p. Our strategy
is to generate clusters on a L× L lattice, analyze the clusters, for each
cluster, i, of size si we will find the center of mass and the radius of
gyration, R2

i . For each value of s we will find the average radius, R2
i , by a

linear average. However, for larger values of s we will collect the data in
bins, following the same approach we used to determine n(s, p) — using
logarithmic binning.

First, we introduce a function to calculate the radius of gyration of
all the clusters in a lattice. This is done in two steps, first we find the
center of mass of all clusters, and then we find the radius of gyration.
The center of mass for a cluster i with positions ri,j for j = 1, . . . , si, is

rcm,i = 1
si

si∑
j=1

ri,j , (5.8)

We assume that the clusters are numbered and marked in the lattice
with their index, as done by the [lw,num] = bwlabel(m,4) command.
We run through all the sites, ix,iy, in the lattice. For each site, we find
what cluster i the site belongs to: i=lw(ix,iy). If the site belongs to a
cluster, that is if i>0, we increase the area of that cluster by one:

area(i) = area(i) + 1;

and we add the coordinates for this part of the cluster to the sum for
the center of mass of the cluster
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rcm(i,:) = rcm(i,:) + [ix iy];

Finally, we find the center of mass for each of clusters by dividing rcm
by the corresponding area for each of the clusters:

rcm(:,1) = rcm(:,1)./area;
rcm(:,2) = rcm(:,2)./area;

Second, we follow a similar approach to find the radius of gyration.
We run through all the sites in the cluster, and for each site, we find
the cluster number i it belongs to, and add the sum of the square of the
distance for this site:

dr = [ix iy]-rcm(i,:);
rad2(i) = rad2(i) + dot(dr,dr);

After running through all the sites, we divide by the area, si, to find
the radius of gyration according to the formula

R2
i = 1

si

si∑
j=1

(ri,j − rcm,i)2 , (5.9)

This is implemented in the following function:

function [area,rcm,rad2] = radiusofgyration(lw,num)
%RADIUSOFGYRATION Calculates the radius of gyration of all the clusters
area = zeros(num,1);
rad2 = zeros(num,1);
rcm = zeros(num,2);
% Find center of mass for all the clusters
lwsize = size(lw);
nx = lwsize(1);
ny = lwsize(2);
for ix = 1:nx

for iy = 1:ny
ilw = lw(ix,iy);
if (ilw>0)

area(ilw) = area(ilw) + 1;
rcm(ilw,:) = rcm(ilw,:) + [ix iy];

end
end

end
rcm(:,1) = rcm(:,1)./area;
rcm(:,2) = rcm(:,2)./area;
% Find radius of gyration for all the clusters
for ix = 1:nx

for iy = 1:ny
ilw = lw(ix,iy);
if (ilw>0)

dr = [ix iy]-rcm(ilw,:);
dr2 = dot(dr,dr);
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rad2(ilw) = rad2(ilw) + dr2;
end

end
end
rad2 = rad2./area;
end

We use this function to calculate the average radius of gyration for
each cluster size s and plot the results using the following script:

M = 20; % Nr of samples
L = 400; % System size
p = 0.58; % p-value
allr2 = [];
allarea = [];
for i = 1:M

z = rand(L,L);
m = z<p;
[lw,num] = bwlabel(m,4);
[area,rcm,rad2] = radiusofgyration(lw,num);
allr2 = cat(1,allr2,rad2);
allarea = cat(1,allarea,area);

end
loglog(allarea,allr2,’k.’)

The resulting plots for several different values of p are shown in Fig. 5.2.
We see that that there is an approximately linear relation between R2

s

and s in this double-logarithmic plot, which indicates that there is a
power-law relationship between the two:

R2
s ∝ sx . (5.10)

How can we interpret this relation? Equation (5.10) relates the radius Rs
and the area (or mass) of the cluster. We are more used to the inverse
relation:

s ∝ RDs , (5.11)

where D = 2/x is the exponent relating the radius to the mass of a
cluster. This corresponds to our intuition from geometry. We know that
for a cube of size L, the mass (or volume) of the cube is M = L3. For
a square of length L, the mass (or area) is M = L2, and similarly for a
circle M = πR2, where R is the radius of the circle. For a line of length
L, the mass is M = L1. We see a general trend, M ∝ Rd, where R is a
characteristic length for the object, and d describes the dimensionality of
the object. If we extend this intuition to the relation in (5.11), which is
an observation based on Fig. 5.2, we see that we may interpret D as the
dimension of the cluster. However, the value of D is not an integer. We
have indicated the value of D = 1.89 with a dotted line in Fig. 5.2. (The
value of D is well know for the two-dimensional percolation problem,
see Table 4.1.4). This non-integer value of D may seem strange, but it
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Fig. 5.2 Plot of R2
s as function of s for simulations on two-dimensional percolation

system with L = 400. The largest cluster for each value of p is illustrated by a circle. The
dotted line shows the curve R2

s ∝ s2/D for D = 1.89.

is fully possible, mathematically, to have non-integer dimensions. This
is a feature frequently found in fractal structures, and the percolation
clusters as p approaches pc is indeed a good example of a self-similar
fractal. We will return to this aspect of the geometry of the percolation
system in Sect. ??.

The largest cluster and its corresponding radius of gyration is indicated
by a circle for each p value in Fig. 5.2. We see that as p approaches pc,
both the area and the radius of the largest cluster increases. Indeed, this
corresponds to the observation we have previously made for the char-
acteristic cluster size, sξ. We may define a corresponding characteristic
cluster radius, Rsξ . This gives:

sξ ∝ RDsξ . (5.12)

This length is a characteristic length for the system at a given value of p,
corresponding to the largest cluster size or the typical cluster size in the
system. In Sect. 5.2 we see how we can relate this length directly to the
cluster size distribution.

5.1.3 Scaling behavior in two dimensions

We have already found that the characteristic cluster size sξ diverges as
a power law as p approaches pc:

sξ ' s0 (p− pc)−1/σ , (5.13)

when p < pc. The behavior is similar when p > pc, but the prefactor s0
may have a different value. How does Rsξ behave when p approaches pc?
We can find this by combining the scaling relations for sξ and Rsξ . We
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remember that Rsξ ∝ s
1/D
ξ . Therefore

Rsξ ∝ s
1/D
ξ ∝

(
(p− pc)−1/σ

)1/D
∝ (p− pc)−1/σD , (5.14)

where we introduce the symbol ν = 1/(σD). For two-dimensional per-
colation the exponent ν is a universal number, just like σ and D. This
means that it does not depend on details such as the lattice type or the
connectivity of the lattice, although it does depend on the dimensionality
of the system. We know the value of ν reasonably well in two dimensions,
ν = 4/3. For values in other dimensions see Table 4.1.4.

The arguments we have provided here is again an example of scaling
argument. In these arguments we are only interested in the exponent in
the scaling relation, the functional form, and not in the values of the
constant prefactors.

5.2 Geometry of finite clusters

We have defined the characteristic length Rsξ through the definition
of the characteristic cluster size, sξ, and the scaling relation s ∝ RDs .
However, it may be more natural to define the characteristic length of
the system as the average radius and not the cut-off radius. We have
introduced several averages for the radius of gyration. For each cluster i
we can calculate the radius of gyration, Ri. We can then find the average
radius of gyration for a cluster of size s by averaging over all clusters i
of size s:

R2
s = 〈R2

i 〉i , (5.15)

where the average is over all clusters i of the same size s. This gives us
the radius of curvature Rs which we found to scale with cluster mass s
as s ∝ RDs .

For the cluster sizes, we introduced an average cluster size S, which is

S = 1
ZS

∑
s

s sn(s, p) , ZS =
∑
s

sn(s, p) . (5.16)

We can also similarly introduce an average radius of gyration, R, by
averaging Rs over all cluster sizes:

R = 1
ZR

∑
s

R2
ss
ksn(s, p) , ZR =

∑
s

sksn(s, p) . (5.17)

Here, we have purposely introduced an unknown exponent k. We are to
some extent free to choose this exponent, although the average needs
to be finite, and the exponent will determine how we small and large
clusters are weighed in the sum. A natural choise may be to choose k = 1
so that we get terms R2

ss
2n(s, p) in the sum. However, the results we
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Fig. 5.3 A plot of ξ as a function of p for a L = 64, 128, 256 and 512 system as a function
of p. We observe that ξ diverges when p→ pc. We notice that the correlation length does
not diverge, but crosses over as a result of the finite system size.

present here will not change in any significant way, expect for different
prefactors to the scaling relations, if you choose a larger value of k. Our
definition of the average radius of gyration is therefore:

R = 1
ZR

∑
s

R2
ss

2n(s, p) , ZR =
∑
s

s2n(s, p) , (5.18)

where we notice that the normalization sum ZR = S is the average cluster
size.

Fig. 5.3 shows a plot of the average R as a function of p for various
systems sizes L. We see that R diverges as p approaches pc. How can we
develop a theory for this behavior?

We know that the cluster number density n(s, p) has the approximate
scaling form

n(s, p) = s−τF (s/sξ) , sξ ∝ |p− pc|−1/σ . (5.19)

We can use this to calculate the average radius of gyration, R, when p is
close to pc.

The average radius of gyration is

R2 =
∑
sR

2
ss

2n(s, p)∑
s s

2n(s, p) =
∫∞

1 R2
ss

2−τF (s/sξ)ds∫∞
1 s2−τF (s/sξ)ds

(5.20)

∝
∫∞

1 s2/Ds2−τF (s/sξ)ds∫∞
1 s2−τF (s/sξ)ds

, (5.21)

where we have inserted R2
s ∝ s2/D. This expression is valid when s < sξ.

We insert it here since F (s/sξ) goes rapidly to zero when s > sξ, and
therefore only the s < sξ values will contribute significantly to the
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Fig. 5.4 Illustration of the largest cluster in 512× 512 systems for p = 0.55, p = 0.57,
and p = 0.59. The circles illustrate the radius of gyration of the largest cluster, and the
boxes show the size of the average radius of gyration, R = 〈Rs〉. We observe that both
lengths increase approximately proportionally as p approaches pc.

integral. We change variables to u = s/sξ, getting:

R2 ∝
s

2/D+3−τ
ξ

∫∞
1/sξ u

2/D+2−τF (u)du
s3−τ
ξ

∫∞
1/sξ u

2−τF (u)du
(5.22)

∝ s
2/D
ξ

∫∞
0 u2/D+2−τF (u)du∫∞

0 u2−τF (u)du ∝ s
2/D
ξ , (5.23)

where the two integrals over F (u) simply are numbers, and therefore
have been included in the constant of proportionality.

This shows that R2 ∝ s
2/D
ξ . We found above that Rsξ ∝ s

2/D
ξ . There-

fore, R ∝ Rsξ ! These two characteristic lengths therefore have the
same behavior. They are only different by a constant of proportion-
ality, R = cRsξ . We can therefore use either length to characterize the
system — they are effectively the same.

Fig. 5.4 illustrates the radius of gyration of the largest cluster with a
circle and the average radius of gyration, R, indicated by the length of
the side of the square. As p increases, both the maximum cluster size
and the average cluster size increases — according to the theory they
are indeed proportional to each other and therefore increase in concert.

5.2.1 Correlation length

We can also measure the typical size of a cluster from the correlation
function. The correlation function g(r, p), which is the probability that
two sites, which are a distance r apart, are connected and part of the
same cluster for a system with occupation probability p. We can use
this to define the average squared distance between two sites i and j
belonging to the same cluster as

ξ = 〈
∑
j r

2
ijg(rij ; p)∑
j g(rij ; p)

〉i . (5.24)
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where the sum is over all sites j and the average is also over all sites
i. The denominator is a normalization sum, which corresponds to the
average cluster size, S. You can think of this sum in the following way:
For a site i, we sum over all other sites j in the system. The probability
that site j belongs to the same cluster as site i is g(rij ; p), and the mass
of the site at j is 1. The average number of sites connected to site at i is
therefore:

S(p) = 〈
∑
j

g(rij ; p) =
∑
j

g(rij ; p)〉i , (5.25)

where we average over all the the sites i in the system.
This means that we can connect g(r; p) and ξ to the average cluster

size S. Let us now see if we can calculate the behavior of g(r; p) in a
one-dimensional system, how to measure it in a two-dimensional system,
and how to develop a theory for it for any dimension.

One-dimensional system

In Sect. we found that for the one-dimensional system the correlation
function g(r) is

g(r) = pr = e−r/ξ , (5.26)

where ξ = − 1
ln p =' 1/(1 − pc) is called the correlation length. The

correlation length diverges as p→ pc = 1, ξ ' (1− pc)−ν , where ν = 1.
We can generalize this behavior by writing the correlation function in

a more general scaling form for the one-dimensional system

g(r) = r0f(r/ξ) , (5.27)

where f(u) decays rapidly when u is larger than 1. We will assume
that this behavior is general. Also for other dimensions, we expect the
correlation function to decay rapidly beyond a length, which corresponds
to the typical extent of clusters in the system.

Measuring the correlation function

For the two- or three-dimensional system, we cannot find an exact solution
for the correlation function. However, we can still measure it from our
simulations, although such measurements typically are computationally
intensive. How can we measure it? We can loop through all sites i and
j and find their distance rij . We estimate the probability for two sites
at a distance rij to be connected to count how many of the sites that
are a distance rij apart are connected, compared to how many sites
in total are a distance rij apart. This is done through the following
implementation, which returns the correlation function g(r) estimated
for a lattice lw which contains the cluster indexes for each site, similar
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to what is returned by the [lw,num] = bwlabel(m,4) command. First,
we write a subroutine to find the correlation function for a given lattice
lw:

function [r,pr] = perccorrfunc(lw)
%PERCCORRFUNC calculates the correlation function based on of all
%the clusters

s = size(lw); nx = s(1); ny = s(2);
L = max([nx ny])
r = (1:2*L)’;
pr = zeros(2*L,1);
npr = zeros(2*L,1);
for ix1 = 1:nx

for iy1 = 1:ny
lw1 = lw(ix1,iy1);
for ix2 = 1:nx

for iy2 = 1:ny
lw2 = lw(ix2,iy2);
dx = (ix2-ix1);
dy = (iy2-iy1);
rr = hypot(dx,dy);
nr = ceil(rr)+1;
pr(nr) = pr(nr) + (lw1==lw2)*(lw1>0);
npr(nr) = npr(nr) + 1;

end
end

end
end
pr = pr./npr;

end

and then we use this function to find the correlation function for
several values of p and for several values of L:

M = 1; % Nr of samples
L = 100; % System size
pp = [0.55 0.57 0.59]; % p-value
lenpp = length(pp);
pr = zeros(2*L,lenpp);
rr = zeros(2*L,lenpp);
for i = 1:M

z = rand(L,L);
for ip = 1:lenpp

p = pp(ip)
m = z<p;
[lw,num] = bwlabel(m,4);
[r,g] = perccorrfunc(lw);
pr(:,ip) = pr(:,ip) + g;
rr(:,ip) = rr(:,ip) + r;

end
end
pr = pr/M;
r = r/M;
% Plot data - linearly binned
for ip = 1:lenpp

loglog((1:2*L-1),pr(2:end,ip),’+’)
hold all
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Fig. 5.5 A plot of g(r; p) as a function of r for various values of p. The function approaches
a power-law behavior g(r) ∝ rx when p approaches pc.

end

Fig. 5.5 shows the resulting plots of the correlation function g(r; p) for
various values of p for an L = 400 system. This plot shows that there is
indeed a cross-over length ξ, beyond which the correlation function falls
rapidly to zero. But there appears to be a scaling regime for r > ξ where
the correlation function is approximately a power-law. The plot suggests
the following functional form

g(r; p) = rxf(r/ξ) , (5.28)

where the cross-over function f(u) falls rapdily to zero when u > 1
and is approximately constant when u < 1. When p approaches pc, the
correlation length ξ grows to infinity, and the correlation function g(r; pc)
approaches a power-law rx for all values of r.

Theory for the correlation function

Based on these observations, we are motivated to develop a theory for the
behavior of the correlation function. First, we know that when p = pc, the
average cluster size, S diverges. We can express S using the correlation
function as
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S =
∑
j

g(r, pc) =
∫
g(r) drd =

∫∫
g(r)rd−1drdΩ , (5.29)

where the integral is written in spherical coordinates in a d-dimensional
space, and the integration over Ω indicates an integration over all angles.
For this integral to diverge, the function g(r) cannot have an exponential
cut-off, and it needs to diverge slower than a power-law with exponent
−d. That is, in order for S to diverge at p = pc, we know that at p = pc:

g(r; pc) ∝ r−(d−2+η) , (5.30)

where η is a positive number, randing from η = 0 for the Bethe lattice
(infinite dimensions) to η = 1 for one-dimensional percolation, as we
found above.

This corresponds both to the results we found for the one-dimensional
system, and to the results we found from numerical measurements for
the two-dimensional system. In addition, we know that for p 6= pc, the
correlation function should have a cut-off proportional to ξ, because the
probability for two sites to be connected goes exponentially to zero with
distance when the distance is significantly larger than ξ. These features
indicates that g(r, p) has a scaling form, and we propose the following
scaling ansatz for g(r, p):

g(r, p) = r−(d−2+η)f(r
ξ

) . (5.31)

The scaling function f(r/ξ) should be a constant when r � ξ, and in
this range we cannot discern the behavior from the behavior of a system
at pc. For r � ξ, we expect the function to have an exponential form.
The scaling function will therefore have the following behavior:

f(u) =
{
constant when u� 1
exp(−u) whenu� 1 . (5.32)

We can use this scaling form to determine the exponent η. We know that
the average cluster size S is given as an integral over g(r; p), that is

S =
∑
j

g(r; p) =
∫
g(r; p)dr . (5.33)

Let us use the scaling form for g(r; p) to calculate this integral when p
approaches pc, but is not equal to pc.
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S =
∫
g(r; p)dr =

∫ ∞
1

r−(d−2+η)f(r/ξ)drd (5.34)

=
∫ ∞

1
r−(d−2+ηrd+1 exp(−r/ξ)drdΩ ∝

∫ ∞
1

r1−η exp(−r/ξ)dr (5.35)

= ξ2−η
∫

(r
ξ

)1−η exp(−r/ξ)dr
ξ

= ξ2−η
∫
u1−η exp(−u)du ∝ ξ2−η

(5.36)

We already know the scaling behavior of S when p→ pc:

S ∝ |p− pc|−γ ∝ ξ2−η , (5.37)

Consequently, we now know the behavior of ξ:

ξ ∝ |p− pc|−γ/(2−η) , (5.38)

where η is a number between 0 (for the infinite-dimensional system) and
1 (for the one-dimensional system). Indeed we remember that for the
one-dimensional system we found that ξ ∝ |p − pc|−1 and that γ = 1,
which is indeed consistent with η = 1.

What does this teach us about the two- and three-dimensional system?
For these systems, we already have related the average cluster size to the
average radius of gyration, R:

S ∝ s3−τ
ξ ∝ R(3−τ)/D , (5.39)

and we know that the average radius of gyration behaves as

R ∝ Rsξ ∝ s
1/D
ξ ∝ |p− pc|−1/σD . (5.40)

We interpret both ξ and R (and Rsξ) as characteristic lengths. Let us now
make a daring assumption! Let us assume that ξ and R are proportional
— that there is only one characteristic length in the system. This allows
us to write:

R ∝ |p− pc|−1/σD ∝ |p− pc|−γ/(2−η) . (5.41)

We can use this relation to find η, given that the assumption of ξ ∝ R is
correct, or to demonstrate that ξ ∝ R by measuring η and checking for
consistency with this equation.

We have already done this for the one-dimensional system, where
σ = D = 1 and γ = 1, and therefore η = 1, which is indeed what we
found above. Similarly, we can check this result for the Bethe-lattice,
where we also find that the assumption holds. Simulations and theoretical
arguments indeed support the assumption. We will therefore in the
following only use one symbol for all the characteristic lengths since they
are proportional to each other and therefore only differ (scaling-wise) by
a constant of proportionality:
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ξ ∝ R ∝ Rsξ ∝ |p− pc|−ν . (5.42)

We will typically only use the symbol ξ for this characteristic length of
the system.

The characteristic length ξ and system size L

The introduction of a single characteristic length ξ, corresponding to
the characteristic cluster size sξ through sξ ∝ ξD, allows us to discuss
what happens to a system that is close to, but not exactly at, pc. Fig. ??
shows a plot of ξ(p) for two-dimensional systems with L = 100, 200, and
400. Notice that since ξ diverges as p approaches pc, and we are in a
finite system of size L, we will not observe clusters that are larger than
L. This means that if we measure ξ(p) and we try to estimate pc we only
know that it is somewhere in the region where ξ(p) > L, but we do not
really know where. This also means that if we are studying a system
where p is different from, but close to pc, we need to study clusters that
are at least of the size of ξ in order to notice that we are not at p = pc.

If we study a system of size L� ξ, we will typically observe a cluster
that spans the system, since the typical cluster size, ξ, is larger than
the system size. We are therefore not able to determine if we observe a
spanning cluster because we are at pc or only because we are sufficiently
close to pc. We will start to observe a spanning cluster when ξ ' L,
which corresponds to

ξ−(pc − p)−ν = ξ ' L , (5.43)

and therefore that
(pc − p) ' (L/ξ−)−(1/ν) , (5.44)

when p < pc, and a similar expression for p > pc. This means that when
we observe spanning we can only be sure that p is within a certain range
of pc:

|p− pc| = cL−1/ν . (5.45)

The correlation length ξ is therefore the natural length characterizing the
geometry of the cluster. At distances smaller than ξ, the system behaves
as if it is at p = pc. However, at distances much larger than ξ, the system
is essentially homogeneous.

As we can observe in fig. 5.6 the system becomes more and more
homogeneous when p goes away from pc. We will now address this feature
in more detail when p > pc.
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Fig. 5.6 Illustration of the largest cluster in 512×512 systems with p > pc, for p = 0.593,
p = 0.596, and p = 0.610. The circles illustrate the radius of gyration of the largest cluster.
We observe that the radius of gyration increases as p approaches pc.

5.3 Geometry of the spanning cluster

How can we develop a scaling theory for the spanning cluster? As p is
increased from below towards pc, the characteristic cluster size ξ diverges.
However, the size of a characteristic cluster of size ξ is expected to follow
the scaling relation sξ ∝ ξD. For a given value of p we can therefore
choose the system size L to be equal to ξ, L = ξ(p). In this case, a cluster
of size ξ would correspond to a cluster of size L, which is a spanning
cluster in this system. For this system of size L = ξ, we therefore expect
the mass of the spanning cluster to beM(p, L) ∝ ξD ∝ LD. This suggests
(but does not really prove) that the mass of the spanning cluster in a
system close to or at pc scales as M(p, L) ∝ LD.

The density of the spanning cluster at p = pc therefore has the following
behavior:

P (p, L) = M(p, L)
Ld

∝ LD/Ld ∝ LD−d . (5.46)

Because we know that P (p, L)→ 0 when L→∞, we deduce that D < d.
The value of D in two-dimensional percolation is D = 91/48 ' 1.90.
Values for other systems can be found in Table 4.1.4.

Fractal geometry of the spanning cluster

What does this result tell us about the geometry of the percolation
cluster? First, we observe that the density of the cluster depends on the
system size, L, on which we are observing it. This is a general feature
of a fractal with a dimension different from the Euclidean dimension in
which it is embedded. For any object that obeys the scaling relation

M ∝ LD , (5.47)

where D < d, and d is the dimension of the Euclidean dimension, we
have that the density ρ is
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ρ ∝ M

Ld
∝ LD−d , (5.48)

which depends on system size L. We also notice that the density decreases
as the system size increases.

Notice that these features do not represent something new, but are
simply extensions of features we are very well familiar with. For example,
consider a thin, flat sheet of thickness h, and dimensions L × L, placed
in a three-dimensional space. If we cut out a volume of size L× L× L,
so that L� L, the mass of the sheet inside that volume is

M = hL2 , (5.49)

which implies that the density of the sheet is

ρ = hL2

L3 = hL−1 . (5.50)

It is only in the case when we use a two-dimensional volume L× L with
a third dimension of constant thickness H larger than h, that we recover
a constant density ρ independent of system size.

5.4 Spanning cluster above pc

Let us now return to the discussion of the mass M(p, L) of the spanning
cluster for p > pc in a finite system of size L. The behavior of the
percolation system for p > pc is illustrated in fig. 5.6. We notice that
the correlation length ξ diverges when p approaches pc. At lengths larger
than ξ, the system is effectively homogeneous because there are no holes
significantly larger than ξ. There are two types of behavior, depending
on whether L is larger than or smaller than the correlation length ξ.

When L� ξ, we are again in the situation where we cannot discern p
from pc because the size of the holes (empty regions described by ξ when
p > pc) in the percolation cluster is much larger than the system size.
In this case, the mass of the percolation cluster will follow the scaling
relation s ∝ RDs , and the finite section of size L of the cluster will follow
the same scaling if we assume that the radius of gyration of the cluster
inside a region of size L is proportional to L:

M(p, L) ∝ LD when L� ξ . (5.51)

In the other case, when L � ξ, and p > pc, the typical size of a
hole in the percolation cluster is ξ, as illustrated in fig. 5.6. This means
that on lengths much larger than ξ, the percolation cluster is effectively
homogeneous. We can therefore divide the L × L system into (L/ξ)d
regions of size ξ, so that for each such region, the mass if m ∝ ξD. The
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Fig. 5.7 Illustration of the spanning cluster in a 512× 512 system at p = 0.595 > pc. In
this case, the correlation length is ξ = 102. The system is divided into regions of size ξ.
Each such region has a mass M(p, ξ) ∝ ξD, and there are (L/ξ)d ' 25 such regions in
the system.

total mass of the spanning cluster is therefore the mass of one such region
multiplied with the number of regions:

M(p, L) ∝ (ξD)(L/ξ)d ∝ ξD−dLd . (5.52)

We can now introduce the complete behavior of the mass, M(p, L), of
the spanning cluster for p > pc:

M(p, L) ∝
{
LD L� ξ
ξD−dLd L� ξ

. (5.53)

This form can be rewritten in the standard scaling form as:

M(p, L) = LDY (L
ξ

) , (5.54)

where
Y (u) =

{
constant u� 1
ud−D u� 1 . (5.55)

5.5 Fractal cluster geometry

What happens to the scaling behavior of the system if we change the
effective length-scale by a factor b?. That is, what happens if we introduce
a new set of variables ξ′ = ξ/b, and L′ = L/b.

We can use our scaling form M(p, L) = LDY (L/ξ), to find that

M(p′, L′) = (L′)DY (L′/ξ′) = (L/b)DY (L/ξ) = b−DM(p, L) , (5.56)
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Fig. 5.8 Illustrations of the spanning cluster (shown in red), and the other clusters
(shown in gray) at p = pc in a L = 900 site percolation system. a The 900× 900 system. b
The central 300× 300, and part. c The central 100× 100. Each step represents a rescaling
by a factor 3. However, at p = pc, the correlation length is infinite, so a rescaling of the
length-scales should not influence the geometry of the cluster, which is evident from the
pictures: The percolation clusters are indeed similar in a statistical manner.

where we have written p′ to indicate that a rescaling of the correlation
length corresponds to a change in p - reducing the correlation length
corresponds to moving p further away from pc.

This shows that the mass displays a simple rescaling when the system
size is rescaled - functions that display this simple form of rescaling are
called homogeneous functions.

The change of length-scale results in a change of correlation length,
except for the cases when the correlation length is either zero or infinity.
The correlation length is zero for p = 0, and for p = 1. These two values
of p therefore corresponds to trivial fix-points for the rescaling: The
scaling behavior does not change under this rescaling. The correlation
length is infinite for p = pc, which implies that the correlation length
does not change when the system size is rescaled by a factor b. This is
illustrated in fig. 5.8, which shows that the structure of the percolation
cluster at p = pc does not change significant.

Self-similar fractals

The spanning cluster shows a particular simple scaling behavior at p = pc.
That is when the correlation length increases to infinity — there is
therefore no other length-scale in our system except the system size L
and the lattice unit a. When p = pc we found that the mass of the
spanning cluster displayed the scaling relation:

M(L) = b−DM(bL) , (5.57)

corresponding to a rescaling by a factor b. This is an example of self-
similar scaling.

Let us address self-similar scaling in more detail by addressing an
example of a deterministic fractal, the Sierpinski gasket [?]. The Sierpinski
gasket can be defined iteratively. We start with a unit equilateral triangle
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Fig. 5.9 Illustration of three generations of the Sierpinski gasket starting from an
equilateral triangle.

as illustrated in Fig. 5.9. We divide the triangle into 4 identical triangles,
and remove the center triangle. For each of the remaining triangles,
we continue this process. The result set of points after infinitely many
iterations is called the Sierpinski gasket. This set contains a hierarchy
of holes. We also notice that the structure is identical under (a specific)
dilational rescaling. If we take one of the tree triangles generated in the
first step and rescale it to fit on top of the initial triangle, we see that it
reproduces the original identically. This structure is therefore a fractal.

The dimensionality of the structure is related to the relation between
the rescaling of the mass and the length. If we take one of the three
triangles from the first iteration, we need to rescale the x and the y axes
by a factor 2. We can write this as a rescaling of the system size, L, by a
factor 2

L′ = 2L . (5.58)

Through this rescaling we get three triangles, each with the same mass
as the original triangle. The mass is therefore rescaled by a factor 3.

M ′ = 3M . (5.59)

If we write the mass as a function of length, M(L), we can formulate the
scaling as

M(2L) = 3M(L) , (5.60)

or, equivalently,
M(L) = 3−1M(2L) . (5.61)

If we compare this with the general relation,

M(L) = b−DM(bL) , (5.62)

we see that
2−D = 3−1 , (5.63)

giving
D = ln 3

ln 2 . (5.64)

We will use this rescaling relation as our definition of fractal dimension.
The relation corresponds to the relationM = LD for the mass. Let us also
show that this relation is indeed consistent with our notion of Euclidean
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dimension. For a cube of size L, the mass is L3. If we look at a piece
of size (L/2)3, we see that we need to rescale it by a factor of 2 in all
direction to get back to the original cube, but the mass must be rescaled
by a factor 8. We will therefore find the dimension from

D = ln 8
ln 2 = 3 , (5.65)

which is, as expected, the Euclidean dimension of the cube.
Typically, the mass dimension is measured by box counting . The

sample is divided into regular boxes where the size of each side of the box
is δ. The number of boxes, N(δ), that contain the cluster are counted as
a function of δ. For a uniform mass we expect

N(δ) = (L
δ

)d , (5.66)

and for a fractal structure we expect

N(δ) = (L
δ

)D , (5.67)

We leave it as an exercise for the reader to address what happens when
δ → 1, and when δ → L.

5.6 Exercises

Exercise 5.1: Mass scaling of percolating cluster

a) Find the mass M(L) of the percolating cluster at p = pc as a function
of L, for L = 2k, k = 4, . . . , 11.

b) Plot log(M) as a function of log(L).

c) Determine the exponent D.

Exercise 5.2: Correlation function

a) Write a program to find the correlation function, g(r, p, L) for L = 256.

b) Plot g(r, p, L) for p = 0.55 to p = 0.65 for L = 256.

c) Find the correlation length ξ(p, L) for L = 256 for the p-values used
above.

d) Plot ξ as a fuction of p− pc, and determine ν.
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6.1 Overview

From our discussion of the correlation length, we learned that the per-
colation system has three intrinsic length-scales: the size of a site, the
system size L, and the correlation length ξ. Finite size scaling provides
a theoretical framework to address the effect of finite system sizes in
percolation systems. However, the techniques developed here can be
extended also to phase transitions and critical phenomena in general, to
the study of fractals, and to other systems that display scaling.

Finite size scaling addresses the change in behavior of a system with
a finite system size. Typically, we divide the behavior into two main
categories: when the system size L is much smaller than the correlation
length ξ, (L� ξ), the system appears to be on the percolation threshold.
However, when L is much larger than ξ, the geometry is essentially
homogeneous at lengths longer than ξ.

Typically, we are interested studying the thermodynamic limit (L→
∞) of a quantity X(p) which behaves as a power-law when p → pc.
Examples are: P (p), S(p), and M(p), and we will later see that also
most physical properties such as the conductivity of the system behaves
similarly. That is

X(p) ∝ (p− pc)−γx , (6.1)

where the exponent γx determines the behavior close to pc.
We will study such a system by making the finite size scaling ansatz:

X(p, L) = L
γx
ν X

(
L

ξ

)
, (6.2)

or, equivalently,
X(p, L) = ξ

γx
ν X̃

(
L

ξ

)
, (6.3)

85
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where we have left it as an exercise for the reader to show the equivalence
of the two expressions.

We will then infer the behavior in the limits when ξ � L, and ξ � L to
determine the form of the scaling function X (u), and use this functional
form as a tool to study the behavior of the system.

6.2 Finite size

So far, we have chosen to ignore the effects of finite lattice sizes. However,
our discussion of correlation lengths shows us that we cannot ignore a
finite lattice size, even if the lattice size is large. When p approaches pc
the percolation system will eventually reach a correlation length ξ that
exceeds the finite system size, and from that point we cannot discern
a finite from an infinite cluster. We will therefore need a systematic
way to handle the effect of a finite system size. We will develop such
a systematic approach using the methods we now have developed to
address the cross-over of the cluster mass.

6.3 Spanning cluster

Let us now redo the discussion for the mass M and the spanning cluster
density P , but with a finite system size L. We will look at the spanning
cluster on a finite lattice , and address the massM(p, L), which is related
to P (p, L) according to:

P (p, L) = M(p, L)
Ld

. (6.4)

Our approach to finite size scaling problems will always be to assume
that the finite size enters through a scaling function modifying the
asymptotic behavior. That is, we will assume that

P (p, L) = (p− pc)βX(L
ξ

) . (6.5)

In the case when L→∞ we want to recover the result from the thermo-
dynamic limit, that is, we expect that X(u) is a constant when u� 1.

What behavior do we expect in the limit when ξ � L. This is the case
when the correlation length is much larger than the system size, and we
expect the behavior to be independent of the correlation length, but only
depend on L. That is, we expect that

P (p, L) = (p− pc)βX(L
ξ

) = ξ−β/νX(L
ξ

) = Y (L) , (6.6)
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where we have used that

ξ = ξ0(p− pc)−ν , (6.7)

when p > pc. In order to get rid of the factor ξ−β/ν in front of the function,
we require that the function X(u) has a similar power-law behavior in
the limit of small u, so that the ξ in front of X and the ξ inside the X
cancel each other. We achieve this by setting

X(u) ∝ u−β/ν . (6.8)

We have therefore found that the scaling function X has the form

X(u) =
{
constant u� 1
u−β/ν u� 1 . (6.9)

We notice that in the limit when L� ξ we get that P (p, L) ∝ L−β/ν .
We can then recover the full behavior of the order parameter:

P (p, L) ∝
{

(p− pc)β L� ξ

L−β/ν L� ξ
. (6.10)

We could also rewrite this as a function of ξ, to get

P (p, L) ∝
{
ξ−β/ν L� ξ

L−β/ν L� ξ
, (6.11)

which the reader should be able to relate to the results we found previ-
ously.

We also get the finite size scaling behavior of the mass M(p, L) =
P (p, L)Ld

M(p, L) ∝
{

(p− pc)βLd L� ξ

Ld−β/ν L� ξ
. (6.12)

Normally we write
M ∝ LD , (6.13)

where D denotes the fractal dimension, and we see that the fractal
dimension can be related to the exponents ν and β:

D = d− β/ν , (6.14)

which call a hyper-scaling relation , since it also includes the spatial
dimension d.

We could have carried through the same argument by initially assuming
that the finite-size scaling form of the mass is

M(p, L) = LDY (L
ξ

) , (6.15)
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which we did in detail above.

6.4 Average cluster size

Let us address the behavior of S(p, L), the average cluster size in a finite
system of size L. When p approaches pc, the cluster cannot grow larger
than the system size. The average cluster size will therefore not diverge,
but reach a maximum determined by L, as illustrated in fig. 6.1.

What behavior do we expect for S? We know that in the thermody-
namic limit, S ∝ |p− pc|−γ . However, for finite L and ξ →∞, we expect
S only to depend on L, S ∝ LX , where the exponent X is unknown. We
will therefore make the scaling ansatz that

S(p, L) = LXΣ(L
ξ

) . (6.16)

Our assumption that S only depends on L when L � ξ, implies that
Σ(u) approaches a constant when u� 1.

However, we also know that as long as L � ξ, S diverges when p
approaches pc according to:

S ∝ |p− pc|−γ ∝ ((|p− pc|−ν)−1/ν)−γ ∝ ξγ/ν , (6.17)

because we know that ξ ∝ |p−pc|−ν . In order to cancel the L dependence
when L� ξ, and ξ →∞, the function Σ(u) must be a power-law with
exponent −X: Σ(u) ∝ u−X , when u
gg1. Using the finite size scaling ansatz when L� ξ gives

S = LXΣ(L
ξ

) ∝ LX(L
ξ

)−X ∝ ξX . (6.18)

Comparison with the exponent in eq. 6.17 shows that X = γ/ν, and we
can therefore write the finite size scaling behavior as

S(p, L) = Lγ/νΣ(L
ξ

) , (6.19)

where the scaling function Σ has the following behavior

Σ(u) =
{
constant u� 1
u−

γ
ν u� 1 . (6.20)

This result shows that if we plot L−γ/νS(p, L) as a function of L|p− pc|ν
we would expect to have all the data collapse onto a common functional
form corresponding to Σ(u). However, we could make the data-collapse
even simpler, by integrating the exponent of |p − pc into the scaling
function:
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Fig. 6.1 (a) A plot of the average cluster size S(p, L) as a function of p for various L.
(b) A data-collapse plot of the rescaled average cluster size Lγ/νS(p, L) as a function of
L1/ν(p− pc) for various L.

S(p, L) = Lγ/νΣ(L(p− pc)ν) = Lγ/νΣ̄(L1/ν(p− pc)) . (6.21)

The data-collapse plot in fig. 6.1 shows that our theory indeed provides
a reasonable data-collapse for two-dimensional percolation.

6.5 Percolation threshold

Let us see see how we can use finite size scaling to understand a finite
system size will affect the effective percolation threshold .

Let us make a finite size scaling theory for the percolation probability
Π(p, L) for a finite system of size L.

We will start with the assumption that
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Π(p, L) = ξ0f(L
ξ

) (No power dependence on ξ) (6.22)

= f(L
ξ

) (6.23)

= f( L

ξ0(p− pc)−ν
) (6.24)

= f(L(p− pc)ν
ξ0

) (6.25)

= f̂([L1/ν(p− pc)]ν) (6.26)
= Φ[(p− pc)L1/ν ] (6.27)

where we have used that ξ = ξ0(p − pc)−ν when p > pc, and where
f̂(u) = f(u/ξ0), and Φ(u) = f̂(uν).

We can use this finite size scaling ansatz (theory) to find a way to
estimate pc. Let us fix a value x = 0.8, and find the p which gives
Π(p) = x. This value of p is a function of L and is denoted:

pΠ=x(L) (6.28)

Our scaling ansatz gives us that

x = Φ[(pΠ=x(L)− pc)L1/ν ] , (6.29)

which can be solved as

(pΠ=x − pc)L1/ν = Φ−1(x) = Cx , (6.30)

where it is important to realize that the right hand side is now a number
which only depends on the x and not on L. We can therefore rewrite this
as

pΠ=x − pc = CxL
−1/ν , (6.31)

If we know ν, we see that this is a method to estimate the value of
pc. However, we can also do this without knowing the value of ν, and
it will be a good way to estimate both ν and pc at the same time. We
generate plots of pΠ=x as a function of L−1/ν for several values of x, and
we modify the values of ν until we get a straight line, in that case we
can read of the intersect with the x axis as the value for pc.

Actually, we can do even better by noticing that for two x values x1
and x2, we get

dp = pΠ=x1(L)− pΠ=x2(L) = (Cx1 − Cx2)L−ν , (6.32)

and we can therefore plot log(dp) as a function of log(L) to get ν, and
then use this to estimate pc.
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As an exercise, the reader is encouraged to demonstrate that this
scaling ansatz is valid for d = 1, and in this case find Cx explicitly.

Advanced
We can make our theory even more elegant by looking at the deriva-
tive of Π instead of Π.

What is the interpretation of Π ′ = dΠ/dp? Since we know that∫ 1

0
Πdp = p , (6.33)

we find that Π ′ is normalized∫ 1

0
Π ′dp = 1 . (6.34)

Our interpretation of Π ′ is that Π ′(p)dp is the probability that
the system percolates for the first time in the interval from p to
p+dp. In an infinite system we know that Π is a step-function which
goes abruptly from 0 to 1 at pc. The derivative is the delta-function,
which is zero everywhere, except in a small region around pc.

We use our scaling ansatz to find the derivative:

Π ′ = L1/νΦ′[(p− pc)L1/ν ] . (6.35)

In particular we find that

Π ′(pc) = L1/νΦ′[0] . (6.36)

We also find that position of the maximum of Π ′ is given by the
second derivative

Π ′′ = L2/νΦ′′[(p− pc)L1/ν ] . (6.37)

and we will be looking for where Π ′′ = 0. Let us suppose that the
value x0 makes the second derivate zero, that is, suppose that Φ′(x)
has a maximum at x = x0.

At the maximum of Φ′ we have that

(pmax − pc)L1/ν = x0 , (6.38)

and therefore
pmax = pc + x0

L1/ν . (6.39)

In each numerical experiment we are really measuring an effective
pc, but as L→∞ we see that peff → pc. The way it goes to pc tells
us something about ν.
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Because Π ′ is a probability density, we can also calculate the
average p of this distribution, that is the average p at which we
first get a percolation cluster in a system of size L. Let us call this
quantity 〈p〉.

〈p〉 =
∫ 1

0
pΠ ′(p)dp (6.40)

= L−1/ν
∫ 1

0
pL1/νΦ′[(p− pc)L1/ν ]dpL1/ν (6.41)

=
∫ 1

0
(p− pc)L1/νΦ′[(p− pc)L1/ν ]dp+ pc

∫ 1

0
Π ′dp (6.42)

where the last integral is the normalization integral, and is 1.
We therefore get the result that

〈p〉 = pc + L−1/ν
∫
xΦ′[x]dx , (6.43)

where the last integral is simply a constant, so that we can write the
average critical percolation threshold in a finite system size as

〈p〉 = pc + CL−1/ν (6.44)

Which is not located exactly at pc but the shift decreases with L.
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We have now learned that when p approaches pc, the correlation length
grows to infinity, and the spanning cluster becomes a self-similar fractal
structure. This implies that the spanning cluster has statistical self-
similarity: if we cut out a piece of the spanning cluster, and rescale the
lengths in the system, the rescaled system will have the same geometrical
properties as the original system. In particular, the rescaled system will
have the same mass scaling relation: it will also be a self-similar fractal
with the same scaling properties.

What happens when p 6= pc? In this case, there will be a finite
correlation length, ξ, and a rescaling of the lengths in the system implies
that the correlation length is also rescaled. A rescaling by a factor b
corresponds to making an average over bd sites in order to form the
new lattice. Now, we will simply assume that this also implies that the
correlation length is reduced by a factor b: ξ′ = ξ/b. After a few iterations
of this rescaling procedure, the correlation length will correspond to the
lattice size, and the lattice is uniform.

We could have made this argument even simpler by initially stating
that we divide the system into parts that are larger than the correlation
length. Again, this would lead to a system that is homogeneous from the
smallest lattice spacing an upwards. We can conclude that when p < pc,
the system behaves as a uniform, unconnected system. and when p > pc,
the system is uniform and connected.

The argument we have sketched above is the essence of the renormal-
ization group argument . It is only exactly at p = pc that an iterative
rescaling is a non-trivial fix point: the system iterates onto itself because
it is a self-similar fractal. When p is away from pc, rescaling iterations
will make the system progressively more homogeneous, and effectively
bring the rescaled p towards either 0 or 1.

In this section we will provide an introduction to the theoretical
framework for renormalization. This is a powerful set of techniques,

93
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introduced for equilibrium critical phenomena by Kadanoff [?] in 1965
and by Wilson [?] in 1971. Wilson later received the Nobel prize for this
work on critical phenomena.

7.1 The renormalization mapping

Let us return to our theoretical model for our study of disorder: the
model porous medium with occupation probability p. We will study a
system of size L with a correlation length ξ, which is a function of p. We
will call the length of a side of a single site a, and we ensure that

L� ξ � a . (7.1)

We will not address whether it is possible to average over some of the sites
in such a way that the macroscopic behavior does not change significantly.
That is, we want to replace cells of bd sites with new, “renormalized”
single sites. This averaging procedure is illustrated in fig. 7.1.

In the original lattice the occupation probability is p. However, through
our averaging procedure, we may change the occupation probability
for the new, averaged sites. We will therefore call the new occupation
probability p′ - the probability to occupy a renormalized site. We write
the mapping between the original and the new occupation probabilities
as

p′ = R(p) , (7.2)

where the function R(p), which provides the mapping, depends on the
details of the rule used for renormalization. It is important to realize
that the system size L and the correlation length ξ does not change in
real terms, it is only in units of lattice constants they are changing.

There are many choices for the mapping between the original and the
renormalized lattice. We have illustrated a particular rule for a mapping
with a rescaling b = 2 in fig. 7.2. For a site percolation problem with
b = 2 there are bd possible configurations. The different configurations
are classified into the 6 categories c, where the number of configuration
in each category is listed below. In fig. 7.2 we have also illustrated a
particular averaging rule. However, we could also have chosen different
rules. Usually, we should ensure that the global information is preserved
by the mapping. For example, we would want the mapping to conserve
connectivity. That is, we would like to ensure that

Π(p, L) = Π(p′, L
b

) . (7.3)

However, even though we may ensure this on the level of the mapping,
this does not ensure that the mapping actually conserves connectivity
when applied to a large cluster - it may, for example, connect clusters



7.1 The renormalization mapping 95

L

L/b

b

Fig. 7.1 Illustration of averaging using a rescaling b = 2, so that a cell of size b×b = 2×2
is reduced to a single site, producing a “renormalized” system of size L/2. The original
pattern was generated with p = 0.625 for a L = 16 lattice.

c=1
n=1 n=1n=4

c=2 c=3
n=4

c=4
n=2

c=5
n=4

c=6

Fig. 7.2 Illustration of a renormalization rule for a site percolation problem with a
rescaling b = 2. The top row indicates various clusters categorized into 6 classes c. The
number of different configurations n in each class is also listed. The mapping ensures that
connectivity is preserved. However, this renormalization mapping is not unique: we could
have chosen many different averaging schemes.

that were unconnected in the original lattice, or disconnect clusters that
were connected, as illustrated in fig. 7.3.

Currently, we will not consider the details of the renormalization
mapping p′ = R(p), we will only assume that such a map exists and
study its qualitative features. Then we will address the renormalization
mapping through two worked examples. For any choice of mapping, the
rescaling must result in a change in the correlation length ξ:
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b
Fig. 7.3 Illustration of a single step of renormalization on an 8× 8 lattice of sites. We
see that the renormalization procedure introduces new connections: the blue cluster is
now much larger than in the original. However, the procedure also removes previously
existing connections: the original yellow cluster is split into two separate clusters.

ξ′ = ξ(p′) = 1
b
ξ(p) . (7.4)

We will use this relation to address the fixpoints of the mapping. A
fixpoint is a point p∗ that does not change when the mapping is applied .
That is

p∗ = R(p∗) . (7.5)

There are two trivial fixpoints : p = 0 and p = 1. At a fixpoint, the
iteration relation for the correlation length becomes:

ξ(p∗) = ξ(p∗)
b

. (7.6)

This relation is satisfied at the two trivial fixpoints, because the correla-
tion length is zero here, ξ(0) = ξ(1) = 0. The only possible solutions for
ξ(p∗) = ξ(p∗)/b is for ξ = 0 or for ξ =∞.

Let us assume that there exists a non-trivial fixpoint p∗, and let us
address the behavior for p close to p∗. We notice that for any finite ξ,
iterations by the renormalization relation will reduce ξ. That is, both for
p < p∗ and for and for p > p∗ iterations will make ξ smaller. This implies
that iterations will take the system further away from the non-trivial
fixpoint, where the correlation length is infinite. The non-trivial fixpoint
is therefore an unstable fixpoints. Similarly, for p close to a trivial fixpoint,
where ξ = 0, iterations will decrease p, and the renormalized system
will move closer to the fixpoint in each iteration. The trivial fixpoint is
therefore stable.

Iterations by the renormalization relation p′ = R(p) may be studied
through on the graph R(p), as illustrated in fig. 7.4. Consecutive iterations
takes the system along the arrows illustrated in the figure, as the reader
should convince himself of by following the mapping. Notice that the
line p′ = p is drawn as a dotted reference line. In the figure, the two end
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R(p)
1

p 1 p*

p’<p

p’>p

Fig. 7.4 Illustration the renormalization mapping p′ = R(p) as a function of p. The
non-trivial fixpoint p∗ = R(p∗) is illustrated. Two iterations sequences are illustrated by
the lines with arrows. Let us look at the path starting from p > p∗. Through the first
application of the mapping, we read off the resulting value of p′. This value will then be
the input value for the next application of the renormalization mapping. A fast way to
find the corresponding position along the p axis is to reflect the p′ value from the line
p′ = p shown as a dotted line. This gives the new p value, and the mapping is applied
again producing yet another p′ which is even further from p∗. With the drawn shape of
R(p) there is only one non-trivial fixpoint, which is unstable.

points, p = 0 and p = 1 are the only stable fixpoints, and the points
p∗ is the only unstable fixpoints. The actual shape of the function R(p)
depends on the renormalization rule, and the shape may be more complex
than what is illustrated in fig. 7.4.

Advanced
Let us make small diversion, and see what consequences the renor-
malization of the correlation length has if we know that there exists
a percolation threshold pc. In that case, we know that

ξ(p) = ξ0(p− pc)−ν , (7.7)

and
ξ(p′) = ξ0(p′ − pc)−ν . (7.8)
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We can then use the renormalization condition for the correlation
length from eq. 7.4 to obtain:

1
b
ξ0(p− pc)−ν = ξ0(p′ − pc)−ν . (7.9)

When p→ pc, we see that both ξ(p) and ξ(p′) approaches infinity,
which implies that if p = pc, then we must also have that p′ = pc.
That is, we have found that pc is a fixpoint of the mapping.

We are now ready for a more quantitative argument for the effect of
iterations through the renormalization mapping R(p). We can argue that
we have found that the non-trivial fixpoint corresponds to the percolation
threshold, since the correlation length is diverging for this value of p,
and we will indeed assume that we can identify pc as the fixpoints, as we
argued more quantitatively above.

We will now assume that R(p) is an analytic function. This is not
a strong assumption, since for any simple R(p) based on polynomials
of p and 1− p this is trivially fulfilled. We will not Taylor expand the
mapping p′ = R(p) around p = p∗. First, we notice that

p′ − p∗ = R(p)−R(p∗) . (7.10)

The Taylor expansion of R(p) for a p close to p∗ is:

R(p) = R(p∗) +R′(p∗)(p− p∗) + o(p− p∗)2 . (7.11)

If we define Λ = R′(p∗), we can write to first order in p− p∗:

p′ − p∗ ' Λ(p− p∗) , (7.12)

We see that the value of Λ characterizes the fixpoint. For Λ > 1 the new
point p′ will be further away from p∗ than the initial point p. Consequently,
the fixpoint is unstable . By a similar argument, we see that for Λ < 1
the fixpoint is stable . For Λ = 1 we call the fixpoint a marginal fixpoint.

Let us now assume that the fixpoint is indeed the percolation threshold.
In this case, when p is close to pc, we know that the correlation length is

ξ(p) = ξ0(p− pc)−ν , (7.13)

for the initial point, and

ξ(p′) = ξ0(p′ − pc)−ν (7.14)

for the renormalized point. We will now use eq. 7.12 for p∗ = pc, giving

p′ − pc = Λ(p− pc) . (7.15)

Inserting this into eq. 7.14 gives
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ξ(p′) = ξ0(p′ − pc)−ν = ξ0(Λ(p− pc))−ν = ξ0Λ
−ν(p− pc)−ν . (7.16)

We can rewrite this using ξ(p)

ξ(p′) = Λ−νξ(p) . (7.17)

However, we also know that

ξ(p′) = 1
b
ξ(p) . (7.18)

Consequently, we have found that

b = Λν . (7.19)

This implies that the exponent ν is a property of the fixpoint of the
mapping R(p). We can find ν from

ν = ln b
lnΛ , (7.20)

where we remember that Λ = R′(pc).

Advanced
We will now show that we can achieve all of these results just from a
simple assumption on the effect of renormalization on the correlation
length. Trivially, a renormalization procedure will lead to a change
in correlation length. Starting at p with a correlation length ξ(p), a
renormalization step will produce a new occupation probability p′
and a new correlation length ξ′(p′). The fundamental assumption in
the theory for the renormalization group is that the functional form
of ξ and ξ′ is the same. That is, that we can write

ξ′(p′) = ξ(p′) , (7.21)

where ξ(p) was the functional form of the correlation length in the
original system. At least we should be able to make this assumption
in some small neighborhood around pc. That is, we assume that
ξ(p) = ξ′(p) for |p−pc| � 1. In this case, we can write the correlation
function as a function of the deviation from pc: ε = p− pc. Similarly,
we define ε′ = p′ − pc. The relation between the correlation lengths
can then be written as

ξ(ε′) = ξ(ε)
b

, (7.22)
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where ξ(u) is a particular function of u. The Taylor expansion of
the renormalization mapping R(p) in eq. 7.12 can also be rewritten
in terms of ε giving

ε′ = Λε . (7.23)

We can therefore rewrite eq. 7.22 as

ξ(ε′) = ξ(Λε) = ξ(ε)
b

, (7.24)

or, equivalently
ξ(ε) = bξ(Λε) . (7.25)

This implies that ξ(ε) is a homogeneous function. Let us see how this
function responds to iterations. We notice that after an iteration,
the new value of ε is Λε, and we can write

ξ(Λε) = bξ(ΛΛε) = bξ(Λ2ε) . (7.26)

We can insert this value into eq 7.25 to get

ξ(ε) = bξ(Λε) = b2ξ(Λ2ε) . (7.27)

We can continue this process up to any power n, giving

ξ(ε) = bnξ(Λnε) , (7.28)

for any n ≥ 1, where we have implicitly assumed that b > 1.
Let us now prove that eq. 7.28 implies that ξ(ε) is to leading order

a power-law, and let us also find the exponent. We choose a value of
n to that

Λnε = c , (7.29)

which implies that
n = ln c/ε

lnΛ . (7.30)

We can always ensure that this produces a value n > 1 by selecting
c sufficiently small. If we insert this value of n into eq. 7.28 we get

ξ(ε) = b( ln c/ε
lnΛ )ξ(c) (7.31)

= eln b( ln c/ε
lnΛ ξ(c) (7.32)

= (c
ε
) ln b

lnΛ ξ(c) (7.33)

∝ ε−ν , (7.34)

where ν is given as
ν = ln b

lnΛ . (7.35)
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We have now proved that the solution to the equation ξ(p′) = ξ(p)/b
is a power-law function ξ ∝ |p− pc|−ν with the exponent ν given by
eq. 7.35.

This argument shows that the most important assumption of the
renormalization theory, is that the functional form ξ(p) does not
change by the renormalization procedure. It is important to realize
that this is an assumption, and we will then have to check whether
this produces reasonable results.

7.2 Examples

In the following we provide several examples of the application of the
renormalization theory. Our renormalization procedure can be summa-
rized in the following points.

• Coarse-grain the system into cells of size bd.
• Find a rule to determine the new occupation probability, p′, from the

old occupation probability, p: p′ = R(p).
• Determine the non-trivial fixpoints, p∗, of the renormalization map-

ping: p∗ = R(p∗), and use these points as approximations for pc:
pc = p∗.

• Determine the rescaling factor Λ from the renormalization relation at
the fixpoint: Λ = R′(p∗).

• Find ν from the relation ν = ln b/ lnΛ.

It is important to realize that the renormalization mapping R(p) is not
unique. However, in order to obtain useful results we should ensure that
the mapping preserves connectivity on average.

7.2.1 One-dimensional percolation

Let us first address the one-dimensional percolation problem using the
renormalization procedure. We have illustrated the one-dimensional
percolation problem in fig. 7.5. We generate the renormalization mapping
by ensuring that it conserves connectivity. The probability for two sites to
be connected over a distance b is pb when the occupation probability for
a single site is p. A renormalization mapping that conserves connectivity
is therefore:

p′ = Π(p, b) = pb . (7.36)

The fixpoints for this mapping are

p∗ = (p∗)b , (7.37)
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Fig. 7.5 Illustration of a renormalization rule for a one-dimensional site percolation
system with b = 3.
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Fig. 7.6 Illustration of a renormalization rule for a one-dimensional site percolation
system with b = 3.

with only two possible solutions, p∗ = 0, and p∗ = 1. An example of a
renormalization iteration is shown in fig. 7.6. The curve illustrates that
p∗ = 0 is the only attractive or stable fixpoint, and that p∗ = 1 is an
unstable fixpoint.

We can also apply the theory directly to find the exponent ν. The
renormalization relation is p′ = R(p) = pb. We can therefore find Λ from:

Λ = ∂R

∂p

∣∣∣∣
p∗

= b(p∗)b−1 = b , (7.38)

where we are now studying the unstable fixpoint p∗ = 1. We can therefore
determine ν from eq. 7.20:

ν = ln b
lnΛ = 1 . (7.39)

We notice that b was eliminated in this procedure, which is essential since
we do not want the exponent to depend on details such as the size of
renormalization cell. The result for the scaling of the correlation length
is therefore
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c=1
n=1 n=1n=4

c=2 c=3
n=4

c=4
n=2

c=5
n=4

c=6

Fig. 7.7 Possible configurations for a 2×2 site percolation system. The top row indicates
various clusters categorized into 6 classes c. The number of different configurations n in
each class is also listed.

ξ ∝ 1
1− p , (7.40)

when 1− p� 1.

7.2.2 Renormalization on 2d site lattice

Let us now use this method to address a renormalization scheme for
two-dimensional site percolation. We will use a scheme with b = 2. The
possible configurations for a 2× 2 lattice are shown in fig. 7.7.

In order to preserve connectivity, we need to ensure that configurations
c = 1 and c = 2 are occupied also in the renormalized lattice. However,
for configuration c = 3, we may choose only to consider spanning in
one direction, or spanning in both directions. If we include spanning in
only one direction, there are only two of the configurations c = 3 that
contribute the the spanning probability, and the renormalization relation
becomes

p′ = R(p) = p4 + 4p3(1− p) + 2p2(1− p)2 . (7.41)

This is the probability for configurations c = 1, c = 2, or c = 3 to occur.
The renormalization relation is illustrated in fig. 7.8.

We will now follow steps 3 and 4. First, in step 3, we determine the
fixpoints of the renormalization relation. That is, we find the solutions
to the equation

p∗ = R(p∗) = (p∗)4 + 4(p∗)3(1− p∗) + 2(p∗)2(1− p∗)2 . (7.42)

The trivial solution p∗ = 0 is not of interest. Therefore we divide by p∗
to produce

(p∗)3 + 4(p∗)2(1− p∗) + 2(p∗)(1− p∗)2 = 1 . (7.43)
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Fig. 7.8 Plot of the renormalization relation p′ = R(p) = p4 + 4p3(1− p) + 2p2(1− p)2

for a two-dimensional site percolation problem.

The other trivial fixpoint is p∗ = 1. We divide the equation by 1− p∗ to
get

(p∗)2 + p∗ − 1 = 0 . (7.44)

The solutions to this second order equation are

p∗ = −1±
√

1 + 4
2 =

√
5± 1
2 ' 0.62 . (7.45)

We have therefore found an estimate of pc by setting pc = p∗. This does
not produce the correct value for pc in a two-dimensional site percolation
system, but the result is still reasonably correct. We can similarly find
the exponent ν by calculating R′(p∗).

7.2.3 Renormalization on 2d triangular lattice
We will now the same method to address percolation on site percolation on
a triangular lattice. A triangular lattice is a lattice where each point has
six neighbors. In solid state physics, the lattice is known as the hexagonal
lattice because of its hexagonal rotation symmetry. Site percolation on the
triangular lattice is particularly well suited for renormalization treatment,
because a coarse grained version of the lattice is also a triangular lattice,
as illustrated in fig. 7.9, with a lattice spacing b =

√
3 times the original

lattice size.
We will use the majority rule for the renormalization mapping. That

is, we will map a set of three sites onto an occupied site if a majority
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c=1 c=2 c=3 c=4
Fig. 7.9 Illustration of a renormalization scheme for site percolation on a triangular
lattice. The rescaling factor is b =

√
3, and we use the majority rule for the mapping, that

is, configurations c = 1 and c = 2 are occupied, and configurations c = 3 and c = 4 are
mapped onto empty sites.

of the sites are occupied, meaning that two or more sites are occupied.
Otherwise, the renormalized site is empty. This mapping is illustrated in
fig. 7.9. This mapping does, as the reader may easily assure himself, on
the average conserve connectivity. The renormalization mapping is

p′ = R(p) = p3 + 3p2(1− p) = 3p2 − 2p3 . (7.46)

The fixpoints of this mapping are the solutions of the equation

p∗ = 3(p∗)2 − 2(p∗)3 . (7.47)

We observe that the trivial fixpoints past = 0, and p∗ = 1 indeed satisfy
eq. 7.47. The non-trivial fixpoint is p∗ = 1/2. We are pleased to observe
that this is actually the exact solution for pc for site percolation on the
triangular lattice.

We can use this relation to determine the scaling exponent ν. First,
we calculate Λ:

Λ = R′(p∗) = 6p(1− p)|p= 1
2

= 3
2 . (7.48)

As a result we find the exponent ν from

1
ν

= lnΛ
ln b = ln 3/2

ln
√

3
' 1.355 , (7.49)
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which is very close to the exact result that ν = 4/3 for two-dimensional
percolation.

7.2.4 Renormalization on 2d bond lattice

As our last example of renormalization in two-dimensional percolation
problems, we will study the bond percolation problem on a square
lattice. The renormalization procedure is shown in fig. 7.10. In the
renormalization procedure, we replace 8 bonds by 2 new bonds. We
consider connectivity only in the horizontal direction, and may therefore
simplify the lattice, by only considering the mapping of the H-cell, a
mapping of five bonds onto one bond in the horizontal direction. The
various configurations are shown in the figure. In table 7.2.4 we have
shown the number of such configurations, and the probabilities for each
configuration, which is needed in order to calculate the renormalization
connection probability p′.

c P (c) n(c) Π|c
1 p5 1 1
2 p4(1− p) 1 1
3 p4(1− p) 4 1
4 p3(1− p)2 2 1
5 p3(1− p)2 2 1
6 p3(1− p)2 2 0
7 p3(1− p)2 4 1
8 p2(1− p)3 2 1
9 p2(1− p)3 4 0
10 p2(1− p)3 2 0
11 p2(1− p)3 2 0
12 p1(1− p)4 5 0
13 p0(1− p)5 1 0

Table

A list of the possible configuration for renormalization of a bond lattice
as illustrated in fig. 7.10. The probability for percolation given that the
configuration is c is denoted Π|c. The spanning probability for the whole
cell is then Π(p) = p′ =

∑
c n(c)P (c)Π|c.

The resulting renormalization equation is given as

p′ = R(p) = Π =
13∑
c=1

n(c)P (c)Π|c , (7.50)

where we have used c to denote the various configurations, P (c) is the
probability for one instance of configuration c, n(c) is the number of
different configurations due to symmetry consideration, and Π|c is the
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(b) (c)

c=1

(a)

c=2 c=3 c=4 c=5

c=6 c=7 c=8 c=9 c=10

c=11 c=12 c=13

(d)

Fig. 7.10 (a) Illustration of a renormalization scheme for bond percolation on a square
lattice in two dimensions. The rescaling factor is b = 2. (b) In general, the renormalization
involves a mapping from 8 to two bonds. However, we will consider percolation only in
the horizontal direction. This simplifies the mapping, to the figure shown in (c). For this
mapping, the configurations are shown an enumerated in (d).

spanning probability for configuration c given that the configuration is c.
The resulting relation is

p′ = R(p) (7.51)
= p5 + p4(1− p) + 4p4(1− p) + 2p3(1− p)2 (7.52)

+2p3(1− p)2 + 4p3(1− p)2 + 2p2(1− p)3

(7.53)
= 2p5 − 5p4 + 2p3 + 2p2 . (7.54)

The fixpoints for this mapping are p∗ = 0, p∗ = 1, and p∗ = 1/2.
The fixpoints p∗ = 1/2 provides the exact solution for the percolation
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threshold on the bond lattice in two dimensions. We find Λ by derivation

Λ = R′(p∗) = 13
8 . (7.55)

The corresponding estimate for the exponent ν is

ν = ln b
lnΛ ' 1.428 , (7.56)

which should be compared with the exact result of ν = 4/3 for two-
dimensional percolation.

7.3 Universality

Even though we can choose renormalization rules that preserves con-
nectivity statistically, the rule will not preserve connectivity exactly.
The renormalization procedure is not exact. This can be illustrated by
site renormalization of site percolation in two dimensions are shown in
fig. 7.11. We may speculate that various errors of this form, some of them
adding together non-connected bonds, and other removing connections,
would cancel out on average. However, this is not the case. For the
majority rule for two-dimensional site percolation, the connectivity is
not preserved, even on the average. The result is that we end up with an
error in our estimate of both pc and ν.

How can we improve this situation? We need to introduce additional
bonds between the sites during the renormalization procedure to preserve
connectivity, even if the original problem was a pure site problem. This
will produce a mixed site-bond percolation problem. The probability
q to connect two nearest-neighbors in the original site lattice must be
found by counting all possible combinations of spanning between nearest
neighbor sites in the original lattice. We may also have to introduce
next-nearest neighbor bonds and so on.

Let us describe the renormalized problem by the two renormalized
probabilities p′ for sites, and x′ for bonds. The renormalization procedure
will be described by a set of two renormalization relations:

p′ = R1(p, x) (7.57)
x′ = R2(p, x) (7.58)

Now, the flow in the renormalization procedure will not simply be along
the p axis, but will occur in the two-dimensional p, x-space, as illustrated
in fig. 7.12. We will no longer have a single critical points, pc, but a set
of points (pc, xc) corresponding to a curve in p, x-space, as shown in the
figure. We also notice that when x = 1 we have a pure site percolation
problem – all bonds will be present and connectivity depends on the
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Fig. 7.11 Illustration of renormalization of connectivity for site percolation in two
dimensions. The blue sites show the renormalized sites, and the lines shows which clusters
are connected. In this case, we see that the renormalized lattice is spanning, even though
there are no spanning clusters in the original lattice.

x

p

P=0

P>0

Fig. 7.12 Illustration of the flow due to renormalization in a combined site-bond perco-
lation system. The black line shows the critical line, on which the correlation length is
infinite, ξ =∞. Below the critical line, renormalization will lead to the trivial fixpoint at
p, x = 0 as illustrated by the green lines. Above the line, renormalization will lead to the
fixpoint at p, x = (1, 1).

presence of sites alone - and similarly for p = 1 we have a pure bond
percolation problem.

There are still two trivial fixpoints, for (p, x) = 0, and for (p, x) = (1, 1),
and we expect these points to be attractors. We will therefore need a line
that separates the two trivial fixpoints. If we start on this line, we will
remain on this line. We will therefore expect there to be a fixpoint on this
line, the non-trivial fixpoints (p∗, x∗). We remark that the fixpoint no
longer corresponds to the critical threshold - there will be a whole family
of critical values corresponding to the curved, black line in fig. 7.12.
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We can find the non-trivial fixpoint from the equations

p∗ = R1(p∗, x∗) (7.59)
x∗ = R2(p∗, x∗) (7.60)

Let us linearize the system near the fixpoint. We will do a Taylor ex-
pansion for the two functions R1(p, x), and R2(p, x), around the point
(p∗, x∗):

p′ − p∗ = Λ11(p− p∗) + Λ12(x− x∗) (7.61)
x′ − x∗ = Λ21(p− p∗) + Λ22(x− x∗) (7.62)

where we have defined

Λ11 = ∂R1

∂p

∣∣∣∣
(p∗,x∗)

Λ12 = ∂R1

∂x

∣∣∣∣
(p∗,x∗)

(7.63)

Λ21 = ∂R2

∂p

∣∣∣∣
(p∗,x∗)

Λ22 = ∂R2

∂x

∣∣∣∣
(p∗,x∗)

(7.64)

We can therefore rewrite the recursion relation in matrix form, as[
p′ − p∗
x′ − x∗

]
=
[
Λ11 Λ12
Λ21 Λ22

] [
p− p∗
x− x∗

]
. (7.65)

We want to find the behavior after many iterations. This can be done by
finding the eigenvector and the eigenvalues of the matrix. That is, we
find the vectors xi = (pi, xi) such that

Λxi = λixi . (7.66)

We know that we can find two such vectors, and that the vectors are
linearly independent, so that any vector x can be written as a linear
combination of the two eigenvectors:[

p− p∗
x− x∗

]
= x = a1x1 + a2x2 . (7.67)

Applying the renormalization mapping will therefore produce

Λx = λ1a1x1 + λ2a2x2 , (7.68)

and after N iterations we get

ΛNx = λN1 a1x1 + λN2 a2x2 . (7.69)

We see that if both λ1 < 1 and λ2 < 1, then any deviation from the
fixpoint will approach zero after many iterations, because the values
λN1 → 0, and λN2 → 0. We call eigenvalues in the range 0 < λ < 1
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x

p
Fig. 7.13 Illustration of the flow around the unstable saddle point corresponding to
the fixpoint p∗. The black line shows the critical line, on which the correlation length is
infinite, ξ =∞. Below the critical line, renormalization will lead to the trivial fixpoint at
p, x = 0 as illustrated by the green lines. Above the line, renormalization will lead to the
fixpoint at p, x = (1, 1).

irrelevant, and the fixpoint is stable. Eigenvalues with λ > 1 are termed
relevant, because the fixpoint will move away along the direction specified
be the corresponding eigenvector. Eigenvalues λ = 1 are termed marginal
- there is no movement along this direction.

Let us look at the case when λ1 > 1 > λ2, which corresponds to what
we will call a simple critical point. (For a simple critical point, there is
only one relevant eigenvalue, and all other eigenvalues are irrelevant.)
This corresponds to a stable behavior in the direction x2, and an unstable
behavior in the x1 direction. That is, the behavior is like a saddle point,
as illustrated in fig. 7.13. This is consistent with the picture of a critical
line. The flow along the line corresponds to the stable direction, and the
flow normal to the line corresponds to the unstable direction, which is
the natural generalization of the behavior we found in one dimension.
Therefore any point which is originally close to the line, will first flow
towards the fixpoint (p∗, x∗), before it flows out in the direction of the
the relevant eigenvector.

Let us now study the behavior close to the critical line in detail for
a system with λ1 > 1 > λ2. We notice that the correlation length ξ
is infinite along the whole critical line, because it does not change by
iterations along the critical line. That is, we have just a single fixpoint, but
infinitely many critical points corresponding to a critical line. Let us start
at a point (p0, 1) close to the critical line, and perform renormalization
in order to find the functional shape of ξ and the exponent ν. After k
iterations, the point has moved close to the fixpoint, just before it is
expelled out from the fixpoint. We can therefore write
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p(k) − p∗
x(k) − x∗

]
= a1x1 + a2x2 . (7.70)

Since the iteration point is close to the fixpoint, we will assume that we
can use the linear expansion around the fixpoint to address the behavior
of the system. After a further l iterations we assume that we are still in
the linear range, and the renormalized position in phase-space is[

p(k+l) − p∗
x(k+l) − x∗

]
= λl1a1x1 + λl2a2x2 . (7.71)

We stop the renormalization procedure at l = l∗ when a
(
1l) ' 0.1 (or

some other small value that we can choose). That is

λl
∗

1 a1 ' 0.1 . (7.72)

The correlation length for this number of iterations is

ξ(k+l∗) = ξ(p0, 1)
b(k+l∗) . (7.73)

We have therefore found an expression for the correlation length in the
point (p0, 1)

ξ(p0, 1) = ξ(a1 = 0.1)b(k+l∗) , (7.74)

where the value ξ(a1 = 0.1) is a constant due to the way we have chosen
l∗. The value for l∗ is

l∗ =
ln(0.1

a1
)

ln λ1
. (7.75)

We have therefore found that the correlation length in the original point
(p0, 1) is

ξ(p0, 1) = bkb
ln(0.1/a1)

lnλ1 = bk(0.1
a1

)
ln b

lnλ1 . (7.76)

We can express this further as:

ξ(p0, 1) ∝ ( 1
a1

)
ln b

lnλ1 = ( 1
a1

)ν = a−ν1 . (7.77)

Now, what is a1? This is the value of a1 at the original point, (p0, 1),
which we can relate the the critical threshold pc for pure site percolation:

a1 = a1(p0, 1) = a1(pc + (p0 − pc)) (7.78)
' a1(pc) + a′1(pc)(p0 − pc) (7.79)
= A(p0 − pc) (7.80)

where we have done a Taylor expansion around pc. We have used that
a1(pc, 1) = 1, since this is a point on the critical line, and A = a′1(pc). If
we put this relation back into eq. 7.76, we get
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ξ(p0, 1) ∝ a−ν1 ∝ (p− pc)−ν . (7.81)

We have therefore shown by renormalization arguments, that ξ has a
power-law behavior with exponent ν. However, we can make a similar
argument starting at a point (1, q0) close the the critical point qc. That
is, we could start from a pure bond percolation problem, and we would
end up with a similar relation for the correlation length

ξ ∝ |q0 − qc|−ν , (7.82)

where the exponent ν depends on λ1.
We have therefore shown that the exponent ν is the same in these two

cases. This is an example of universality. Both pure site and pure bond
percolation leads to a power-law behavior for the correlation length ξ
with the same power-law exponent ν. We can also use similar arguments
to argue that the critical exponent ν is the same below and above the
percolation threshold.

7.4 Case: Fragmentation

We will use the concepts and tools we have developed so far to address
several problems of interest. First, let us address fragmentation: a large
body that is successively broken into smaller part due to fracturing.
There can be many processes that may induce and direct the fracturing
of the grain. For example. the fracturing may depend on an external
load placed on the grain, on a rapid change in temperature in the grain,
on a high-amplitude sound wave propagating through the grain, or by
stress-corrosion or chemical decomposition processes. Typical examples
of fragment patterns are shown in fig. ??.

Why did I choose D to denote this exponent? Let us look at the scaling
properties of the structure generated by these iterations. Let us first
assume that we describe the system purely geometrically, and that we
are interested in the geometry of the regions that have fragmented. We
will therefore assume that areas the are no longer fracturing are removed,
and we are studying the mass that is left by this process. Let us start at
a length-scale `n, where the mass of our system is mn, and let us find
what the mass will be when the length is doubled. For f = 3/4 we can
then generate the new cluster by placing three of the original clusters
into three of the four placed in the two-by-two square as illustrated in
fig. 7.15. The rescaling of mass and length is therefore: `n+1 = 2`n, and
mn+1 = 3mn. Similarly, for arbitrary f , the relations are `n+1 = 2`n,
and mn+1 = 4fmn. As we found in section 5.5, this is consistent with a
power-law scaling between the mass and length of the set
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L0 L L L1 2 3
Fig. 7.14 Illustration of a deterministic fragmentation model. The shaded areas indicate
the regions that will not fragment any further. That is, this drawing illustrate the case of
f = 3/4.

l n l n+1
Fig. 7.15 Illustration of construction by length and mass rescaling. Three instances of
the fully developed structure with mass mn and length `n is used to generate the same
structure at a length `n+1 and with mass mn+1 = 3mn. The mass corresponds to the
mass of the regions that are not left unfragmented.

m(L) = m0( L
L0

)D , (7.83)

where D = ln 3/ ln 2 is the fractal dimension of the structure. The value
for the case of general f is similarly D = ln(4f)/ ln 2.

Remember that we now calculated the mass dimension of the part of
the system that is present, that is the part of the system that is still
fragmenting into smaller pieces. The mass dimension of the part of the
system that is no longer fragmenting should be D′ = d, which is the
fractal dimension of the “dust” left by the fragmentation processes.

The methodology that we have introduced to describe fragmentation
here, is consistent with the argument of Sammis et al. [?] for the grains
size distribution in fault gouges. Sammis et al. argues that during the
fragmentation process, two grains of the same size cannot be nearest
neighbors without fragmenting. There may be various physics arguments
for this assumption, but we will not discuss them in detail here. If this
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Fig. 7.16 Illustration of the fragmentation model of Sammis et al. [?]. In each iteration,
each cubical grain is divided into 8 identical smaller cubes. The fundamental rule for the
model is that if there are two neighboring grains of the same size, one of them will fracture.
In the figure we have shaded the regions that are not fragmented in this processes for the
first few steps of the iterations.

argument is applied in a simple cubic three-dimensional lattice, the
remaining fragments will look like fig. 7.16. However, we realize that
this is identical to the fragmentation model introduced here, because
features such as the size distribution (and the mass dimension of the
unfractured grains), does not depend on where the remaining grains
are placed in space, only in the relative density of unfractured grains in
each generation. The model of Sammis et al. therefore corresponds to
the fragmentation model with f = 6/8, and with spatial dimensionality
d = 3. We have therefore found the prediction D = ln 6/ ln 2 ' 2.58 for
the grain size distribution in fault gouges.

It is important to realize that the argument of Sammis et al. depends
on the dimensionality of the system, and on the lattice used. For example,
in two dimensions the argument leads to a fractal dimension D = 1 for
a square system (corresponding to a line), whereas a triangular lattice
produces a dimension between 1 and 2. We leave it as an exercise for the
reader to find the dimension in this case.

Let us now use a simple renormalization type argument from Tur-
cotte [?] to find a value for f , the partitioning between fractured and
unfractured material.
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We have now developed a good understanding of the behavior of per-
colation systems. We have found that the distribution of cluster sizes
is described by the cluster number density, n(s, p), and that the scaling
ansatz

n(s, p) = s−τf((p− pc)sσ) , (8.1)

works surprisingly well. The exponent τ is a property of the distribution
at p = pc, whereas the function f describes the behavior of the system
away from p = pc. When p 6= pc, we know that the system is described
by the characteristic cluster size sξ

sξ ∝ |p− pc|−1/σ , (8.2)

and by the correlation length ξ

ξ ∝ |p− pc|−ν . (8.3)

That is, the percolation system is described by the two exponents σ and
ν.

In addition, we have developed an understanding for the scaling prop-
erties of the spanning cluster, and the scaling properties of finite clusters.
However, various physical processes picks out subsets of the clusters that
are more important. As an example consider the conductivity of the
spanning cluster - this property will only depend on the parts of the
spanning cluster that contribute to flow from one side to another side,
that is, it will not depend on dangling ends – part of the cluster that
are blind alleys. In this chapter, we will discuss the scaling properties
of such subsets of the spanning cluster when p = pc. The scaling will
be discussed using the renormalization group, and by examples from
numerical simulations. This discussion will also lead us to a geometrical
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interpretation of the exponent ν, and a better geometrical picture of the
percolation system.

8.1 Subsets of the spanning cluster

One of the simplest examples of interesting subsets of the spanning
cluster, is the set of singly connected sites (or bonds). A singly connected
site is a site with the property that if it is removed, the spanning cluster
will no longer be spanning. We can relate this to a physical property: If
we study fluid flow in the spanning cluster, all the fluid has to go through
the singly connected sites. These sites are also often referred to as red
sites, because if we were studying a set of random resistors, the highest
current would have to go through the singly connected bonds, and they
would therefore heat up and become “red”. Several examples of subsets
of the spanning cluster, including the singly connected bonds, are shown
in fig. 8.1.

We have learned that the spanning cluster may be described by the
mass scaling relation M ∝ LD, where D is termed the fractal dimension
of the spanning cluster. We propose that subsets of the spanning cluster
also obey similar scaling relations. For example, we expect the mass of
the singly connected sites (MSC) to have the scaling form

MSC ∝ LDSC , (8.4)

where we call the dimension DSC the fractal dimension of the singly
connected sites. Because the set of singly connected sites is a subset of
the spanning cluster, we know that MSC ≤M , and therefore that

DSC ≤ D . (8.5)
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Fig. 8.1 Illustration of the spanning cluster, the singly connected bonds (red), the
backbone (blue), and the dangling ends (yellow) for a 256× 256 bond percolation system
at p = pc. (Figure from Martin Søreng).

8.2 Walks on the cluster

The study of percolation is the study of connectivity, and many of the
physical properties that we are interested in depends on various forms
of the connecting paths between the two opposite edges of the spanning
cluster. We can address the structure of connected paths between the
edges by studying self-avoiding walks (SAWs) on the cluster going from
one side to the opposite side.

The shortest path between the two edges is given as the shortest SAW
between the two edges. We call this the minimal path with a length Lmin.
The scaling exponent of the minimal path is usually written as dmin.
That is, we have the scaling form

Lmin ∝ LDmin . (8.6)

We term the longest SAW between the two edges the longest path with
length Lmax, and term the corresponding exponent Dmax. We notice that
Lmin ≤ Lmax. Consequently, a similar relation holds for the exponents



120 8 Subset geometry

Dmin ≤ Dmax. We could introduce the term, the average path , meaning
the average length of all possible SAWs going between opposite sides of
the system, 〈LSAW 〉 ∝ LDSAW , and the dimension would lie between the
dimensions of the minimal and the maximal path.

However, the notion of SAWs can also be used to address the physical
properties of the cluster, such as the singly connected bonds. The singly
connected bonds, is the intersections between all SAWs connecting the
two paths. That is, the singly connected bonds is the set of points that
any path must go through in order to connect the two sides. From this
definition, we notice the the dimension DSC < Dmin, and as we will
see further on, DSC = 1/ν which is smaller than 1 for two-dimensional
systems.

Another useful set is the union of all SAWs that connect the two edges
of the cluster. This set is called the backbone with dimension DB. This
set has a simple physical interpretation for a random porous material,
since it corresponds to the sites that are accessible to fluid flow if a
pressure is applied accross the material. The remaining sites are called
dangling ends. The backbone are all the sites that have at least two
different paths leading into them, one path from each side of the cluster.
The remaining sites only have one (self-avoiding) path leading into them,
and we call this set of sites the dangling ends . The spanning cluster
consists of the backbone plus the dangling bonds, as illustrated in fig. 8.2.
The dangling ends are therefore pieces of the cluster that can be cut
away by the removal of a single bond.

We have arrived at the following hierarchy of exponents describing
various subsets of paths through the cluster:

DSC ≤ Dmin ≤ DSAW ≤ Dmax ≤ DB ≤ D ≤ d , (8.7)

We have also arrived at a particular geometrical representation of clusters
in the percolation system. The cluster can be subdivided into three parts:
the dangling ends, a set of blobs where there are several parallel paths,
and a set of points, the singly connected points, connecting the blobs to
each other and the blobs to the dangling ends. Each of the blobs and the
dangling ends will again have a similar substructure of dangling ends,
blobs with parallel paths, and singly connected bonds as illustrated in
fig. 8.3. This cartoon image of the clusters will show to provide useful
intuition on the geometrical structure of percolation clusters.

The exponents can be calculated either by numerical simulations,
where the masses of the various subsets are measured as a function of
system size at p = pc. Numerical results based on computer simulations
are listed in table 8.2. Another approach is to use the renormalization
group method to estimate the critical exponents.

d DSC Dmin Dmax DB D DDE
2 3/4 1.1 1.5 1.6 1.89
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(a)

Fig. 8.2 Illustration of the spanning cluster consisting of the backbone (red) and the
dangling ends (blue) for a 512× 512 site percolation system for (a) p = 0.58, (b) p = 0.59,
and (c) p = 0.61.

Table

Numerical exponents for the exponent describing various subsets of the
spanning cluster defined using the set of Self-Avoiding Walks going from
one side to the opposite side of the cluster.
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Fig. 8.3 Illustration of the hierarchical blob-model for the percolation cluster (See [?]
for a more detailed discussion.)

8.3 Renormalization calculation

We will now use the renormalization group approach to address the
scaling exponent for various subsets of the spanning cluster at p = pc. For
this, we will here use the renormalization procedure for bond percolation
on a square lattice in two dimensions, where we have found that the
renormalization procedure produces the exact result for the percolation
threshold, pc = p∗ = 1/2. This is a fixpoint of the mapping.

Our strategy will be to assume that all the bonds have a mass M = 1
in the original lattice, and then find the mass M ′ in the renormalized
lattice, when the length has been rescaled by b. For a property that
displays a self-similar scaling, we will expect that

M ′ ∝ bDxM , (8.8)

where Dx denotes the exponent for the particular subset we are looking
at. We can use this to determine the fractal exponent Dx from

Dx = lnM ′/M
ln b . (8.9)

We will do this be calculating the average value of the mass of the H-cell,
by taking the mass of the subset we are interested in for each configura-
tion, Mx(c), and multiplying it by the probability of that configuration,
summing over all configurations:

〈M〉 =
∑
c

Mx(c)P (c) . (8.10)

We have now calculated the average mass in the original 2 by 2 lattice, and
this should correspond to the average renormalized mass, 〈M ′〉 = p′M ′,
which is the mass of the renormalized bond, M ′ multiplied with the
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probability for that bond to be present p′. That is, we will find M ′ from:

p′M ′ =
∑
c

M(c)P (c) , (8.11)

We will study our system at the nontrivial fixpoint p = p∗ = 1/2 = pc.
The spanning configurations c for bond renormalization in two dimensions,
are shown together with their probabilities and the masses of various
subsets in table ??.

This use of the renormalization group method to estimate the expo-
nents demonstrates the power of the renormalization arguments. Similar
arguments will be used to address other properties of the percolation
system.

Advanced
Let us also use this technique to develop an interpretation of the
exponent ν and how it is related to the singly connected sites (See
Coniglio [?] for a detailed argument). Because the exponent ν can
be found from the renormalization equation at the fixpoint, which
corresponds to the percolation threshold, it is reasonable to assume
that the exponent ν can be derived from some property of the fractal
structure at p = pc.

Let us address bond percolation in two dimensions, described
by the occupation probability p for bonds, and let us introduce an
additional variable 1 − π: the probability to remove an occupied
bond from the system. We will consider the percolation problem to
be described by these two values. When we are at p = pc, we would
expect that for any 1− π > 0, the spanning cluster will break into a
set of unconnected clusters. The only fixpoint value when p = pc is
therefore for 1− π = 0, that is, π = 1.

Can we derive a recursion relation for 1−π? For our renormalized
cell of size b, the probability to break connectivity between the end
nodes should be 1− π′. This corresponds to the probability that the
renormalized bond is broken, because after renormalization there is
only one bond in the box of size b. We write the recursion relation
as a Taylor expansion around the fix-point 1− π = 0, or π = 1:

1− π′ = A(1− π) +O((1− π)2) , (8.12)

where A is given as
A = ∂π′

∂π

∣∣∣∣
π=1

. (8.13)

We realize that the new p in the system after the introduction of π
is given by p = πpc, when the ordinary percolation system is at pc.
Similarly, the renormalized occupation probability is p′ = π′pc, and
we have therefore found that
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A = ∂π′

∂π

∣∣∣∣
π=1

= ∂p′

∂p

∣∣∣∣
p=pc

= b1/ν . (8.14)

8.4 Deterministic fractal models

infinite-dimensional and one-dimensional systems exactly. However, for
finite dimensions such as for d = 2 or d = 3 we must rely on numerical
simulations and renormalization group arguments to determine the expo-
nents and the behavior of the system. However, in order to learn about
physical properties in systems with scaling behavior, we may be able to
construct simpler models that contain many of the important features
of the percolation cluster. For example, we may be able to introduce
deterministic, iterative fractal structures that reproduce many of the
important properties of the percolation cluster at p = pc, but that is
deterministic and not a random system. The idea is that we can use this
system to study other properties of the physics on fractal structures.

An example of an iterative fractal structure that has many of the impor-
tant features of the percolation clusters at p = pc is the Mandelbrot-Given
curve [?]. The curve is generated by the iterative procedure described
in fig. 8.4. Through each generation, the length is rescaled by a factor
b = 3, and the mass is rescaled by a factor 8. That is, for generation l,
the mass is m(l) = 8l, and the linear size of the cluster is L(l) = 3l. If
we assume a scaling on the form m = LD, we find that

D = ln 8
ln 3 ' 1.89 . (8.15)

This is surprisingly similar to the fractal dimension of the percolation clus-
ter. We can also look at other dimensions, such as for the singly connected
bonds, the minimum path, the maximum path and the backbone.

Let us first address the singly connected bonds. In the zero’th gener-
ation, the system is simply a single bond, and the length of the singly
connected bonds, LSC is 1. In the first generation, there are two bonds
that are singly connecting, and in the second generation there are four
bonds that are singly connecting. The general relation is that

LSC = 2l , (8.16)

where l is the generation of the structure. The dimension, DSC , of the
singly connected bonds is therefore DSC = ln 2/ ln 3 ' 0.63, which
should be compared with the exact value DSC = 3/4 for two-dimensional
percolation.

The minimum path will for all generations be the path going straight
through the structure, and the length of the minimal path will therefore
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Fig. 8.4 Illustration of first three generations of the Mandelbrot-Given curve [?]. The
length is rescaled by a factor b = 3 for each iteration, and the mass of the whole structure
is increased by a factor of 8. The fractal dimension is therefore D = ln 8/ ln 3 ' 1.89.

L1−l1

L4−l4

L

L2

3

l1
l 4

Fig. 8.5 The Mandelbrot-Given construction can be optimized by choosing particular
values for the lengths l1, L2, L3, l4, and L4. Here, L3 gives the length around the whole
curved path. The choice of l1 and l4 does not affect the scaling properties we have been
addressing, and are therefore not relevant parameters. The ordinary Mandelbrot-given
curve corresponds to b = 3, L1 = 2, L2 = 1, L3 = 3, L4 = 2, l1 = 1, and l4 = 1.

be equal to the length of the structure. The scaling dimension Dmin is
therefore Dmin = 1.

The maximum path increases by a factor 5 for each iteration. The
dimension of the maximum path is therefore Dmax = ln 5/ ln 3 ' 1.465.

We can similarly find that the mass of the backbone increases by a
factor 6 for each iteration, and the dimension of the backbone is therefore
DB = ln 6/ ln 3 ' 1.631.

The Mandelbrot-Given curve can be optimized by selecting the lengths
Li illustrated in fig. 8.5 in the way that provides the best estimate for
the exponents of interest.

This deterministic iterative fractal can be used to perform quick
calculations of various properties on a fractal system, and may also serve
as a useful hierarchical lattice on which to perform simulations when we
are studying processes occurring on a fractal structure.
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1:

2:

b=1 b=2 b=4 b=8 b=16

M=1 M=3 M=9 M=27 M=81
Fig. 8.6 Two versions of the Siepinski gasket. In version 1, the next generation is made
from 3 of the structures from the last generation, and the spatial rescaling is by a factor
b = 3. In version 2, the next generation is made from 9 of the structures from the last
generation, and the spatial rescaling is by a factor b = 6. The resulting fractal dimension
is D2 = ln 9/ ln 4 = ln 32/ ln 22 = ln 3/ ln 2 = D1. The two structures therefore have the
same fractal dimension. However, version 1 have large fluctuations that version 2.

8.5 Lacunarity

The fractal dimension describes the scaling properties of structures such
as the percolation cluster at p = pc. However, structures that have the
same fractal dimension, may have a very different appearance. As an
example, let us study several variations of the Sierpinski gasket introduced
in section 5.5. As illustrated in fig. 8.6, we can construct several rules for
the iterative generation of the fractal that all result in the same fractal
dimension, but have different visual appearance. The fractal dimension
D = ln 3/ ln 2 for both of the examples in fig. 8.6, but by increasing
the number of triangles that are used in each generation, the structures
become more homogeneous. How can we quantify this difference?

In order to quantify this difference, Mandelbrot invented the concept
of lacunarity . We measure lacunarity from the distribution of mass-
sizes. We can characterize and measure the fractal dimension of a fractal
structure using box-counting, as explained in section 5.5. The structure,
such as the percolation cluster, is divided into boxes of size `. In each
box, i, there will be a mass mi(`). The fractal dimension was found by
calculating the average mass per box of size `:

〈mi(`)〉i = A`D . (8.17)

However, there will be a full distribution of masses m(`) in the boxes,
characterized by a distribution P (m, `), which gives the probability for
mass m in a box of size `. We can characterize this distribution by its
moments:

〈mk(`)〉 = Ak`
kD , (8.18)



8.5 Lacunarity 127

where this particular scaling form implies that the structure is unifractal:
the scaling exponents for all the moments are linearly related.

For a unifractal structure, we expect the distribution of masses to
have the scaling form

P (m, `) = `xf(m
`D

) , (8.19)

where the scaling exponent x is yet undetermined. In this case, the
moments can be found by integration over the probability density

〈mk〉 =
∫
P (m, `)mkdm (8.20)

=
∫
mk`xf(m

`D
)dm (8.21)

= `(kD+x+D
∫

(m
`D

)kf(m
`D

)d(m
`D

) (8.22)

= `D(k+1)+x
∫
xkf(x)dx (8.23)

We can determine the unknown scaling exponent x from the scaling of
the zero’th moment, that is, from the normalization of the probability
density: 〈m0〉 = 1 implies that D(0 + 1) + x = 0, and therefore that
x = −D. The scaling ansatz for the distribution of masses is therefore

P (m, `) = `−Df(m
`D

) . (8.24)

And we found that the moments can be written as

〈mk〉 = `D(k+1)−D
∫
xkf(x)dx = Ak`

kD , (8.25)

as we assumed above.
We therefore see that the distribution of masses is characterized by the

distribution P (m, `), which in turn is described by the fractal dimension,
D, and the scaling function f(u), which gives the shape of the distribution.

The distribution of masses can be broad, which would correspond
to “large holes”, or narrow, which would correspond to a more uniform
distribution of mass. The width of the distribution can be characterized
by the mean-square deviation of the mass from the average mass:

∆ = 〈m
2〉 − 〈m〉2

〈m〉2
= A2 − A2

1
A2

1
. (8.26)

This number describes another part of the mass distribution relation
than the scaling relation, and can be used to characterize fractal set.
For the percolation problem, this number is assumed to be universal,
independent of lattice type, but dependent on the dimensionality.
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Fig. 8.7 Illustration of the Leath algorithm. Initially, the algorithm starts with the
central site occupied. All the neighboring sites are added to a list of sites that should be
checked in the next round, marked as red circles in the figure. In the first round, the sites
marked with number 1 have been occupied, and some of the neighboring sites have been
found not to be occupied, marked by black circles. The newly added neighbors marked
with red circles will be checked in the next round. All the sites marked with a 2 have a
minimum path of length 2 from them to the origin.

8.6 Numerical methods

The Leath algorithm [?] is particularly suited to study the minimal path
in a percolation cluster. In this algorithm, the clusters are grown from
an occupied site in the origin. Initially, we start with the site at the
origin, and mark that in the next round we will check all neighboring
sites. In the next round, we check all the neighboring sites, as illustrated
in ref. 8.7, and add the newly generated neighboring sites that have not
previously been tested to the list of sites that will be tested in the next
round. The round, or generation, of check gives directly the minimal
path from the center site to the sites grown, as also illustrated in fig. 8.7.
This process continues until there are no more perimeter sites activated.

Using this method it is easy to collect statistics for r(l), where r is
the Euclidean length and l is the shortest path on the cluster. We can
therefore use this method to numerically find the relation between Lmin
and the cluster size L.



Inter-dimensional cross-overs 9

The behavior of the percolation system depends strongly on dimension-
ality. We have learned that the two end members - a one-dimensional
and an infinite dimensional system - can be treated exactly, but that the
most relevant dimensions, d = 2 and d = 3 can only be addressed by
numerical means and by the use of renormalization arguments.

However, many problems of practical interest may not be symmetric.
For example, many systems of geological relevance are strongly layered,
which may lead to a different treatment of one of the dimensions compared
to the other dimensions. Another problem of relevance is the behavior
of thin strips, or of thin tubes of material. In this chapter, we will
demonstrate how we can use the tools we have developed for percolation
theory to address problems with strong anisotropies.

In the first section, we will develop the scaling theory for a narrow
strip of material, corresponding to a cross-over from two-dimensional
to one-dimension behavior. Then, we will address the case of a strongly
layered material, and we will also be discussion the behavior of percolation
systems in higher dimensions, with a particular focus on the upper critical
dimension for percolation.

9.1 Percolation on a strip

Let us address the behavior of a thin, long strip. We are interested in
percolation in the long direction, which has a length L measured in lattice
units. The length across the sample is `� L. The size of a site is chosen
so that all correlations are included at a smaller scale, and at the scale
with study the percolation problem, the occupation probabilities are
independent and homogeneously distributed, that is, there is a common
distribution for the whole sample.
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l

l

Fig. 9.1 Illustration percolation on a thin strip of width ` and length L. In the case
when ` < ξ, the system is renormalized until ` vanishes, and the problem is reduced to a
one-dimensional problem.

Let us address the spanning probability in the x-direction correspond-
ing to the length L. We call the spanning probability Pi(`, L, p). The
correlation length in the system depends on where we are in the parame-
ter space. If we start close to the two-dimensional fixpoint, we can iterate
until we are within the linear regime close to p∗. We can write these
iterations into the spanning probability

Π(`, L, p) = Π(`, L, ξ) = Π( `
bn
,
L

bn
,
ξ

bn
) , (9.1)

where we have used the technique that we can use ξ as the argument
instead of p.

There are two possibilities that leads to two different behaviors: Either
` < ξ or ` > ξ. Let us first address the case when ` < ξ. In this case, we
can choose an n∗ so that

`

bn
= 1 . (9.2)

We insert this into eq. 9.1, getting

Π = Π(1, L
`
,
ξ

`
) . (9.3)

We have therefore mapped it onto a one-dimensional problem with blocks
of length ` as illustrated in fig. 9.1.

The occupation probability in the renormalized one-dimensional lattice
will then be

p′ = R(n∗)(p) , (9.4)

which corresponds to applying the renormalization iteration equation R(p)
a number of times corresponding to n∗. The new spanning probability is

Π(1, L
`0 , p

′) = (p′)L/` , (9.5)

since we have reduced the problem to the one-dimensional percolation
problem. For the one-dimensional problem, we can deduce the actual
correlation length, because we know that the spanning probability is
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related to the correlation length through

Π = ((p(n∗))1/`)L ' e−L/ξ
′
, (9.6)

where we have used the notation that p(k) corresponds to the p′ value
after k iterations. The correlation length ξ is given as

− 1
ξ

= ln[(p(n∗))1/`] . (9.7)





Introduction to disorder 10

We have now developed the tools to address the statistical properties of
the geometry of a disordered system such as a model porous medium:
the percolation system. In this part, we will apply this knowledge to
address physical properties of disordered systems and to study physical
processes in disordered materials.

We have learned that the geometry of a disordered system displays
fractal scaling close to the percolation threshold. Material properties
such as the density of singly connected sites, or the backbone of the
percolation cluster, display self-similar scaling. The backbone is the
part of the spanning cluster that participates in fluid flow. The mass,
MB, of the backbone scales with the system size, L, according to the
scaling relation MB = LDB , where DB is smaller than the Euclidean
dimension. The density of the backbone therefore decreases with system
size. This implies that material properties which we ordinarily would
treat as material constants, depend on the size of the sample. In this
part we will develop an understanding of the origin of this behavior, and
show how we can use the tools from percolation theory to address the
behavior in such systems.

The behavior of a disordered system can in principle always be ad-
dressed by direct numerical simulation. For example, for incompressible,
single-phase fluid flow through a porous material, the effective perme-
ability of a sample can be found to very good accuracy from a detailed
numerical model of fluid flow through the system. However, it is not
practical to model fluid flow down to the smallest scaling in practical
problems such as in oil migration. We would therefore need to extrapolate
from the small scale to the large scaling. This process, often referred to
as up-scaling, requires that we know the scaling properties of our system.
We will address up-scaling in detail in this chapter.

We may argue that the point close to the percolation threshold is
anomalous and that any realistic system, such as a geological system,
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would typically be far away from the percolation threshold. In this case,
the system will only display an anomalous, size-dependent behavior up
to the correlation length, and over larger lengths the behavior will be
that of a homogeneous material. We should, however, be aware that
many physical properties are described by broad distributions of material
properties, and this will lead to a behavior similar to the behavior close
to the percolation threshold, as we will discuss in detail in this part.
In addition, several physical processes ensure that the system is driven
into or is exactly at the percolation threshold. One such example is
the invasion-percolation process, which gives a reasonable description
of oil-water emplacement processes such as secondary oil migration. For
such systems, the behavior is best described by the scaling theory we
have developed.

In this part, we will first provide an introduction to the scaling of
material properties such as conductivity and elasticity. Then we will
demonstrate how processes occurring in systems with frozen disorder,
such as a porous material, often lead to the formation of fractal structures.



Flow in disordered media 11

In this chapter we will address the flow of an incompressible fluid through
a disordered material, such as a percolation system. Traditionally, the
conductive properties of a disordered material has been addressed by
studying the behavior of random resistor networks. In this case, a voltage
V is applied across the disordered material, and the total current, I,
through the sample is measured, giving the conductance G of the sample
as the constant of proportionality I = GV . However, here we will use
fluid flow in a porous medium as our basic analogy, but we will study
this process in the limit where it is identical to the study of electrical
conductivity.

If we study electrical conductivity, we want to find the conductance of
the particular sample. However, our basic assumption is that the con-
ductance, G, which describes a particular sample with a given geometry,
is related to the conductivity, σ, which is a material property. For an Ld
sample in a d-dimensional system, the conductance of a homogeneous
material with conductivity σ is G = Ld−1σ/L. That is, the conductance
is inversely proportional to the length of the sample in the direction of
flow, and proportional to the cross-sectional d− 1-dimensional area.

When we address incompressible Darcy flow of a sample of length
L and cross-sectional area A, Darcy’s law provide a relation between
the total flux, Φ, that is, the volume per unit time flowing through the
sample, and the pressure drop ∆p across the sample:

Φ = kA

ηL
∆p , (11.1)

where k is the permeability of the material, and η is the viscosity of the
fluid. Again, we would like a description so that k is material property,
and all the information about the geometry of the material goes into
the flow conductance of the sample through the length L and the cross-
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sectional area A. Generalized to a d-dimensional system, the relation
is

Φ = kLd−1

ηL
∆p = Ld−2 k

η
∆p . (11.2)

Consequently, it is clear that the electric conductivity problem is the
same and the Darcy-flow permeability problem.

In this chapter we will discuss the behavior of the conductance and
the conductivity for percolation systems, where sites are either filled
or empty, and for other distributions of local material properties. We
will see that the study of this problem introduces a wide range of new
scaling behaviors for the percolation problem, and we will in particular
address the scaling of the distribution of local fluxes or currents, and
introduce the concept of multi-fractality describing their complicated
scaling structure. We will also introduce the Effective Medium Theory
for the flow problem. Finally, we will given an example of up-scaling
of permeabilities and modeling of fluid flow in a porous medium using
techniques from renormalization theory.

11.1 Conductivity

Let us first address the conductance of a Ld sample. The sample is a
percolation system. The system may be either a site or a bond percolation
system, however, many of the concepts we introduce are simpler to explain
if we just consider a bond percolation system. Our sample will therefore be
a networks of bonds, where all bonds have the same conductance, which
we can set to 1 without loss of generality. However, bonds are removed
with probability 1 − p. We can describe this by only addressing the
conductances, if we assume that the effective conductance of a removed
bonds is 0.

The conductance of the Ld sample, is found by solving the Darcy
flow problem as illustrated in fig. 11.1. A pressure drop ∆p is applied
across the whole sample, and the effective flow conductance G is found by
finding the total flux Φ = G∆p. The conductance will be a function of p
and L: G = G(p, L). We write the conductance between two neighboring
sites i and j, corresponding to the conductance of the bond from site i
to site j, as gi,j . In order to find the effective conductance of the whole
sample, the local fluxes between sites i and j, φi,j , and the local pressures
at sites i, pi, must be found for all the sites i in the sample. The local
flux from site i to site j, φi,j , is related to the local pressure drop through
Darcy’s law (or Ohm’s law for the case of electrical conductivity):

φi,j = gi,j(pi − pj) , (11.3)
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V
Fig. 11.1 Illustration of flow through a bond percolation system. The bonds shown
in red are the singly connected bonds: all the flux has to go through these bonds. The
bonds shown in blue are the rest of the backbone: The flow only takes place on the singly
connected bonds and the backbone, the remaining bonds are the dangling ends, which do
not participate in fluid flow.

where gi,j = ki,ja/ηl, where l is the distance between sites i and j, and
a is the cross-sectional area of the bond between sites i and j.

We find the distribution of pressures, by solving the set of local
continuity equations: The net flux into site i, Φi, is given as the sum of
fluxes into site i from all neighbors j:

Φi =
∑
j

gi,j(pi − pj) , (11.4)

where we know that the net flux into site i can be non-zero only at the
boundary sites.

For percolation in an infinite sample, we must address the conductivity,
σ, and not the conductance, G of the whole system. We know that for
p < pc there will be no spanning cluster in an infinite sample. The
effective conductivity is therefore zero. When p is close to 1, the density
of the spanning cluster will be proportional to p, and we also expect the
conductivity to be proportional to p in this range. This may lead us to
assume that the density of the spanning cluster and the conductivity of
the sample is proportional also when p is close to pc. However, direct
measurement by Last and Thouless [?] shows that P and σ are not
proportional when p approaches pc. The behavior is illustrated by the
computer simulation results shown in fig. 11.2. We see that the density
of the spanning cluster has a steep slope close to pc, corresponding
to a power-law behavior P ∝ (p − pc)β, where β < 1. However, the
conductivity has a similar scaling behavior, σ ∝ (p − pc)µ, but the
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Fig. 11.2 Illustration of the shape of the curves P (p, L) and σ(p.L) for a bond percolation
system with L = 128.

exponent µ > 1. The conductivity therefore rises much slower than the
density of the spanning cluster.

We have the tools to understand this behavior. The spanning cluster
consists of the backbone and dangling ends. However, it is only the
backbone that contributes to conductivity of the sample. We could
remove all the dangling ends, and still get the same behavior the the
conductivity. This suggests, that it is the scaling behavior of the backbone
that is important. However, we have found that the mass-scaling exponent
of the backbone, DB, is smaller than D, the mass scaling exponent for the
spanning cluster. This indicates that most of the mass of the spanning
cluster is found in the dangling ends. This is the reason for the difference
between the behavior of P (p), and σ(p) for p close to pc.

11.2 Scaling arguments

Let us start by addressing the conductance G(ξ, L) of a system with
p > pc and L� ξ. In this case, we know that over length-scales larger
than ξ, the system will be homogeneous. We can see this by subdividing
the system into cells of size ξ, so that we have in total (L/ξ)d such cells.
For a homogeneous system of size `d, we know that the conductance is
G ∝ `d−2g, where g is the conductivity of a single box. We apply the
same principle to this system: The conductance G(ξ, L) is given as

G(ξ, L) = (L
ξ

)d−2G(ξ, ξ) , (11.5)
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where we have written G(ξ, ξ) for the conductivity within the box. This is
the conductance of a system with correlation length equal to the system
size ξ.

The conductivity σ(ξ, L) is given as

σ(ξ, L) = L−(d−2)G(ξ, L) = G(ξ, ξ)
ξd−2 . (11.6)

What is then G(ξ, ξ)? A system with correlation length equal to the
system size is indistinguishable from a system at p = pc. The conductance
G(ξ, ξ) is therefore the conductance of the spanning cluster at p = pc.

If we address the other case, when L� ξ, the system behaves as if it
is at p = pc, and the conductance corresponds to the conductance in a
system with infinite correlation length, G(∞, L).

11.2.1 Conductance of the spanning cluster

This leads us to address the conductance,G(∞, L), of the spanning cluster
at p = pc. We know that the spanning cluster consists of the backbone
and the dangling ends, and that only the backbone will contribute to
the conductivity. The backbone can be described by the blob model (see
section 8.2 for a discussion of the blob model): The backbone consists of
blobs of bonds in parallel, and links of singly connected bonds between
them. We will assume that the conductance can be described by the
scaling exponent ζ̃R:

G(∞, L) ∝ L−ζ̃R . (11.7)

Can we find bounds for the scaling of G(∞, L), and thereby determine
bounds for the exponent ζ̃R? First, we know that the spanning cluster
consists of blobs in series with the singly connected bonds. This implies
that the resistivity R = 1/G of the spanning cluster is given as the
resistivity of the singly connected bonds RSC plus the resistivity of the
blobs, Rblob since resistivities are added for a series of resistances:

1/G = R = RSC +Rblob , (11.8)

This implies that R > RSC . The resistance of the singly connected bonds
can easily be found, since the definition of singly connected bonds is that
they are coupled in series, one after another. The resistivity of the singly
connected bonds is therefore the resistivity of a single bond multiplied
with the number of singly connected bonds, MSC . We have therefore
found that

MSC < R . (11.9)

Because MSC ∝ LDSC , and R ∝ Lζ̃R , we find that

DSC ≤ ζ̃R . (11.10)
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We have found a lower bound for the exponent.
We can find an upper bound by examining the minimal path. The

resistivity of the spanning cluster will be smaller than or equal to the
resistivity of the minimal path, since the spanning cluster will have some
regions, the blobs, where there are bonds in parallel. Adding parallel
bonds will always lower the resistance. Hence, the resistivity is smaller
than or equal to the resistivity of the minimal path. Since the minimal
path is a series of resistances in series, the total resistance of the minimal
path is the mass of the minimal path multiplied by the resistance of
a single bonds. Consequently, the resistance of the spanning cluster is
smaller than the mass of the minimal path, Lmin, which we know scales
with system size, Lmin ∝ LDmin . We have found an upper bound for the
exponent

Lζ̃R ∝ R ≤ Lmin ∝ LDmin , (11.11)

therefore
ζ̃R ≤ Dmin . (11.12)

We have therefore proved the scaling relation

DSC ≤ ζ̃R ≤ Dmin . (11.13)

Because this scaling relation also shows that the scaling of R is bounded
by two power-laws in L, we have also proved that the resistance R is
a power-law, and that the exponents are within the given bounds. We
notice that when dimensionality of the system is high, the probability of
loops will be low, and blobs will be unlikely. In this case

DSC = ζ̃R = Dmin = Dmax . (11.14)

11.2.2 Conductivity for p > pc

We have established that the conductance G(∞, L) of the spanning
cluster is described by the exponent ζ̃R:

G(∞, L) ∝ L−ζ̃R when L ≤ ξ . (11.15)

We use this to find an expression for G(ξ, ξ), which is the conductance
of the spanning cluster at p = pc in a system of size ξ. Therefore

G(ξ, ξ) ∝ ξ−ζ̃R . (11.16)

We use this in eq. 11.6 in order to establish the behavior of the conduc-
tivity for p > pc, finding that
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σ = G(ξ, ξ)
ξd−2 (11.17)

∝ ξ−(d−2+ζ̃R) (11.18)

∝ (p− pc)ν(d−2+ζ̃R) (11.19)
∝ (p− pc)µ (11.20)

We have introduced the exponent µ:

µ = ν(d− 2 + ζ̃R) . (11.21)

We notice that for two-dimensional percolation, any value of ζ̃R larger
than 1/ν will lead to a value for µ > 1, which was what was observed in
figure 11.2. The exponent µ is therefore significantly different from the
exponent β that describes the mass of the spanning cluster.

11.2.3 Renormalization calculation

We will use the renormalization group for a square bond lattice in order
to estimate the exponent ζ̃R. We calculate the average resistance 〈R′〉
of the H-cell, assuming that the resistance of a single bond is R. The
renormalized resistance R′ is then given as p′R′ = 〈R′〉. Using the scaling
relation for the resistivity, R ∝ Lζ̃R , we can determine the exponent from

ζ̃R =
ln 〈R

′〉
p′

ln b . (11.22)

The renormalization scheme and the values used are shown in table 11.2.3.
The resulting value for the renormalized resistance is

R′ = 1
p′

(1
2

)5 (
1 + 4 · 5

3 + 1 + 2 · 2 + 2 · 3 + 4 · 2 + 2 · 2
)
' 1.917 .

(11.23)
Consequently, the exponent ζ̃R is given by

ζ̃R '
ln 1.917

ln 2 ' 0.939 , (11.24)

This value is consistent with the scaling bounds set by the scaling relation
in eq. 11.14.
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c P (c) R(c)
1

p5(1− p)0 1
2

p4(1− p)1 1
3

4p4(1− p)1 5/3
4

2p3(1− p)2 2
5

2p3(1− p)2 3
6

4p3(1− p)2 2
7

2p2(1− p)3 2

Table

Renormalization scheme for the scaling of the resistance R in a random
resistor network. The value R(c) gives the resistance of configuration c.

11.2.4 Finite size scaling

For the case when L� ξ, we have concluded that the conductance can
be written as

G = Ld−2σ (11.25)

where the conductivity, that is, the permeability, is

σ ∝ (p− pc)µ ∝ ξ−µ/ν , (11.26)

with the exponent µ given as µ = ν
(
d− 2 + ζ̃R

)
. However, we want to

determine the behavior of σ(ξ, L) in both the limit L� ξ, which we have
already addressed, and in the limit L� ξ. The scaling result, suggest
that the conductivity has the scaling form

σ(ξ, L) = ξ−µ/νGσ(L
ξ

) . (11.27)

This relation can be developed systematically using the renormalization
group approach. Through each renormalization iteration, the conductivity
σ is mapped onto itself as all length are rescaled by a factor b, by
multiplying the whole expression by b to some exponent x, yet to be
determined:

σ(ξ, L) = bxσ(ξ
b
,
L

b
) . (11.28)

The result after l iterations is
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ξL>ξL>ξL>

L1

Σ

c pp 1

L2

Fig. 11.3 Illustration of the conductivity σ as a function of p for L1 < L2 <∞. We see
that close to pc the behavior is scaling with L according to σ ∝ L−µ/ν .

σ(ξ, L) = (bl)xσ( ξ
bl
,
L

bl
) . (11.29)

For the case L < ξ we choose to continue iterations until bl = L, which
gives

σ(ξ, L) = Lxσ(1, ξ
L

) . (11.30)

Similarly, when L > ξ, we continue iterations until bl = ξ, which gives

σ(ξ, L) = ξxσ(L
ξ
, 1) . (11.31)

Now, we have already established the scaling behavior when L > ξ, where
we found that σ ∝ ξ−µ/ν . We recognize that the exponent x = −µ/ν,
and that the function σ(x, y) is a constant both when x = 1, and y � 1,
and when y = 1, and x� 1. We have therefore found the limiting scaling
behavior

σ(ξ, L) =
{
ξ−µ/ν L� ξ

L−µ/ν L� ξ
. (11.32)

The result for L � ξ we could also have found by a direct scaling
argument. Because, when L� ξ, the system behaves as if it is at p = pc.
We can therefore assume that G ∝ L−ζ̃R , and we find σ = GLd−2, which
gives

σ ∝ L−(d−2+ζ̃R) ∝ L−µ/ν . (11.33)

The behavior is illustrated in figure 11.3.
We can sum these results up into the scaling form for σ(ξ, L):
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σ(ξ, L) = ξ−µ/νGσ(L
ξ

) , (11.34)

where the scaling function has the form

Gσ(u) =
{
const. u� 1, L→∞
u−µ/ν u� 1, ξ →∞ (11.35)

We can measure the conductivity by either measure the conductivity
in an infinite sample, or we may use the finite size scaling result, to study
the system at p = pc, where we expect σ ∝ L−µ/ν . Our conclusion is
that the conductivity is a function of p, but also of system size, which
implies that the conductivity in a disordered system close to pc is not
a simple material property as we are used to - we need to address the
scaling behavior of the system in detail.

11.3 Internal flux distribution

When we solve the incompressible flow problem, such as the set of Darcy’s
equations, on the percolation cluster, we find a set of fluxes φb for each
bond b on the backbone. For all other bonds, the flux will be identically
zero. How can we describe the distribution of fluxes on the backbone?

For the electrical problem, the conservation of energy is formulated in
the expression:

RI2 =
∑
b

rbI
2
b , (11.36)

where R is the total resistance of the system, I is the total current, rb is
the resistivity of bond b and Ib is the flux in bond b. We can therefore
rewrite the total resistance R as

R =
∑
b

rb(
Ib
I

)2 =
∑
b

rbi
2
b , (11.37)

where we have introduced the fractional current ib = Ib/I. We have
written the total resistance as a sum of the square of the fractional
currents in each of the bonds.

The fractional current ib is assigned to each bond of the fractal back-
bone (when p = pc). These measures have a probability distribution,
describing the number of bonds n(i) having the fractional current i. The
total number of bonds is the mass of the backbone:∑

b

1 = MB ∝ LDB . (11.38)

The distribution of fractional currents is therefore given by P (i) =
n(i)/MB.
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We characterize the distribution P (i) through the moments of the
distribution:

〈i2q〉 = 1
MB

∑
b

i2qb = 1
MB

∫
i2qn(i)di . (11.39)

However, there is no general way to simplify this relation, since we do
not know whether the function n(i) has a simple scaling form.

However, we can address specific moments of the distribution. We
know that the mass of the backbone has a fractal scaling with exponent
DB. This corresponds to the zero’th moment of the distribution. We will
now also anticipate that for p = pc, the other moments also has a scaling
form: ∑

b

i2qb ∝ Ly(q) , (11.40)

and address the scaling exponent y(q).
For q = 0, the sum is∑

b

(i2b)0 ∝ Ly(0) ∝ LDB , (11.41)

that is, y(0) = DB.
What happens in the limit of q → ∞? In this case, the only terms

that will be important in the sum are the terms where ib = 1, because all
other terms will be zero. The bonds with ib = 1 are the singly connected
bonds: all the current passes through these bonds. Therefore, we have∑

b

(i2b)∞ ∝ Ly(∞) ∝MSC ∝ LDSC , (11.42)

and we find that y(∞) = DSC .
When q = 1, we find from equation 11.37 that the sum is given as the

total resistance of the cluster∑
b

(i2b)1 = R ∝ Lζ̃R , (11.43)

which implies that y(1) = ζ̃R.
We can in general argue that because each term in the sum

∑
b(ib)2q is

monotonically decreasing in q, the sum is also monotonically decreasing.
We can therefore illustrate the curve y(q) in fig. 11.4.

Advanced
In real resistor-networks, the case is even more complex, because the
resistivity is due to impurities, and the impurities diffuse. Therefore,
the fluctuations in the resistivity will also have a time-dependent
part. This is the origin of thermal noise in the circuit. If we keep the
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ζR

DB

DSC

1 2

y(q)

q
Fig. 11.4 Illustration of the exponents y(q) characterizing the scaling of the moments of
the distribution of fractional currents, as a function q, the order of the moment.

total current I constant, fluctuations in the resistivity will lead to
fluctuations in the voltage.

What can we learn about the second moment, q = 2? We know that
the total resistance, R, is

R =
∑
b

rbi
2
b . (11.44)

So far, we have only addressed the case when rb = 1 for all the bonds on
the backbone. However, in reality there will be some variations in the
local resistances, so that we can write

rb = 1 + δrb , (11.45)

where 〈δrb〉 = 0.

Advanced
Let us estimate the fluctuations in the voltage:

δV = V − 〈V 〉 =
∑
b

δrb(ib)2 . (11.46)

However, the fractional currents ib are now also different, since
ib = Ib/I depends on the overall current I. Therefore we introduce

R0 =
∑
b

(i(0)
b )2 , (11.47)

where
ib = i

(0)
b + δib . (11.48)
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There is a general theorem giving that∑
b

1 · δ(i2b) ' 0 , (11.49)

to leading order. We can therefore conclude that

δV = V − 〈V 〉 =
∑
b

δrbi
2
b +

∑
b

1 · (δi2b) ' 0 . (11.50)

However, what about the fluctuations in the deviations?

〈(δV )2〉 = 〈
∑
b,b′

〈δrbδrb′〉i2bi2b′〈=
∑
b,b′

〈δrbδrb′〉i2b(i′b)2 . (11.51)

If we assume that the fluctuations are independent:

〈δrbδrb′〉 = δbb′∆ , (11.52)

where we have introduced

∆ = 〈δr2
b 〉 . (11.53)

We therefore find that

〈δV 2〉 = ∆
∑
b

(ib)4 ∝ ∆Ly(2) . (11.54)

Consequently, we find that the noise is related to the second moment.
We know that the exponent y(2) is bounded: DSC ≥ y(2) ≥ ζ̃R,
which places the value for y(2) ' 0.9 for a two-dimensional system.

The concept of 1/f -noise in conductors is related to the fluctua-
tions δrb(t) in rb(t).

11.4 Multi-fractals

The distribution of fractional currents in the random resistor network is
an example of a multi-fractal distribution. The higher moments have the
non-trivial scaling relation

Mq ∝ Ly(q) , (11.55)

Previously, we have studied unifractal distributions, such as the distri-
bution of clusters sizes in the percolation problem when p is close to
pc.

〈sk−1〉 ∝ |p− pc|−γq(β+1) , (11.56)

Multifractals are typically encountered when measures, such as the
fractional current through a bond, is imposed on a fractal structure.
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1 i

n(i) (b)

1 i

n(i) i 2q

i q

(a)

Fig. 11.5 Illustration of the distribution n(i) of fractional currents i in a random
resistor network. Part (a) shows the direct distribution, and part (b) shows n(i)i2q. The
distribution has a maximum at iq.

We have now studied on example of a multi-fractal: the distribution
of fractional currents in the random resistor network. In this case, we
found that the moments of the distribution was

mq = 〈i2q〉 =
∑
b i

2q
b

MB
∝ Ly(q)−DB . (11.57)

This is different from the unifractal case, where the exponent y(q) is
linear in k: y(q) = Dk.

Let us develop an understanding for what the various moments of
order q are measuring in our system. Let us assume that the distribution
n(i) of fractional current in the system has the functional form illustrated
in figure 11.5(a). How does then the function n(i)i2q look like? We have
shown an illustration in figure 11.5(b). The maximum of this function is
found at iq (iq is at the maximum of n(i)i2q). We will assume that we can
calculate the moment by only using the values in a small neighborhood
of iq, so that.

mq =
∫
n(i)i2qdi ' n(iq)i2qq . (11.58)

This approximation becomes better as q → ∞ since the distribution
n(i)i2q is then approaching a delta function around iq.

This implies that the various moments will focus on various values
of i. That is, they will address the structure of points with a current
close to iq. Looking at the different moments of the distribution therefore
corresponds to looking at different substructures of the cluster.

Let us now address the L-dependence in n(i) and i2qq . Let us assume
that i2q and n(iq) is scaling with system size according to

i2q ∝ L−α(q) , (11.59)

and
n(iq) ∝ Lf(α(q)) . (11.60)
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And we will assume that the q-th moment depends on the distribution
at iq.

mq ' n(iq)i2qq ∝ Lf(α(q))−qα(q) ∝ Ly(q)−DB . (11.61)

However, the value iq is found from the maximum of n(i)i2q. The condition
for this maximum is

∂

∂i

[
n(i)i2q

]
iq

= 0 , (11.62)

or
∂

∂i
[lnn(i) + 2q ln i]iq = 0 , (11.63)

which gives
(∂ lnn(i)

∂i )
ln i

∣∣∣∣∣
iq

= −2q . (11.64)

Now we can substitute the L-dependent expressions for n(iq) and i2q ,
getting

lnn(iq) = f lnL , (11.65)

and
ln i2q = −α lnL , (11.66)

and therefore we find that
∂f

∂α
= q . (11.67)

We have therefore two equations relating y(q) to f(α) and α(q):

f(α(q)) = [y(q)−DB] + qα(q) (11.68)
∂f

∂α
= q (11.69)

We can also show the reverse equations, using a Legendre transformation:

∂

∂q
(f(α(q)) = ∂f

∂α

∂α

∂q
(11.70)

= ∂y

∂q
+ α(q) + q

∂α

∂q
(11.71)

∂y

∂q
= −α (11.72)

What is the interpretation of f(α)? Because n(iq)LDB is the total
number of bonds with current iq, we can interpret f(α(q)) +DB as the
fractal dimension of the set of bonds with a current iq.

Numerically, we estimate f(α) by selecting iq, and then measure the
fractal dimension of the subset with i = iq, and plot the relation between
iq and the fractal dimension using as f(α).
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11.5 Real conductivity

So far we have addressed conductivity of a percolation cluster. That is a
system where the local conductances (or permeabilities) are either zero
or a given constant conductance. That is, we have studied a system with
local conductivities σi,j so that

σb = σi,j =
{

1 p
0 1− p . (11.73)

However, in practice, we want to address systems with some dis-
tribution of conductances, such as a binary mixture of good and bad
conductors, with conductivities:

σb = σi,j =
{
σ> p
σ< 1− p . (11.74)

However, in order to address this problem, let us first look at the conjugate
problem to the random resistor network, the random superconductor
network. We will assume that the conductivities are

σb = σi,j =
{
∞ p
1 1− p . (11.75)

In this case, we expect the conductance to diverge when p approaches
pc from below, and that the conductance is infinite when p > pc. It can
be shown that the behavior for the random superconductor network is
similar to that of the random resistor network, but that the exponent
describing the divergence of the conductivity when p approaches pc is s:

σ ∝ (pc − p)−s , (11.76)

How can we address both these problems? For any system with a
finite smallest conductivity, σ<, we can always use the smaller conduc-
tivity as the unit for conductivity, and write the functional form for the
conductivity of the whole system as

σ(σ<, σ>, p) = (
σ(σ<σ< ,

σ>
σ<
, p)

σ<
) = σ(σ>

σ<
, p) , (11.77)

We will make a scaling ansatz for the general behavior of σ:

σ = σ>(p− pc)µf±(
(σ<σ> )

(p− pc)y
) , (11.78)

where the exponent y is yet to be determined.
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The random resistor network corresponds to σ< → 0, and σ> = c0. In
this case, we retrieve the scaling behavior for p close to pc, by assuming
that f+(0) is a constant.

For the random superconductor network, the conductivities are σ> →
∞, and σ< = const.. We will therefore need to construct f−(u) in such a
way that the infinite conductivity is canceled from the prefactor. That is,
we need f−(u) ∝ u. We insert this into equation 11.78, getting

σ ∝ σ>(p− pc)µ
σ<
σ>

(p− pc)y
∝ σ<|p− pc|µ+y . (11.79)

Because we know that the scaling exponent should be µ + y = −s in
this limit, we have determined y: y = −µ− s, where µ and s are deter-
mined from the random resistor and random superconductor networks
respectively.

When p→ pc the conductivity σ should approach a constant number
when both σ> and σ< are finite. However, p → pc corresponds to the
argument x → +∞ in the function f±(x). However, the only way to
ensure that the total conductivity is finite, is to require that the two
dependencies on (p− pc) cancel exactly. We achieve this by selecting

f±(x) ∝ xµ/(µ+s) . (11.80)

We can insert this relation into equation 11.78, getting

σ = σ>|p− pc|µ(
σ<
σ>

|p− pc|µ+s )µ/(µ+s) , (11.81)

which results in
σ = σ>(σ<

σ>
)

µ
µ+s . (11.82)

This expression can again be simplified to

σ(p = pc) = σ
s

µ+s
> σ

µ
µ+s
< , (11.83)

In two dimensions, µ = s ' 1.3, and the relation becomes:

σ ∝ (σ<σ>) 1
2 , (11.84)

11.6 Effective Medium Theory

11.7 Flow in hierarchical systems
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There are various physical properties that we may be interested in for a
disordered material. In the previous chapter, we studied flow problems in
disordered materials using the percolation system as a model disordered
material. In this chapter we will address mechanical properties of the
disordered material, such as the coefficients of elasticity, tensile strength,
and the dispersion relation for elastic waves propagating through the
material.

We will address the behavior of the disordered material in the limit
of fractal scaling. In this limit we expect material properties such as
Young’s modulus to display a non-trivial dependence on system size.
That is, we will expect material properties such as Young’s modulus to
have an explicit system size dependence. We will use the terminology
and techniques already developed to study percolation to address the
mechanical behavior of disordered systems.

12.1 Rigidity percolation

First, we will address the elastic properties of the percolation system.
Let us assume that we model an elastic material as a bond lattice, where
each bond represents a local elastic element. The element will in general
have resistance to stretching and bending. Systems with only stretching
stiffness are termed central force lattices. Here, we will address systems
with both stretching and bending stiffness.

We can formulate the effect of bending and stretching through the
elastic energy of the system. The energy will have terms that depend
on the elongation of bonds - these will be the terms that are related
to stretching resistance. In addition, there will be terms related to the
bending of bonds. Here we will introduce the bending terms through the
angles between bonds. For any two bonds connected to the same site,

153
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there will be an energy associated with changes in the angle of the bond.
This can be expressed as

U =
∑
ij

1
2kij(ui − uj)2 +

∑
ijk

1
2κijkφ

2
ijk , (12.1)

where U is the total energy, the sums are over all particle pairs ij or all
particle triplets ijk. The force constant is kij = k for bonds in contact
and zero otherwise, and κijk = κ for triplets with a common vertice, and
zero otherwise. The vector ui gives the displacement of node i from its
equilibrium position.

Let us address the effective elastic behavior of the percolation system.
We would like to describe the material using a material property such
as Young’s modulus, E, or the shear modulus, G. Let us consider a
three-dimensional sample with cross-sectional area A = L2 and length
L. Young’s modulus, E, relates the tensile stress, σzz, applied normal to
the surface with area A to the elongation ∆L in the z-direction.

σzz = Fz
A

= E
∆Lz
L

, (12.2)

We can therefore write the relation between the force Fz and the elonga-
tion ∆Lz as

Fz = EA

L
∆L = EL2

L
∆L = Ld−2E∆L . (12.3)

We recognize this as a result similar to the relation between the conduc-
tance and the conductivity of the sample, and we will call K = Ld−2E
the compliance of the system.

What happens to the compliance of the system as a function of p?
When p < pc there are no connecting paths from one side to another, and
the compliance will therefore be zero. It requires zero force Fz to generate
an elongation ∆Lz in the system. Notice that we are only interested in
the infinitesimal effect of deformation. If we compress the sample we
will of course eventually generate a contacting path, but we are only
interested in the initial response of the system.

When p ≥ pc there will be at least one path connecting the two edges.
For a system with a bending stiffness, there will be a load bearing path
through the system, and the deformation ∆Lz of the system requires a
finite force, Fz. The compliance K will therefore be larger than zero. We
have therefore established that for a system with bending stiffness, the
percolation threshold for rigidity coincides with the percolation threshold
for connectivity. However, for a central force lattice, we know that the
spanning cluster at pc will contain may singly connected bonds. These
bonds will be free to rotate, and as a result a central force network will
have a rigidity percolation threshold which is higher than the connectivity
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threshold. Indeed, rigidity percolation for central force lattices will have
very high percolation thresholds in three dimensions and higher. Here,
we will only focus on lattices with bond bending terms.

Based on our experience with percolation systems, we may expect
that the behavior of Young’s modulus when p approaches pc from above
follows a power-law:

E ∝
{

0 p < pc
(p− pc)τ p > pc

. (12.4)

where τ is an exponent describing the elastic system. We will now use
our knowledge of the percolation systems to show that this behavior is
indeed expected, and to determine the value of the exponent τ .

Let us address the Young’s modulus E(p, L) of a percolation sys-
tem with occupation probability p and a system size L. We could
also write E as a function of the correlation length ξ = ξ(p), so that
E = E(ξ, L). Young’s modulus is in general related to the compliance
through E(ξ, L) = K(ξ, L)Ld−2. We can there address the compliance
of the system and then calculate Young’s modulus. Let us assume that
the correlation length ξ is in the range a� ξ � L, where a is the size
of a bond, and L is the system size. We can therefore subdivide the Ld
system into boxes of linear size ξ as illustrated in figure 12.1. There will
be (L/ξ)d such boxes. On this scale the system is homogeneous. Each
box will have a compliance K(ξ, ξ), and the total compliance will be
K(ξ, L). We know that the total compliance of n elements in series is
1/n times the compliance of a single element. You can easily convince
yourself of this addition rule for spring constants, by addressing two
springs in series. Similarly, we know that adding n elements in parallel
will make the total system n times stiffer, that is, the compliance will be
n times the compliance of an individual element. The total compliance
K(ξ, L) is therefore given as

K(ξ, L) = K(ξ, ξ)(L
ξ

)d−2 . (12.5)

Young’s modulus can then be found as

E(ξ, L) = L−(d−2)K(ξ, L) = K(ξ, ξ)
ξd−2 . (12.6)

We will therefore have to find the compliance K(ξ, ξ). However, we
recognize that this is the compliance of the percolation system at p = pc
when the system size L is the correlation length L. We are therefore left
with the problem of finding the compliance of the spanning cluster at
p = pc as a function of system size L.

Again, we expect from our experience in the behavior of scaling
structures that the compliance will scale with the system size with a
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Fig. 12.1 Illustration of subdivision of a system with p = 0.60 into regions with a size
corresponding to the correlation length, ξ. The behavior inside each box is as for a system
at p = pc, whereas the behavior of the overall system is that of a homogeneous system of
boxes of linear size ξ.

fractal dimension ζ̃K :
K ∝ Lζ̃K . (12.7)

Let us now use our standard approach, and first determine a set of
bounds for K, which will also serve as a proof of the scaling behavior of
K.

We will use arguments based on the total energy of the system. The
total energy of a system subjected to a force F = Fz resulting in an
elongation ∆L is:

U = 1
2K(∆L)2 , (12.8)

where the elongation ∆L is related to the force F through, ∆L = F/K.
Consequently,

U = 1
2K(F

K
)2 = 1

2
F 2

K
. (12.9)

We can therefore relate the elastic energy of a system subjected to the
force F directly to the compliance of that system.
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Our arguments will be based on the geometrical picture we have of the
spanning cluster when p = pc. The cluster consists of singly connected
bonds, blobs, and dangling ends. The dangling ends do not influence
the elastic behavior, and can be ignored in our discussion. It is only
that backbone that contribute to the elastic properties of the spanning
cluster. We can find an upper bound for the compliance by considering
the singly connected bonds. The system consist of the blob and the singly
connected bonds in series. The compliance must include the effect of
all the singly connected bonds in series. However, adding the blobs in
series as well will only contribute to lowering the compliance. We will
therefore get an upper bound on the compliance, by assuming all the
blobs to be infinitely stiff, and therefore only include the effects of the
singly connected bonds.

Let us therefore study the elastic energy in the singly connected
bonds when the cluster is subjected to a force F . The energy, U , can be
decomposed in a stretching part, Us, and a bending part, Ub: U = Us+Ub.

For a singly connected bond from site i to site j, the change in length,
δ`ij , due to the applied force F is δ`ij = F/k, where k is the force
constant for a single bond. The energy due to stretching, Us, is therefore

Us =
∑
ij

1
2kδ`

2
ij =

∑
ij

1
2k(F

k
)2 = 1

2
MSC

k
F 2 , (12.10)

where MSC is the mass of the singly connected bonds.
We can find a similar expression for the bending terms. For a bond

between sites i and j, the change in angular orientation, δφij is due to the
torque T = riF , where ri is the distance to bond i in the direction normal
to the direction of the applied force F : δφij = T/κ. The contribution
from bending to the elastic energy is therefore

Ub =
∑
ij

1
2κ(δφij)2 = 1

2
∑
ij

κ(riF
κ

)2 = 1
2κMSCR

2
SCF

2 , (12.11)

where
R2
SC = 1

MSC

∑
ij

r2
i , (12.12)

where the sum is taken over all the singly connected bonds.
The elastic energy of the singly connected bonds is therefore:

USC = ( 1
2k + R2

SC

2κ )MSCF
2 , (12.13)

and the compliance of the singly connected bonds is

KSC = F 2

2U = 1
(1/k +R2

SC/κ)MSC
. (12.14)
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which is an upper bound for the compliance K of the system.
We can make a similar argument for a lower bound for the compliance

K of the system. The minimal path on the spanning cluster provides
the minimal compliance. The addition of any bonds in parallel will only
make the system stiffer, and therefore increase the compliance. We can
determine the compliance of the minimal path by calculating the elastic
energy of the minimal path. We can make an identical argument as we
did above, but we need to replace MSC with the mass, Mmin, of the
minimal path, and the radius of gyration R2

SC with the radius of gyration
of the bonds on the minimal path R2

min.
Kantor [?] has provided numerical evidence that both R2

min and R2
SC

is proportional to ξ2. When we are studying the spanning cluster at
p = pc this corresponds to Rmin and RSC being proportional to L. This
shows that the dominating term for the energy is the bending and not
the stretching energy when p is approaching pc.

We have therefore determined the scaling relation

Kmin ≤ K ≤ KSC , (12.15)

where we have found that when L� 1, Kmin ∝ L−(Dmin+2) and KSC ∝
L−(DSC+2). That is:

L−(Dmin+2) ≤ K(L) ≤ L−(DSC+2) . (12.16)

We have therefore proved that K(L) is indeed a power-law with an
exponent ζ̃K satisfying the relation

− (Dmin + 2) ≤ ζ̃K ≤ −(DSC + 2) . (12.17)

We can then use this scaling relation to determine the behavior of
Young’s modulus from equation 12.6.

E(ξ, L) = K(ξ, ξ)
ξd−2 ∝ ξζ̃K

ξd−2 ∝ ξζ̃K−(d−2) . (12.18)

We have therefore found a relation for the scaling exponent τ :

E(p, L) = ξ−(d−2−ζ̃K) ∝ (p− pc)(d−2−ζ̃K)ν ∝ (p− pc)τ . (12.19)

The exponent τ is therefore in the range:

(d− 2 +DSC + 2)ν ≤ τ ≤ (d− 2 +Dmin + 2)ν , (12.20)

The resulting bounds on the scaling exponents are:

(DSC + 2) ν ≤ τ ≤ (Dmin + 2) ν , (12.21)

For two-dimensional percolation the exponents are approximately
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3.41 ≤ τ ≤ 3.77 , (12.22)

We see that the bounds are similar to the bounds we found for the
exponent ζ̃R. This similarity lead Sahimi (1986) and Roux (1986) to
conjecture that the elastic coefficients E and G, and the conductivity σ
is related through

E

σ
∝ ξ−2 . (12.23)

and therefore that
τ = µ+ 2ν = (d+ ζ̃R)ν . (12.24)

which is well supported by numerical studies.
In the limit of high dimensions, d ≥ 6, the relation τ = µ + 2ν = 4

becomes exact. However, we can use as a rule of thumb that the exponent
τ ' 4 in all dimensions d ≥ 2.





Diffusion in disordered media 13

For a random walker, as well as for diffusional processes, the average
distance R increases with the square root of time. However, we have
previously only considered random walks in free space. How will the
random walker behave if it is restricted to move on a structure with a
scaling geometry, such as percolation clusters? In this chapter we will
address diffusion on scaling structures.

In our previous discussion of random walks, we described the motion
in time and space of the random walker through the probability density
P (r, t) so that P (r, t)drdt is the probability for the random walker to be
in the volume rdr in the time period t to t + dt. For a random walker
on a grid, the probability to be at a grid position i is given as Pi(t). We
argued that the probability for the walker to be at a position i at the
time t = t+ δt was

Pi(t+ δt) = Pi(t) +
∑
j

[σj,iPj(t)− σi,jPi(t)]δt , (13.1)

where the sum is over all neighbors j of the site i. The term σi,j is the
transition probability. The first term in the sum represents the probability
that the walker during the time period δt walks into site i from site j,
and the second term represents the probability that the walker during
the time period δt walks from site i to one of the neighboring sites j.

When δt→ 0 this equation approaches a differential equation

∂Pi
∂t

=
∑
j

[σj,iPj(t)− σi,jPi(t)] . (13.2)

We can now assume that the transition probability is equal for all the
neighbors, so that σi,j = 1/Z, where Z is the number of neighbors. In
this case, the differential equation simplifies to
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∂P

∂t
= D∇2P , (13.3)

which we recognize as the diffusion equation.
The solution to this equation is

P (r, t) = 1
(2πDt)d/2 e

−r2/2Dt = 1
(2π)d/2|R|2

e
− 1

2 ( r
|R| )

2
, (13.4)

where we have introduced |R| =
√
Dt.

We have also found that the moments of this distribution are

〈rk〉 = AkR(t)k ∝ tk/2 , (13.5)

and specifically, that

〈r2〉 =
∫
P (r, t)r2dr = R2(t) = Dt . (13.6)

The structure generated by this process is therefore a unifractal.

13.1 Random walks on clusters

Let us study what happens if we drop a random walker onto a random
position in the percolation system and measure the position r of the
walker as a function of time. That is, we set P (r, 0) = δ(r), and ask for
the solution to P (r, t).

We know that when p = 1, the problem will be the ordinary diffusion
problem. We will therefore expect that when p ' 1, the system behaves
similar to ordinary diffusion. When p approaches 0 we expect the maxi-
mum value of 〈r〉 to approach a constant value, because the walker will
be trapped on a cluster of finite size.

13.1.1 Diffusion for p < pc

Let us first address the case when p < pc and let us drop the walker onto
a cluster of size s. We will expect that after a long time, 〈r2〉 ∝ R2

s. If
we repeat this experiment many times, each time dropping the walker
onto a random occupied point in the system, we need to take the average
over all clusters of size s and over all starting positions, getting[

〈r2〉
]
∝
[
R2
s

]
=
∑
sR

2
ssn(s, p)∑
ssn(s, p) ∝ (pc − p)β−2ν , (13.7)

because we know that Rs ∝ s1/D. This average is different than the
average we used as the definition of the correlation length, since we used
the weight s2n(s, p) for the correlation length. This is the reason for
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the scaling exponent to be β − 2ν and not simply 2ν as we got for the
correlation length.

This transition occurs after some transient time t0. What can we say
about t0? We expect t0 to diverge when p→ pc.

13.1.2 Diffusion for p > pc

Let us then address the case when p > pc. We know that when p = 1,
〈r2〉 = D(1)t. We will therefore write the general relation for p > pc:

〈r2〉 = D(p)t , r � ξ . (13.8)

What behavior do we expect from D(p)? We expect D(p) to increase in
a way similar to the density of the backbone or the conductivity σ. In
fact, the Einstein relation for diffusion relates the diffusion constant to
the conductance through:

D(p) ∝ σ(p) ∝ (p− pc)µ . (13.9)

We therefore expect that when p > pc, and the time is larger than
a crossover time t0(p), that the behavior is scaling with exponent µ,
identical to that of conductivity.

13.1.3 Scaling theory

Let us develop a scaling theory for the behavior of 〈r2〉. We will assume
that when the time is smaller than a cross-over time, the behavior is
according to a power-law with exponent 2k, and that when the time is
larger than the cross-over time, the behavior is either that of diffusion
with diffusion constant D(p), or it reaches a constant plateau for the
case when p < pc.

Let us introduce a scaling ansatz with these properties:

〈r2〉 = t2kf [(p− pc)tx] . (13.10)

We could also have started from any of the end-points, such as from the
assumption that

〈r2〉 = (pc − p)β−2νG1( t
t0

) , (13.11)

or
〈r2〉 = (p− pc)µG2( t

t0
) . (13.12)

We have two unknown exponents k and x that must be determined from
independent knowledge. We will assume that the function f(u) has the
behavior
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f(u) =


const. |u| � 1
uµ u� 1
(−u)β−2ν u� −1

(13.13)

Let us now address the various limits in order to determine the scaling
exponents k and x in terms of the known exponents. First, let us address
the limit when u� 1, that is, p > pc, and we have found that

〈r2〉 ∝ (p− pc)µt , (13.14)

which should correspond to the functional form from the ansatz:

(p− pc)µt ∝ t2kf((p− pc)tx) ∝ t2k[(p− pc)tx]µ . (13.15)

This resulting the the exponent relation

2k = 1− µx , (13.16)

or
k = 1− µx

2 . (13.17)

Similarly, we know that the behavior in the limit of u� −1 should
be proportional to (pc − p)β−2ν . Consequently, the scaling ansatz gives

(pc − p)β−2ν ∝ t2kf((p− pc)tx) ∝ t2k[(pc − p)tx]β−2ν , (13.18)

which resulting the exponent relation;

2k + x(β − 2ν) = 0 . (13.19)

We solve the two equations for x and k, finding

k = 1
2[1− µ

2ν + µ− β
] , (13.20)

and
x = 1

2ν + µ− β
. (13.21)

This argument therefore shows that the scaling ansatz is indeed consistent
with the limiting behaviors we have already determined, and it allows us
to make a prediction for k and x.

When p = pc, we find that

〈r2〉 ∝ t2k = t
2ν−β

2ν+µ−β , (13.22)

We can write this relation in the same way as we wrote the behavior of
an ordinary random walk,

t ∝ rdw , (13.23)
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where dw is the dimension of the random walk. Here we have now found
that

dw = 1
k

= 2 + µ

ν − β
2
, (13.24)

which is a number larger than 2. This means that for a given time, the
walk remains more compact, which is consistent with our intuition.

We have introduced a cross-over time, t0, which is defined so that

(p− pc)tx0 ' 1 , (13.25)

which gives
t0 ∝ |p− pc|−1/x ∝ |p− pc|−(2ν+µ−β) . (13.26)

How can we interpret this relation? We could decompose the relation to
be:

t0 ∝
|p− pc|β−2ν

|p− pc|µ
, (13.27)

where we know that the average radius of gyration for clusters are

[R2
s ] ∝ |p− pc|β−2ν , (13.28)

This gives us an interpretation of the cross-over time for diffusion:

t0(p) ∝ [R2
s ]
D

, (13.29)

where D is the diffusion constant. Why is this time not proportional to
ξ2/D, the time it take to diffuse a distance proportional to the correlation
length? The difference comes from the particular way we devised the
experiment: the walker was dropped onto a randomly selected occupied
site.

Let us now address what happens when p > pc. In this case, the
contributions to the variance of the position has two main terms: one
term from the spanning cluster and one term from the finite clusters.

[〈r2〉] = Dt = P

p
D′t+R2

s , (13.30)

where the first term, P/pD′t is the contribution from the random walker
on the infinite cluster. This term consists of the diffusion constant D′
for a walker on the spanning cluster, and the prefactor P/p which comes
from the probability for the walker to land on the spanning cluster: For
a random walker placed randomly on an occupied site in the system, the
probability for the walker to land on the spanning cluster is P/p, and the
probability to land on any of the finite clusters is 1− P/p. The second
term is due to the finite cluster. This term reaches a constant value for
large times t. The only time dependence is therefore in the first term,
and we can write:
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Dt = P

p
D′t , (13.31)

for long times, t. That is:

D′ = Dp

P
∝ (p− pc)µ−β ∝ ξ−

µ−β
ν ∝ ξ−θ . (13.32)

where we have introduce the exponent

θ = µ− β
ν

. (13.33)

We have therefore found an interpretation of the cross-over time t0,
and, in particular for the appearance of the β in the exponent. We see
that the cross-over time is

t0 ∝
|p− pc|β−2ν

|p− pc|µ
∝ ξ2

D′
. (13.34)

The interpretation of t0 is therefore that t0 is the time the walker needs
to travel a distance ξ when it is diffusing with diffusion constant D′ on
the spanning cluster.

13.1.4 Diffusion on the spanning cluster
How does the random walker behave on the spanning cluster? We have
found that for p > pc and for t > t0 the deviation increases according to

〈r2〉 = D′t ∝ (p− pc)µ−βt , (13.35)

and for t < t0, we expect the behavior to be

〈r2〉 ∝ t2k
′
, (13.36)

as illustrated in figure 13.1. We expect the relations to be valid up to
the point (t, ξ2), where both descriptions should provide the same result.
Therefore we expect

ξ ∝ t2k
′

0 ∝ D′t0 , (13.37)

and therefore that

t0 ∝
ξ2

D′
∝ (p− pc)−2ν

(p− pc)µ−β
∝ (p− pc)−(2ν+µ−β) . (13.38)

Consequently, the value of t0 is the same on the spanning cluster as for
the general process on any cluster. In general, we can interpret t0 as the
time it takes for the walker to diffuse to the end of the cluster when
p < pc, and the time it takes to diffuse to a distance ξ on the spanning
cluster when p > pc.
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t 0

<r >2

ξ2

D’t

t
Fig. 13.1 Illustration of the distance 〈r2〉 as a function of time for a random walker on
the percolation cluster.

Let us check the other exponent, k′. We find that

ξ2 ∝ (p− pc)−2(2ν+µ−β)k′ , (13.39)

and therefore that
k′ = ν

2ν + µ− β
, (13.40)

which is not the same as we found in equation 13.20 for all clusters. We
find that k′ is slightly larger than k.

What is the interpretation of k′? If we consider random walks on the
spanning cluster only, the behavior at p = pc is described by

〈r2〉 ∝ t2k
′
, (13.41)

this gives
r1/k′ ∝ t ∝ rdw , (13.42)

where dw can be interpreted as the dimension of the random walk. For
the case of random walkers on the spanning cluster at p = pc we have
therefore found that4

dw = 2 + µ− β
ν

. (13.43)

The fractal dimension is larger than 2. This corresponds to the walker
getting stuck on the percolation cluster, and the structure of the walk is
therefore more dense or compact.
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13.1.5 The diffusion constant D

We can use the theory we have developed so far to address the behavior of
the diffusion constant with time. Fick’s law can generally be formulated
as

〈r2〉 = Dt , (13.44)

or, equivalently, we can find the diffusion constant for Fick’s law from:

D = ∂

∂t
〈r2〉 . (13.45)

Now, we have established that for diffusion on the spanning cluster for
p = pc, the diffusion is anomalous. That is, the relation between the
square distance and time is not linear, but a more complicated power-law
relationship

〈r2〉 ∝ t2k
′
. (13.46)

As a result, we find that the diffusion constant D′ for diffusion on the
spanning cluster defined through Fick’s law is

D′ ∝ ∂

∂t
t2k
′ ∝ t2k

′−1 . (13.47)

We can therefore interpret the process as a diffusion process where D
decays with time.

In the anomalous regime, we find that

r ∝ tk
′
, (13.48)

and therefore that
r1/k′ ∝ t . (13.49)

We can therefore also write the diffusion constant D′ as

D′ ∝ t2k
′−1 ∝ r2−1/k′ ∝ r−θ . (13.50)

We could therefore also say that the diffusion constant is decreasing with
distance.

The reverse is also generally true: Whenever D depends on the distance,
we will end up with anomalous diffusion.

We can also relate these results back to the diffusion equation. The
diffusion equation for the random walk was:

∂P

∂t
= D′∇2P = ∇D′∇P , (13.51)

where the last term is the correct term if the diffusion constant depends
on the spatial coordinate.

We can rewrite the dimension, dw, of the walk to make the relation
between the random walker and the dimensionality of the space on which
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it is moving more obvious:

dw = 2− d+ µ

ν
+ d− β

ν
, (13.52)

where we recognize the first term as

ζ̃R = 2− d+ µ

ν
, (13.53)

and the second term as the fractal dimension, D, of the spanning cluster:

D = d− β

ν
. (13.54)

We have therefore established the relation

dw = ζ̃R +D . (13.55)

This relation is actually generalizable, so that for a random walker
restricted to only walk on the backbone, the dimension of the walker is

dw,B = ζ̃R +DB . (13.56)

13.1.6 The probability density P (r, t)





Dynamic processes in disordered media 14

So far we have studied the behavior and properties of systems with
disorder, such as the model porous material we call the percolation
system. That is, we have studied properties that depend on the existing
disorder of the material. In this chapter, we will start to address dynamical
processes that generate percolation-like disordered structures, but where
the structure evolve, develop, and change in time.

The first dynamic problem we will address is the formation diffusion
fronts, and we will demonstrate that the front of a system of diffusing
particles can be described as a percolation system.

The second dynamic problem we will address is the slow displacement
of one fluid by another in a porous medium. We will in particular
demonstrate that the invasion percolation process generates a fractal
structure similar to the percolation cluster by itself - it is a process
that drives itself to a critical state, similar to the recently introduced
notion of Self-Organized Criticality [?]. We will then address how we
can study similar processes in the gravity field, and, in particular, the
influence of stabilizing and destabilizing mechanisms. Invasion percolation
in a destabilizing gravity field provides a good model to describe and
understand the process of primary migration.

The last example we will address is directed percolation.

14.1 Diffusion fronts

The first dynamical problem we will address is the structure of a diffusion
front. Let us address a diffusion process on a square lattice. One example
of such a process is the two-dimensional diffusion of particles from a
source at x = 0 into the x > 0 plane, when particles are not allowed to
overlap. The system of diffusing particles is illustrated in figure 14.1.
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(a) (b)

Fig. 14.1 Illustration of the diffusion front. Particles are diffusing from a source at the
left side. We address the front separating the particles connected to the source from the
particles not connected to the source. The average distance is given by xc shown in the
figure. The width of the front, ξ, is also illustrated in the figure. The different clusters
are colored to distinguish them from each other. The close-up in figure (b) illustrates the
finer details of the diffusion fronts, and the local cluster geometries.

For this problem we know the exact solution for the concentration,
c(x, t), or particles, corresponding to the occupation probability P (x, t).
The solution to the diffusion equation with a constant concentration,
or P (x = 0, t) = 1, is the error function given as the integral over a
Gaussian function:

P (x, t) = 1− erf( x√
Dt

) , (14.1)

where the error function is defined as the integral:

erf(u) = 2√
2π

∫ u

0
e
−v2

2 dv . (14.2)

This solution produces the expected deviation 〈x2〉 = Dt, where D is the
diffusion constant for the particles. There is no y (or z) dependence for
the solution.

We will address the structure of connected clusters of diffusing particles.
Two particles are connected if they are neighbors so that they inhibit
each others diffusion in a particular direction. If we fix t, we notice that
the system will be compact close to x = 0, and that there only will
be a few thinly spread particles when x �

√
Dt. In this system, the

occupation probability varies with both time t and spatial position x.
However, we expect the system of diffusing particles to be connected to
the source out to a distance xc corresponding to the point where the
occupation probability is equal to the percolation threshold pc for the
lattice type studied. That is:

P (xc, t) = pc , (14.3)
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defines the center of the diffusion front: the front separating the particles
that are connected to the source from the particles that are not connected
to the source. We notice that xc(t) =

√
Dt.

What is the width of the diffusion front? For a given time t, the
occupation probability decreases with δx = x− xc. Similarly, the correla-
tion length will therefore also depend on the distance δx to the average
position of the front. We expect that a cluster may be connected to the
front if it is within a distance ξ of xc. Particles that are further away
than the local correlation length, ξ, will not be connected over such
distances, and will therefore not be connected. Particles that are closer
to xc than ξ will typically by connected through some connecting path.
We will therefore introduce ξ as the width of the front, corresponding to
the distance at which the local correlation length, due to the occupation
probability P (x, t), is equal to the distance from xc. The local correlation
length ξ(x) is given as

ξ(x) = ξ0|P (x, t)− pc|−ν , (14.4)

The distance w at which ξ(xc + w) = w gives the width of the front. We
can write this self-consistency equation for w as

w = ξ0|P (x+ w, t)− pc|−ν . (14.5)

Let us introduce a Taylor expansion of P (x) around x = xc:

P (x, t) ' P (xc, t) + dP

dx

∣∣∣∣
xc

(x− xc) , (14.6)

where we recognize that xc ∝
√
Dt gives

dP

dx

∣∣∣∣
xc

∝ 1√
Dt
∝ 1
xc

. (14.7)

We insert this into the self-consistency equation equation 14.5 getting

w = ξ0|w
dP

dx

∣∣∣∣
xc

|−ν ∝ (w/xc)−ν , (14.8)

which gives
w ∝ xν/(1+ν)

c . (14.9)

The width of the front therefore scales with the average position of the
front, and the scaling exponent is related to the scaling exponent of the
correlation length for the percolation problem.

What happens in this system with time? Since xc is increasing with
time, we see that the relative width decreases:

w

xc
∝ x

ν/(1+ν)
c

xc
∝ x

− 1
1+ν

c . (14.10)
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This effect will also become apparent under renormalization. Applying a
renormalization scheme with length b, will result in a change in the front
width by a factor bν/(1+ν), but along the y-direction the rescaling will
simply be by a factor b. Successive applications will therefore make the
front narrower and narrower. This difference in scaling along the x and
the y axis is referred to as self-affine scaling, in contrast to the self-affine
scaling where the rescaling is the same in all directions. We will return
to this concept when we address surface growth processes.

14.2 Invasion percolation

We will now study the slow injection of a non-wetting fluid into a porous
medium saturated with a wetting fluid. In the limit of infinitely slow
injection, this process is termed invasion percolation for reasons that will
soon become obvious.

When a non-wetting fluid is injected slowly into a saturated porous
medium, the pressure in the non-wetting fluid must exceed the capillary
pressure in a pore-throat for the fluid to propagate from one pore to
the next, as illustrated in fig. 14.2. The pressure difference, δP needed
corresponds to the capillary pressure Pc, given as

Pc = Γ

ε
, (14.11)

where Γ is the interfacial surface tension, and ε is the characteristic size
of the pore-throats in the porous medium. However, there will be some
disorder present in the porous medium corresponding to local variation in
the characteristic pore sizes ε. This will lead to a distribution of capillary
pressures threshold Pc needed to invade a particular pore. We will assume
that the medium can be described as a set of pores connected with pore
throats with a uniform distribution of capillary pressure thresholds, and
we will assume that the capillary pressure thresholds are not correlated
but statistically independent. We can therefore rescale the pressure scale,
by subtracting the minimum pressure threshold and dividing by the
range of pressure thresholds, and describe the system as a matrix of
critical pressures Pi required to invade a particular site.

The fluid displacement process can then be modeled by assuming that
all the sites on the left side of the matrix are in contact with the invading
fluid. The pressure in the invading fluid is increased slowly, until the
fluid invades the connected site with the lowest pressure threshold. This
generates a new set of invaded sites in contact with the inlet, and a new
set of neighboring sites. The invasion process continues until the invading
fluid reaches the opposite side. Further injection will then not produce
any further fluid displacement, the fluid will flow through the system
through the open path generated.
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ε

Fig. 14.2 Illustration of the invasion percolation process in which a non-wetting fluid
is slowly displacing a wetting fluid. The left figure shows the interface in a pore throat:
the pressure in the invading fluid must exceed the pressure in the displaced fluid by an
amount corresponding to the capillary pressure Pc = Γ/ε, where Γ is the interfacial
surface tension, and ε is a characteristic length for the pore throat. The right figure
illustrates the invasion front after injection has started. The fluid may invade any of
the sites along the front indicated by small circles. The site with the smallest capillary
pressure threshold will be invaded first, changing the front and exposing new boundary
sites.

The resulting pattern of injected nodes is illustrated in figure 14.3,
where the colors indicate the pressure at which the injection took place. It
can be seen from the figure that the injection occurs in bursts. When a site
is injected, many new connected neighbors are available as possible sites
to invade. As the pressure approaches the pressure needed to percolate to
the other side, these newly appearing sites of the front will typically also
be invaded, and invasion will occur in gradually larger regions. These
bursts have be characterize by Furuberg et al. [?], and it can be argued
that the distribution of burst sizes as well as the time between bursts
are power-law distributed.

Based on this algorithmic model for the fluid displacement process, it
is also easy to connect the invasion percolation problem with ordinary
percolation. For an injection pressure of p, all sites with critical pressure
below or equal to p are in principle available for the injection process.
However, it is only the clusters of such sites connected to the left side that
will actually be invaded, since the invasion process requires a connected
path from the inlet to the site for a site to be filled. We will therefore
expect that the width of the invasion percolation front corresponds to
the correlation length ξ = ξ0(pc − p)−ν as p approaches the percolation
threshold pc, because this is the length at which clusters are connected.
That is, cluster that are a distance ξ from the left side will typically be
connected to the left side, and therefore connected, whereas clusters that
are further away than ξ will typically not be connected and therefore not
invaded. This shows that the critical pressure will correspond to pc. This
also shows that when the fluid reaches the opposite side, the system is
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Fig. 14.3 Illustration of the invasion percolation cluster. The color-scale indicates nor-
malized pressure at which the site was invaded.

exactly at pc, and we expect the invasion percolation cluster to have the
same scaling properties as the spanning cluster at p = pc. There will be
small differences, because the invasion percolation cluster also contains
smaller clusters connected to the left side, but we do not expect these to
change the scaling behavior of the cluster. That is, we expect the fractal
dimension of the invasion percolation cluster to be D. This implies that
the density of the displaced fluid decreases with system size.

The process outlined above does, however, not contain all the essen-
tial physics of the fluid displacement process. For displacement of an
incompressible fluid, a region that is fully bounded by the invading fluid
cannot be invaded, since the displaced fluid does not have any place to
go. Instead, we should study the process called invasion percolation with
trapping. It has been found that when trapping is included, the fractal
dimension of the invasion percolation cluster is slightly smaller [?]. In
two dimensions, the dimension is D ' 1.82.

This difference between the process with and without trapping disap-
pears for three-dimensional geometries because trapping become unlikely
in dimensions higher than 2. Indeed, direct numerical modeling shows
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that the fractal dimension for both the ordinary percolation system and
invasion percolation is D ' 2.5 for invasion percolation with and without
trapping [?].

14.2.1 Gravity stabilization

The invasion percolation cluster displays self-similar scaling similar to
that of ordinary percolation. This implies that the position h(x, p) of
the fluid front as a function of the non-dimensional applied pressure p is
given as the correlation length - since this is how far clusters connected
to the left side typically are connected. That is, when p approaches pc,
the average position of the front is h̄(x, p) = ξ(p) = ξ0(pc − p)−ν . The
width, w(p) of the front is also given as the correlation length:

w(p) = ξ0(pc − p)−ν , (14.12)

as p approaches pc both the front position and the front width diverges,
that is, both the front position h̄ and the width, w, are proportional to
the system size L:

h̄ ∝ w ∝ L , (14.13)

However, when the system size increases we would expect other sta-
bilizing effects to become important. For a very small, but finite fluid
injection velocity, the viscous pressure drop will eventually become im-
portant and comparable to the capillary pressure. Also, any deviation
from a completely flat system or for a system with a slight different in
densities, the effect of the hydrostatic pressure term will also eventually
become important. We will now demonstrate how we may address the
effect of such a stabilizing (or destabilizing) effect.

Let us assume that the invasion percolation occurs in the gravity field.
This implies that the pressure needed to invade a pore depends both
on the capillary pressure, and on a hydrostatic term. The pressure P c

i

needed to invade site i at vertical position xi in the gravity field is:

P c
i = Γ

ε
+∆ρgxi , (14.14)

We can again normalize the pressures, resulting in

pCi = p0
i + ∆ρg

Γε2
x′i , (14.15)

where the coordinates are measured in units of the pore size, ε, which
is the unit of length in our system. The last term is called the Bond
number:

Bo = ∆ρg

Γε2
, (14.16)
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Fig. 14.4 Illustration of the gravity stabilized invasion percolation cluster for g = 0,
g = 10−4, g = 10−3, and g = 10−2. The color-scale indicates normalized pressure at
which the site was invaded.

Here, we will include the effect of the bond number in a single number g,
so that the critical pressure at site i is:

pci = p0
i + gx′i , (14.17)

where p0
i is a random number between 0 and 1. The invasion percolation

front for various numbers of g is illustrated in figure 14.4.
This problem is similar to the diffusion front problem. For an applied

pressure p the front will typically be connected up to an average distance
xc given as

p = p0 + xcg . (14.18)

The front will also extend beyond the average front position. The occu-
pation probability at a distance a from the front is p′ = pc − ag, since
fewer sites will be set beyond the front due to the stabilizing term g. A
site at a distance a is connected to the front if this distance a is shorter
to or equal to the correlation length for the occupation probability p′ at
this distance. The maximum distance a for which a site is connected to
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the front therefore occurs when

a = ξ(p′) = ξ0(pc − p′)−ν . (14.19)

This gives

a = ξ(p′) = ξ0(pc − p′)−ν = ξ0(pc − (pc − ag))−ν = ξ0(ag)−νa . (14.20)

This gives
a ∝ g−ν/(1+ν) , (14.21)

as the front width. We leave it as an exercise to show find the form of
the position h(p, g), and the width, w(p, g), as a function of p and g.
We observe that the width has a reasonable dependence on g. When g
approaches 0, the width diverges. This is exactly what we expect since
the limit g = 0 corresponds to the limit of ordinary invasion percolation.

This discussion demonstrates a general principle that we can use to
study several stabilizing effect, such as the effect of viscosity or other
material or process parameters that affect the pressure needed to advance
the front. The introduction of a finite width or characteristic length ξ
that can systematically be varied in order to address the behavior of the
system when the characteristic length diverges is also a powerful method
of both experimental and theoretical use.

14.2.2 Gravity destabilization

The gravity destabilized invasion percolation process corresponds to the
case when a less dense fluid is injected at the bottom of a denser fluid.
This is similar to the process known as secondary migration, where the
produced oil is migrating up through the sediments filled with denser
water. Examples of the destabilizing front is shown in figure 14.5.

We can make a similar argument for the case when g < 0, but in this
case the front is destabilized, and the correlation length ξ ∝ (−g)−ν/(1+ν)

corresponds to the width of the finger extending front the front. The
extending finger can be modeled as a sequence of blobs of size ξ extending
from the flat surface. This implies that the region responsible for the
transport of oil in secondary migration is essentially one-dimensional
structures: lines with a finite width w. The amount of hydrocarbons
left in the sediments during this process is therefore negligible. However,
there will be other effects, such as the finite viscosity and the rate of
production compared to the rate of flow, which will induce more than
one finger. However, the full process has only to a small degree been
addressed. Gravity destabilized invasion percolation is used as a modeling
tool in studies of petroleum plays and a commercial software package is
available for its simulation. Alternatively the reader may use the 10-line
Matlab script found in the exercise section of this book.
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Fig. 14.5 Illustration of the gravity de-stabilized invasion percolation cluster for g = 0,
g = −10−4, g = −10−3, and g = −10−2. The color-scale indicates normalized pressure at
which the site was invaded.

14.3 Directed percolation
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The course described in this book contains three important, interde-
pendent parts: The basic text of the textbook, the theoretical exercises
presented throughout the book, and a set of numerical exercises and
tutorials. We believe that the use of the numerical exericises and tuto-
rials is essential in order to develop an intuitive understanding for the
concepts presented in the book. In particular, the use of numerical model
shows that even though it is difficult to obtain theoretical results for
two-dimensional percolation problems, it is easy to generate and study
the geometry and physics on two-dimensional percolation problems. We
believe the use of numerical methods therefore helps make the concepts
more concrete and available to the reader.

We have developed a set of examples for each of the chapters. The
examples guide the reader through a set of exercises that will allow the
reader to build a toolbox of programs and method that can be used
to address, model, and analyze disordered systems. The solution to the
exercises can be found separately. However, example codes that are
provided as guidance to answer the main quesions are provided.

The numerical exercises have been tested and proved useful for a wide
range of students, also students with little or no previous programming
experiences. We have found that the use of high-level languages and
methods such as Matlab allows us to focus on the important aspects
of algorithms and programs, without detracting attention by spending
much time on implementation. The program can also be used to generate
results

We have decided to use Matlab as the basic language for these exercies.
However, we have ensured that the exercises also can be run on non-
commerical software, such as Octave, and on student versions of Matlab.
The full code will only run on Matlab with the image processing toolbox,
however, the alternative codes contain an explicit implementation of the
cluster enumeration algorithm, and can be run on either Octave or in

181
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Matlab. We have also provided a set of Fortran77 and Fortran90 programs
in order to allow the reader to perform large scale simulations. These
programs produce state-of-the-art results, and can be used to reproduce
most of the research results presented in this book, in particular since
computing power is increasing all the time, old results can now be
reproduced with little effort using high-level techniques.

15.1 Percolation

15.1.1 Program findpi.m

This program demonstrates how we can find Π(p, L) and P (p, L) for
two-dimensional site percolation. Notice in particular how we use the
functions intersect and union to find the spanning clusters, and how we
address the case when several percolation clusters appear at the same
time.

% Program to generate P(p,L) and Pi(p,L)
nsample = 5;
p = (0.35:0.01:1.0);
nx = size(p,2);
lstart = 5;
lend = 7;
Pi = zeros(nx,lend);
P = zeros(nx,lend);
lvalue = zeros(lend);
clf reset;
for lcount = lstart:lend

lx = 2^lcount;
ly = lx;
ll = lx*ly;
for ns = 1:nsample

z=rand(lx,ly);
for i = 1:nx

zz = z<p(i);
[lw,num]=bwlabel(zz,4);
perc_y = intersect(lw(:,1),lw(:,ly));
perc_x = intersect(lw(1,:),lw(lx,:));
perc_u = union(perc_x,perc_y);
perc = find(perc_u>0);
if (length(perc)>0)

Pi(i,lcount) = Pi(i,lcount) + 1;
s = regionprops(lw,’Area’);
area = cat(1,s.Area);
ar = sum(area(perc_u(perc)));
P(i,lcount) = P(i,lcount) + ar/ll;

end
end

end
P(:,lcount) = P(:,lcount)/nsample;
Pi(:,lcount) = Pi(:,lcount)/nsample;
subplot(2,1,1);
plot(p,P(:,lcount));
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xlabel(’p’); ylabel(’P(p,L)’);
hold on
subplot(2,1,2);
plot(p,Pi(:,lcount));
xlabel(’p’); ylabel(’Pi(p,L)’);
hold on
drawnow
end
hold off

15.1.2 Function logbin.m

This function produces a logarithmically binned data-set. This is used in
order to determine the cluster number density n(s, p).

function [x,dx,n] = logbin(y,a,binmax)
%
% Returns a logarithmically binned dataset
% y is a vector of the data-set
% a is the bin size, that is, bins are from a^k to a^k+1
% x gives the centers of the bins
% dx gives the width of the bins
% n gives the number of points in each bin
%
% First, general a list of edges, smallest value of y is 1
%ymax = max(y);
ymax = binmax;
yedge = 1.0;
istep = 1;
yedgelast = 0;
while (yedgelast<=ymax)

edge(istep) = yedge;
yyedge = floor(yedge*a);
dy = yyedge - yedge;
if (dy<=1.0)

yyedge = yedge + 1.0;
end
yedgelast = yedge;
yedge = yyedge;
istep = istep + 1;

end
n = histc(y,edge);
dx = diff(edge);
nx = size(edge,2);
x = 0.5*(edge(1:nx-1) + edge(2:nx));
n = n(1:nx-1);

15.1.3 Program findns.m

This program demonstrates how we can determine n(s, p) for various
values of p.
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lx=256;
ly=lx;
ll=lx*ly;
nsample = 1;
logbinsize = 2;
logbinmax = ll;

p = (0.2:0.05:0.6);
nx = size(p,2);
Pi = zeros(nx,1);
P = zeros(nx,1);

for i = 1:nx
for isample = 1:nsample

z=rand(lx,ly);
zz = z<p(i);
[lw,num]=bwlabel(zz,4);
perc_y = intersect(lw(:,1),lw(:,ly));
perc_x = intersect(lw(1,:),lw(lx,:));
perc_xy = union(perc_x,perc_y);
perc = find(perc_xy>0);
s = regionprops(lw,’Area’);
clusterareas = cat(1,s.Area);
if (length(perc)>0)

% Set Pi
Pi(i) = Pi(i) + 1;
% Find P(p,L)
ar = sum(clusterareas(perc_xy(perc)));
P(i) = P(i) + ar/ll;

end
% Find the cluster number density, get rid of percolating clusters
ind = (1:num);
indnoP = setxor(ind,perc_xy(perc));
% Do statistics on area(indnoP)
clusta = clusterareas(indnoP);
[x,dx,n] = logbin(clusta,logbinsize,logbinmax);
if (isample==1)

nnsp = n/ll;
nnsp = nnsp’./dx;
nsp = nnsp;

else
nnsp = n/ll;
nnsp = nnsp’./dx;
nsp = nsp + nnsp;

end
end
P(i) = P(i)/nsample;
Pi(i) = Pi(i)/nsample;
nsp = nsp/nsample;
ind2 = find(nsp>0);
plot(log10(x(ind2)),log10(nsp(ind2)),’-o’);
xlabel(’s’);ylabel(’n(s,p)’);
hold on; drawnow;
end
hold off;
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15.1.4 Program excoarse.m

The program excoarse.m demonstrates the use of the function coarse.m
to generate a coarse grained site lattice using an explicitely specified
renormalization scheme.

% excoarse.m
% Example of use of the coarsening procedure
z = rand(512,512)<0.58;
% Set up array for f
f(1) = 0;
f(2) = 0;
f(3) = 0;
f(4) = 1;
f(5) = 0;
f(6) = 0;
f(7) = 0;
f(8) = 1;
f(9) = 0;
f(10) = 0;
f(11) = 0;
f(12) = 1;
f(13) = 1;
f(14) = 1;
f(15) = 1;
f(16) = 1;

[lz,nz] = bwlabel(z,4);
imgz = label2rgb(lz);
zz = coarse(z,f);
[lzz,nzz] = bwlabel(zz,4);
imgzz = label2rgb(lzz);
zzz = coarse(zz,f);
[lzzz,nzzz] = bwlabel(zzz,4);
imgzzz = label2rgb(lzzz);
zzzz = coarse(zzz,f);
[lzzzz,nzzzz] = bwlabel(zzzz,4);
imgzzzz = label2rgb(lzzzz);

subplot(2,2,1), image(imgz);
axis equal
subplot(2,2,2), image(imgzz);
axis equal
subplot(2,2,3), image(imgzzz);
axis equal
subplot(2,2,4), image(imgzzzz);
axis equal

function zz = coarse(z,f)
% The original array is z
% The transfer function is f given as a vector with 16 possible places
% f applied to a two-by-two matrix should return
% the renormalized values
%
% The various values of f correspond to the following
% configurations of the two-by-two region that is renormalized,
% where I have used X to mark a present site, and 0 to mark an
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% empty sites
%
% 1 00 5 00 9 00 13 00
% 00 X0 0X XX
%
% 2 X0 6 X0 10 X0 14 X0
% 00 X0 0X XX
%
% 3 0X 7 0X 11 0X 15 0X
% 00 X0 0X XX
%
% 4 XX 8 XX 12 XX 16 XX
% 00 X0 0X XX
%
nx = size(z,1);
ny = size(z,2);
if (mod(nx,2)==1)

return
end
if (mod(ny,2)==1)

return
end

nx2 = floor(nx/2);
ny2 = floor(ny/2);

zz = zeros(nx2,ny2);
x=zeros(2,2);

for iy = 1:2:ny
for ix = 1:2:nx

x = 1 + z(ix,iy)*1 + z(ix,iy+1)*2 + z(ix+1,iy)*4 + z(ix+1,iy+1)*8;
xx = f(x);
zz((ix+1)/2,(iy+1)/2) = xx;

end
end

15.1.5 Program exwalk.m

The program exwalk.m demonstrates the use of the walk.m function
which used a left-turning and a right-turning walker to find the perimeter
of a particular cluster.

% exwalk.m
% Example of use of the walk routine

% Generate spanning cluster (l-r spanning)
lx =64;
ly = 64;
p = 0.585;
ncount = 0;
perc = [];
while (size(perc,1)==0)

ncount = ncount + 1;
if (ncount>1000)
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return
end
z=rand(lx,ly)<p;
[lw,num]=bwlabel(z,4);
perc_x = intersect(lw(1,:),lw(lx,:));
perc = find(perc_x>0)

end
s = regionprops(lw,’Area’);
clusterareas = cat(1,s.Area);
maxarea = max(clusterareas);
i = find(clusterareas==maxarea);
zz = lw == i;
% zz now contains the spanning cluster
imagesc(zz); % Display spanning cluster

% Run walk on this cluster
[l,r] = walk(zz);
zzz = l.*r; % Find points where both l and r are non-zero
zadd = zz + zzz;

subplot(2,2,1), imagesc(zz);
subplot(2,2,2), imagesc(zadd);
subplot(2,2,3), imagesc(zzz>0);
subplot(2,2,4), imagesc(l+r>0);

function [left,right] = walk(z);
%
% Left turning walker
%
% Returns left: nr of times walker passes a site
%
% First, ensure that array only has one contact point at left and
% right end: topmost points chosen
%
nx = size(z,1);
ny = size(z,2);
i = find(z(1,:)>0);
iy0 = i(1); % starting point for walker
ix0 = 1; % stopping point for walker
% First do left-turning walker
dirs = zeros(4,2);
dirs(1,1) = -1;
dirs(1,2) = 0;
dirs(2,1) = 0;
dirs(2,2) = -1;
dirs(3,1) = 1;
dirs(3,2) = 0;
dirs(4,1) = 0;
dirs(4,2) = 1;

nwalk = 1;
ix = ix0;
iy = iy0;
dir = 1; % 1=left, 2 = down, 3 = right, 4 = up;
left = zeros(nx,ny);

while (nwalk>0)
left(ix,iy) = left(ix,iy) + 1;
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% Turn left until you find an occupied site
nfound = 0;
while (nfound==0)

dir = dir - 1;
if (dir<1)

dir = dir + 4;
end
% Check this direction
iix = ix + dirs(dir,1);
iiy = iy + dirs(dir,2);
if (iix==nx+1)

nwalk = 0; % Walker escaped
iix = nx;
ix1 = ix;
iy1 = iy;

end
% Is there a site here?
if (iix>0)

if (iiy>0)
if (iiy<ny+1)

if (z(iix,iiy)>0) % there is a site here, move here
ix = iix;
iy = iiy;
nfound = 1;
dir = dir + 2;
if (dir>4)

dir = dir - 4;
end

end
end

end
end

end
end

%left;

nwalk = 1;
ix = ix0;
iy = iy0;
dir = 1; % 1=left, 2 = down, 3 = right, 4 = up;
right = zeros(nx,ny);

while (nwalk>0)
right(ix,iy) = right(ix,iy) + 1;

% ix,iy
% Turn right until you find an occupied site
nfound = 0;
while (nfound==0)

dir = dir + 1;
if (dir>4)

dir = dir - 4;
end
% Check this direction
iix = ix + dirs(dir,1);
iiy = iy + dirs(dir,2);
if (iix==nx+1)

if (iy==iy1)
nwalk = 0; % Walker escaped
iix = nx;
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end
end
% Is there a site here?
if (iix>0)

if (iiy>0)
if (iiy<ny+1)

if (iix<nx+1)
if (z(iix,iiy)>0) % there is a site here, move here

ix = iix;
iy = iiy;
nfound = 1;
dir = dir - 2;
if (dir<1)

dir = dir + 4;
end

end
end

end
end

end
end

end

15.2 Disorder

15.2.1 Program exflow.m

The program exflow.m demonstrates the use of the programs
coltomat.m, sitetobond.m, find_cond.m, and mk_eqsystem.m to
generate the equations for solving Darcy flow in a porous material using
Kirchoff’s equations. The code in find_cond.m and mk_eqsystem.m was
provided by Martin Søreng.

%
% exflow.m
%
clear all; clf;
% First, find the backbone
% Generate spanning cluster (l-r spanning)
lx = 10;
ly = 10;
p = 0.5927;
ncount = 0;
perc = [];
while (size(perc,1)==0)

ncount = ncount + 1;
if (ncount>1000)

return
end
z=rand(lx,ly)<p;
[lw,num]=bwlabel(z,4);
perc_x = intersect(lw(1,:),lw(lx,:));
perc = find(perc_x>0)
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end
s = regionprops(lw,’Area’);
clusterareas = cat(1,s.Area);
maxarea = max(clusterareas);
i = find(clusterareas==maxarea);
zz = lw == i;
% zz now contains the spanning cluster
% Transpose
zzz = zz’;
% Generate bond lattice from this
g = sitetobond(zzz);
% Generate conductivity matrix
[p c_eff] = find_cond(g,lx,ly);
% Transform this onto a nx x ny lattice
x = coltomat(full(p),lx,ly);
P = x.*zzz;
g1 = g(:,1);
g2 = g(:,2);
z1 = coltomat(g1,lx,ly);
z2 = coltomat(g2,lx,ly);
% Plotting
subplot(2,2,1), imagesc(zzz);
title(’Spanning cluster’)
axis equal
subplot(2,2,2), imagesc(P);
title(’Pressure’);
axis equal
f2 = zeros(lx,ly);
for iy = 1:ly-1

f2(:,iy) = (P(:,iy) - P(:,iy+1)).*z2(:,iy);
end
f1 = zeros(lx,ly);
for ix = 1:lx-1

f1(ix,:) = (P(ix,:) - P(ix+1,:)).*z1(ix,:);
end
% Find the sum of absolute fluxes into each site
fn = zeros(lx,ly);
fn = fn + abs(f1);
fn = fn + abs(f2);
fn(:,2:ly) = fn(:,2:ly) + abs(f2(:,1:ly-1));
fn(:,1) = fn(:,1) + abs((P(:,1) - 1.0).*(zzz(:,1)));
fn(2:lx,:) = fn(2:lx,:) + abs(f1(1:lx-1,:));
subplot(2,2,3), imagesc(fn);
title(’Flux’);
axis equal
zfn = fn>limit;
zbb = (zzz + 2*zfn);
zbb = zbb/max(max(zbb));
subplot(2,2,4), imagesc(zbb);
title(’BB and DE’);
axis equal

function [P, Ceff] = find_cond(A, X, Y)
%
% Written by Marin Soreng
% (C) 2004
%
%Calculates the effective flow conductance Ceff of the
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%lattice A as well as the pressure P in every site.

P_in = 1;
P_out = 0;

[B C] = mk_eqsystem(A, X, Y);

%Kirchhoff’s equations solve for P
P = B\C;

%The pressure at the external sites is added
%(Boundary conditions)
P = [P_in*ones(X, 1); P; P_out*ones(X, 1)];
%Calculate Ceff
Ceff = (P(end-2*X+1:end-X)-P_out)’*A(end-2*X+1:end-X,2)/(P_in-P_out);

function [B, C] = mk_eqsystem(A, X, Y)
%
% Written by Marin Soreng
% (C) 2004
%
% Sets up Kirchoff’s equations for the 2D lattice A.
% A has X*Y rows and 2 columns. The rows indicate the site,
% the first column the bond perpendicular to the flow direction
% and the second column the bond parallel to the flow direction.
%
% The return values are [B, t] where B*x = C. This is solved
% for the site pressure by x = B\C.

% Total no of internal lattice sites
sites = X*(Y-2);

%Allocate space for the nonzero upper diagonals
main_diag = zeros(sites, 1);
upper_diag1 = zeros(sites-1, 1);
upper_diag2 = zeros(sites-X, 1);

%Calculates the nonzero upper diagonals
main_diag = A(X+1:X*(Y-1), 1) + A(X+1:X*(Y-1), 2) + A(1:X*(Y-2), 2) ...

+ A(X:X*(Y-1)-1, 1);
upper_diag1 = A(X+1:X*(Y-1)-1, 1);
upper_diag2 = A(X+1:X*(Y-2), 2);
main_diag(find(main_diag==0)) = 1;

%Constructing B which is symmetric, lower=upper diagonals.
B = sparse(sites, sites); % B*u = t
B = - spdiags(upper_diag1,-1, sites, sites);
B = B + - spdiags(upper_diag2,-X, sites, sites);
B = B + B’ + spdiags(main_diag, 0, sites, sites);

%Constructing C
C = sparse(sites, 1);
C(1:X) = A(1:X, 2);
C(end-X+1:end) = 0*A((end-2*X+1:end-X), 2);
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function g = sitetobond(z)
%
% Function to convert the site network z(L,L) into a (L*L,2) bond
% network
% g(i,1) gives bond perpendicular to direction of flow
% g(i,2) gives bond parallel to direction of flow
% z(nx,ny) -> g(nx*ny,2)
%
nx = size(z,1);
ny = size(z,2);
N = nx*ny;
%g = zeros(N,2);

gg_r = zeros(nx,ny); % First, find these
gg_d = zeros(nx,ny); % First, find these
gg_r(:,1:ny-1) = z(:,1:ny-1).*z(:,2:ny);
gg_r(:,ny) = z(:,ny);
gg_d(1:nx-1,:) = z(1:nx-1,:).*z(2:nx,:);
gg_d(nx,:) = 0;

% Then, concatenate gg onto g
ii = 1:nx*ny;
g = zeros(nx*ny,2);
g(:,1) = gg_d(ii)’;
g(:,2) = gg_r(ii)’;

function g = coltomat(z,x,y)
% Convert z(x*y) into a matrix of z(x,y)
% Transform this onto a nx x ny lattice
g = zeros(x,y);
for iy = 1:y

i = (iy-1)*x + 1;
ii = i + x - 1;
g(:,iy) = z(i:ii);

end

15.2.2 Program testpercwalk.m

The program testpercwalk.m demonstrates the use of the C-program
percwalk.c which can be compiled using mex in Matlab.

%
% testpercwalk.m
%
% Generate spanning cluster (l-r spanning)
lx = 100;
ly = 100;
p = 0.59274;
nstep = 1e5;

nnstep = nstep + 1;
ncount = 0;
perc = [];



15.2 Disorder 193

while (size(perc,1)==0)
ncount = ncount + 1;
if (ncount>1000)

return
end
z=rand(lx,ly)<p;
[lw,num]=bwlabel(z,4);
perc_x = intersect(lw(1,:),lw(lx,:));
perc = find(perc_x>0)

end
s = regionprops(lw,’Area’);
clusterareas = cat(1,s.Area);
maxarea = max(clusterareas);
i = find(clusterareas==maxarea);
zz = lw == i;
% zz now contains the spanning cluster

imagesc(zz),axis equal,axis tight

rz = 1.0*zz;
n = 1;
while (n<=1)

r = rand(nnstep,1);
[w,n] = percwalk(rz,r,0);

end
x = w(1,:);
y = w(2,:);
hold on,plot(y,x);
hold off

/*=================================================================
*
* PERCWALK.C Sample .MEX file corresponding to PERCWALK.M
* Return random walk on percolation cluster
*
* The calling syntax is:
*
* [yp,nstep] = percwalk(y,nw,nsaw)
*
* Saw mode is currently not implemented
*
* You may also want to look at the corresponding M-code, percwalk.m.
*
* This is a MEX-file for MATLAB.
* Copyright 2004 Anders Malthe-Sorenssen
* Physics of Geological Processes, University of Oslo, Norway
*
*=================================================================*/

#include <math.h>
#include "mex.h"

/* Input Arguments */

#define Y_IN prhs[0]
#define NW_IN prhs[1]
#define NSAW_IN prhs[2]
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/* Output Arguments */

#define YP_OUT plhs[0]
#define NSTEP_OUT plhs[1]

#if !defined(MAX)
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#endif

#if !defined(MIN)
#define MIN(A, B) ((A) < (B) ? (A) : (B))
#endif

#define PI 3.14159265

static void percwalk(
double yp[],
double y[],
double nw[],
double *nstep,
double *nsaw,
unsigned int m,
unsigned int n,
unsigned int nwalk
)

{
double r1,r2,nn,c,pos,sstep;
int nchange,niter,neighb,idir,nnr;
int ntot,i,ii,iix,iiy,ix,iy,nnsaw,npos,step,nstop,nwalk1,nc;
int dir[8];
int neighblist[8];
double yy;

dir[0] = 1;
dir[1] = 0;
dir[2] = -1;
dir[3] = 0;
dir[4] = 0;
dir[5] = 1;
dir[6] = 0;
dir[7] = -1;

ntot = m*n;
nn = *nsaw;
nnsaw = (int)nn;

printf("m,n = %i,%i\n",m,n);
printf("nsaw = %i\n",nnsaw);

/* First, find random starting position */
c = nw[0]; /* Get first random number from string, use this

for initial position */
pos = ntot*c;
npos = floor(pos);
iy = npos/m;
ix = npos - m*iy;

printf("pos,npos = %lf,%i\n",pos,npos);
printf("ix,iy = %i,%i\n",ix,iy);
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yp[0] = ix+1;
yp[1] = iy+1;
nstop = 0;
step = 0;
nwalk1 = nwalk - 1;
i = iy*m + ix;
c = y[i];

printf("z(ix,iy) = %f\n",c);
if (c>0.1) {

nstop = 0;
printf("c0 = %lf\n",c);

}
else {

printf("c1 = %lf\n",c);
nstop = 1;

}
printf("nstop , step, nwalk1 = %i,%i,%i\n",nstop,step,nwalk1);
while ((nstop==0)&&(step<nwalk1)) {

/* Check if there is a way out */
neighb = 0;
for (idir=0;idir<4;idir++) {

iix = ix + dir[idir*2];
iiy = iy + dir[idir*2+1];
/* Check if inside */
if ((iix>=0)&&(iix<m)&&(iiy>=0)&&(iiy<n)) {

ii = iiy*m + iix;
if (y[ii]>0.1) {

neighblist[neighb] = idir;
neighb++;

}
}

}
/* printf("neighb = %i\n",neighb);*/
if (neighb>0) { /* Possible way out of this site */

step++;
c = nw[step];
c = c*neighb;
nc = floor(c);
if (nc>3) nc = 3;
if (nc<0) nc = 0;
/* printf("nc = %i\n",nc);*/
idir = neighblist[nc];
ix = ix + dir[idir*2];
iy = iy + dir[idir*2+1];
/* printf("ix,iy = %i,%i\n",ix,iy);

printf("step = %i\n",step);*/
yp[2*step] = ix+1;
yp[2*step+1] = iy+1;

}
else { /* No way out - stop walker */

nstop = 1;
}

}

sstep = step + 1.0;

*nstep = sstep;
printf("Step = %i\n",step);
return;

}
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void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray*prhs[] )

{
double *yp;
double *nsaw,*y,*nw,*nstep;
unsigned int m,n,nwalk,nwalk2;

/* Check for proper number of arguments */

if (nrhs != 3) {
mexErrMsgTxt("Three input arguments required.");

} else if (nlhs > 2) {
mexErrMsgTxt("Too many output arguments.");

}

/* Find dimensions of Y. */

m = mxGetM(Y_IN);
n = mxGetN(Y_IN);

/* Find dimensions of NW. */
nwalk = mxGetM(NW_IN);

/* Create a matrix for the return argument */
nwalk2 = 2;
YP_OUT = mxCreateDoubleMatrix(nwalk2, nwalk, mxREAL);
NSTEP_OUT = mxCreateDoubleMatrix(1, 1, mxREAL);

/* Assign pointers to the various parameters */
yp = mxGetPr(YP_OUT);
nstep = mxGetPr(NSTEP_OUT);

y = mxGetPr(Y_IN);
nw = mxGetPr(NW_IN);
nsaw = mxGetPr(NSAW_IN);

/* Do the actual computations in a subroutine */
percwalk(yp,y,nw,nstep,nsaw,m,n,nwalk);
return;

}

15.2.3 Program invperc.m

The program inveperc.m demonstrates the use of Matlab to study
invasion percolation. The program can easily be extended to study
gravity stabilized invasion percolation by adding a gradient gi to the
pressure threshold z(i, j) at each site.

%
% invperc.m
%
% Example program for studying invasion percolation problems
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% NOTE: This is not an optimal but an educational algorithm
%

L = 100; % system size

p = (0.0:0.01:0.7);

perc = 0; % flag to signal if other end is reached

nbetween = 1;
nstep = 0;
nend = numel(p);
nstop = 0;

z = rand(L,L); % Random distribution of thresholds
pcluster = zeros(L,L);

while ((nstop==0)&&(nstep<nend))
nstep = nstep + 1;
p0 = p(nstep);
zz = z<p0;
[lw,num] = bwlabel(zz,4);
leftside = lw(:,1);
i = find(leftside>0);
leftnonzero = leftside(i);
uniqueleftside = unique(leftnonzero);
cluster = ismember(lw,uniqueleftside);
pcluster = pcluster + cluster;
if (mod(nstep,nbetween)==0)

imagesc(pcluster),axis equal, axis tight, colorbar,drawnow
end
% Check if it has reached the right hand side
rightside = lw(:,L);
ir = find(rightside>0);
rightnonzero = rightside(ir);
span = intersect(leftnonzero,rightnonzero);
if (numel(span)>0)

nstop = 1; % spanning
end

end

p0
imagesc(pcluster),axis equal, axis tight, colorbar,drawnow





Exercises 16

16.1 Percolation

Exercise 16.1: Percolation in small systems

a) Find P (p, L) for L = 1 and L = 2.

b) Categorize all possible configurations for L = 3.

c) Find Π(p, L) and P (p, L) for L = 3.

Exercise 16.2: Percolation in small systems

a) Write a program to find all the configurations for L = 2.

b) Use this program to find Π(p, L = 2) and P (p, L = 2). Compare with
the exact results from the previous exercise.

c) Use you program to find Π(p, L) and P (p, L) for L = 3, 4 and 5.

Exercise 16.3: Next-nearest neighbor connectivity in 1d

Exercise 16.4: Finite-size effects in 1d percolation

Exercise 16.5: Generating percolation clusters

In this exercise we will use Matlab to generate and visualize percolation
clusters. We generate a L × L matrix of random numbers, and will
examine clusters for a occupation probability p.

We generate the percolation matrix consisting of occupied (1) and
unoccupied (0) sites, using

199
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L = 100;
r = rand(L,L);
p = 0.6;
z = r<p; % This generates the binary array
[lw,num] = bwlabel(z,4);

We have then produced the array lw that contains labels for each of
the connected clusters, and the variable num that contains the number of
clusters.

a) Familiarize yourself with labeling by looking at lw, and by studying
the second example in the Matlab help system on the image analysis
toolbox.

We can examine the array directly by mapping the labels onto a
color-map, using label2rgb.

img = label2rgb(lw);
image(img);

We can extract information about the labeled image using
regionprops, for example, we can extract an array of the areas
of the clusters using

s = regionprops(lw,’Area’);
area = cat(1,s.Area);

You can also extract information about the BoundingBox and other
properties of clusters using similar commands

s = regionprops(lw,’BoundingBox’);
bbox = cat(1,s.BoundingBox);

b) Using these features, you should make a program to calculate P (p, L)
for various p.

Hint: you can use either BoundingBox or intersect and union to
find the spanning cluster.

c) How robust is your algorithm to changes in boundary conditions?
Could you do a rectangular grid where Lx � Ly? Could you do a more
complicated set of boundaries? Can you think of a simple method to
ensure that you can calculate P for any boundary geometry?
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Exercise 16.6: Finding Π(p, L) and P (p, L)

a) Write a program to find P (p, L) and Π(p, L) for L =
2, 4, 8, 16, 32, 64, 128. Comment on the number of samples you need to
make to det a good estimate for P and Π.

b) Test the program for small L by comparing with the exact results
from above. Comment on the results?

Exercise 16.7: Determining β

We know that when p > pc, the probability P (p, L) for a given site to
belong to the percolation cluster, has the form

P (p, L) ∼ (p− pc)β . (16.1)

Use the data from above to find an expression for β. For this you may
need that pc = 0.59275.

Exercise 16.8: Determining the exponent of power-law
distributions

In this exercise you will build tools to analyse power-law type probability
densities.

Generate the following set of data-points in Matlab:

z = rand(1e6,1).^(-3+1);

Your task is to determine the distribution function fZ(z) for this
distribution. Hint: the distribution is on the form f(u) ∝ uα.

a) Find the cumulative distribution, that is, P (Z > z). You can then
find the actual distribution from

fZ(z) = dP (Z > z)
dz

. (16.2)

b) Generate a method to do logarithmic binning in Matlab. That is, you
estimate the density by doing a histogram with bin-sizes that increase
exponentially in size. Hint: Remember to divide by the correct bin-size.

Exercise 16.9: Cluster number density n(s, p)

We will generate the cluster number density n(s, p) from the two-
dimensional data-set.
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a) Estimate n(s, p) for a sequence of p values approaching pc = 0.59275
from above and below.

Hint 1: The cluster sizes are extracted using .Area as described in a
previous exercise.

Hint 2: Remember to remove the percolating cluster.
Hint 3: Use logarithmic binning.

b) Estimate n(s, pc;L) for L = 2k for k = 4, . . . , 9. Use this plot to
estimate τ .

c) Can you estimate the scaling of sξ ∼ |p− pc|−1/σ using this data-set?
Hint 1: Use n(s, p)/n(s, pc) = F (s/sξ) = 0.5 as the definition of sξ.

Exercise 16.10: Average cluster size

a) Find the average (finite) cluster size S(p) for p close to pc, for p above
and below pc.

b) Determine the scaling exponent S(p) ∼ |p− pc|−γ .

c) In what ways can you generate S(k)(p)? What do you think is the
best way?

Exercise 16.11: Mass scaling of percolating cluster

a) Find the mass M(L) of the percolating cluster at p = pc as a function
of L, for L = 2k, k = 4, . . . , 11.

b) Plot log(M) as a function of log(L).

c) Determine the exponent D.

Exercise 16.12: Correlation function

a) Write a program to find the correlation function, g(r, p, L) for L = 256.

b) Plot g(r, p, L) for p = 0.55 to p = 0.65 for L = 256.

c) Find the correlation length ξ(p, L) for L = 256 for the p-values used
above.

d) Plot ξ as a fuction of p− pc, and determine ν.

Exercise 16.13: Finite Size Scaling

a) Write a program to find the radius of gyration, Rg(s, p, L) for L = 256
and for p close to pc.
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b) Measure the dimension D.

c) Plot Rss−νD as a function of s for p > pc and for p < pc. Comment
on the results.

Exercise 16.14: Finite Size Scaling

In this exercise we will use a finite size scaling ansatz to provide estimates
of ν, pc, and the average percolation probability 〈p〉 in a system of size
L.

We define pΠ=x so that

Π(pΠ=x) = x ,

notice that pΠ=x is a function of system size L used for the simulation.

a) Find pΠ=x for x = 0.8 and x = 0.3 for L = 25, 50, 100, 200, 400, 800.
Plot pΠ=x as a function of L.

According to the scaling theory we have

px1 − px2 = (Cx1 − Cx2)L−1/ν .

b) Plot log(pΠ=0.8 − pΠ=0.3) as a function of log(L) to estimate the
exponent ν. How does it compare to the exact results.

In the following, please use the exact value of ν.
The scaling theory also predicted that

pΠ=x = pc + CxL
−1/ν .

c) Plot pΠ=x as a function of L−1/ν to estimate pc.

d) Generate a data-collapse plot for Π(p, L) to find the function Φ(u)
from the lecture notes.

The following parts of the exercise are optional.

e) Plot Π ′(p, L) as a function of p for the various L values.

f) Generate a data-collapse plot of Π ′(p, L).

g) Find 〈p〉 and plot 〈p〉 as a function of L−1/ν to find pc.

Exercise 16.15: Renormalization of nnn-model

a) Develop a renormalization scheme for a two-dimensional site percola-
tion system with next-nearest neighbor connectivity. That is, list the 16
possible configurations, and determine what configration they map onto
in the renormalized lattice.

b) Find the renormalized occupation probability p′ = R(p).
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c) Plot R(p) and f(p) = p.

d) Find the fixpoints p∗ so that R(p∗) = p∗.

e) Find the rescaling factor Λ = R′(p∗).

f) Determine the exponent ν = lnΛ/ ln b.

g) How can we improve the estimates of pc and ν?

Exercise 16.16: Renormalization of three-dimensional site
percolation model

a) Find all 28 possible configurations for the 2× 2× 2 renormalization
cell for three-dimensional site percolation.

b) Determine a renormalization scheme - what configurations map onto
an occupied site?

c) Find the renormalized occupation probability p′ = R(p).

d) Plot R(p) and f(p) = p.

e) Find the fixpoints p∗ so that R(p∗) = p∗.

f) Find the rescaling factor Λ = R′(p∗).

g) Determine the exponent ν = lnΛ/ ln b.

Exercise 16.17: Renormalization of three-dimensional bond
percolation model

In this exercise we will develop an H-cell renormalization scheme for
bond percolation in three dimensions. The three-dimensional H-cell is
illustrated in fig. 16.1.

a) Find all 212 possible configurations for this H-cell.

b) Determine a renormalization scheme - what configurations map onto
an occupied site?

c) Find the renormalized occupation probability p′ = R(p).

d) Plot R(p) and f(p) = p.

e) Find the fixpoints p∗ so that R(p∗) = p∗.

f) Find the rescaling factor Λ = R′(p∗).

g) Determine the exponent ν = lnΛ/ ln b.
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Fig. 16.1 Illustrations of the 3d H-cell.

Exercise 16.18: Numerical study of renormalization

Use the example programs excoarse.m and coarse.m to study the
renormalization of a given sample of a percolation system.

Perform successive iterations for p = 0.3, p = 0.4, p = 0.5, p = pc,
p = 0.65, p = 0.70, and p0.75, in order to understand the instability of
the fixpoint at p = pc.

Exercise 16.19: Singly connected bonds

Use the example program exwalk.m and walk.m to find the singly con-
nected bonds.

a) Run the program exwalk.m to visualize the singly connected bonds.
Can you understand how this algorithms finds the singly connected
bonds? Why are some of the bonds of a different color?

b) Find the mass, MSC , of the singly connected bonds as a function
of system size L for p = pc and use this to estimate the exponent DSC :
MSC ∝ LDSC .

c) Can you find the behavior of PSC = MSC/L
d as a function of p− pc?
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Fig. 16.2 Illustrations of the left-right turning walker.

Exercise 16.20: Left/right-turning walker

We have provided a subroutine and an example program that implements
the left/right-turning walker algorithm. The algorithm works on a given
clusters. From one end of the cluster, two walkers are started. The walkers
can only walk according to the connectivity rules on the lattice. That
is, for a nearest-neighbor lattice, they can only walk to their nearest
neighbors. The left-turning walker always tries to turn left from its
previous direction. If this site is empty, it tries the next-best site, which
is to continue straight ahead. If that is empty, it tries to move right,
and if that is empty, it moves back along the direction it came. The
right-turning walker follows a similar rule, but prefers to turn right in
each step. The first walker to reach the other end of the cluster stops,
and the other walker stops when it reaches this site.

The path of the two walkers is illustrated in the figure below. The
sites that are visited by both walkers consitute the singly connected
bonds. The union of the two walks consitutes what is called the external
perimeter (Hull) of the cluster.
a) Use the programs exwalk.m and walk.m to generate and illustrate
of the singly connected bonds for a 100 × 100 system. Check that the
illustrated bonds correspond to the singly connected bonds.
b) Measure the dimension DSC .
c) Modify the program exwalk.m to find the external perimeter (Hull)
of a spanning cluster in a 100× 100 system.
d) Measure the dimension DP of the perimeter.
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e) (Advanced) Develop a theory for the behavior of PH(p, L), the prob-
ability for a site to belong to the Hull as a function of p and L for
p > pc.

f) (Advanced) Measure the behavior of PH(p, L) as a function of p for
L = 512× 512.

16.2 Disordered systems

Exercise 16.21: Flow on fractals

Use the example program exflow.m to study fluid flow in a percolation
system.

This program takes as input an array of (site) conductivities for each
individual site, and calculates the local current in each bond connecting
two sites in the lattice. Most of the program is used to set up the
solution of the linear problem for the local currents, given as the solution
to Kirchoffs equations. The programs for vectorizing the setup of the
matrices were provided by Martin Søreng.

a) Run the example program exflow.m to visualize the currents on the
spanning cluster.

b) Modify the program to find the backbone and the dangling ends of
the spanning cluster.

c) Use the program to find the singly connected bonds in the spanning
cluster.

Exercise 16.22: Conductivity

a) Find the conductivity as a function of p− pc. Determine the exponent
ζ̃R by direct measurement.

b) Find the conductivity at p = pc as a function of system size L.

Exercise 16.23: Current distribution

Use the example program exflow.m to find the currents Ib in each bonds
b on a spanning cluster at p = pc, p = 0.585, and p = 0.60.

a) Find the total current I going through the system.
In the following we will study the normalized currents, ib = Ib/I.

b) Find the distribution P (i) of the normalized currents.

c) Measure moments of the distribution.
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Exercise 16.24: Bivariate porous media

Rewrite the program exflow.m to study a bivariate distribution of con-
ductivities. That is, for each site, the conductivity is 1 with probability
p and σ0 < 1 with probability 1− p.
a) Visualize the distribution of currents for σ0 = 0.1.
b) Find the conductivity σ(p) for σ0 = 0.1, 0.01, and 0.001.
c) Plot σ(pc) as a function of σ0.
d) (Advanced) Can you find a way to rescale the conductivities to
produce a data-collapse?

Exercise 16.25: Random walks on the spanning cluster

In this exercise we will use and modify the program testpercwalk.m to
study random walks in percolation systems, and on the spanning cluster
in particular. We want to find the dimension dw of a two-dimensional
random walk on the spanning cluster.
a) Find the distance 〈R2〉 as a function of the number of steps N for
random walks on the spanning cluster for p = pc.
b) Find the dimension, dw of the walk, from the relation 〈R2〉 ∝ N2/dw .
c) Find the distribution P (R,N) for the position R as a function of the
number of steps N for a random walker on the percolation cluster.
d) (Advanced) Can you produce a data-collapse for the distribution
P (R,N).
e) (Advanced) Can you determine the functional form of the distributoin
P (R,N). Is it a Gaussian?

Exercise 16.26: Random walks percolation clusters

In this exercise we will use and modify the program testpercwalk.m
to study random walks in percolation systems, not restricted to the
spanning cluster. We want to find the dimension dw of a two-dimensional
random walk on the spanning cluster.
a) Find the distance 〈R2〉 as a function of the number of steps N for
random walks on the spanning cluster for p < pc and for p > pc.
b) Plot log〈R2〉 as a function of N for various values of p.
c) Can you find the behavior of the correlation length ξ from this plot?
d) Discuss the behavior of the characteristic cross-over time t0 based on
the plot.
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Exercise 16.27: Self-avoiding walks on fractals

(Advanced) In this exercise we will use the program testpercwalk.m
to study a self-avoiding random walker on the spanning cluster. In this
exercise you will need to collect extensive statistics to be able to determine
the scaling behavior.
a) Find the distance 〈R2〉 as a function of the number of steps N for
random walks on the spanning cluster for p = pc.
b) Find the dimension, dw of the walk, from the relation 〈R2〉 ∝ N2/dw .

Exercise 16.28: Gravity stabilized invasion percolation

In this exercise we will use and modify the program invperc.m to study
the gravity stabilized invasion percolation process.
a) Modify the program invperc.m to include the effect of a gradient g
in the local pressure thresholds. Characterize quantitatively the change
in behavior as g is varied.

Hint: use the command m=meshgrid(g*(1:L),(1:L)) to generate the
gradient field and add this to the pressure thresholds z.
b) Find the average position, h(P ) of the front as a function of the
invasion pressure P .

Hint: you can find the position j of the front at row j by the command
i=max(find(pcluster(j,:) =0); .
c) Find the width w(P ) of the front as a function of P .
d) Generate plots of h and w for various values of g, and generate a
data-collapse by a proper rescaling of the axes.
e) (Advanced) Use the walk.m routine to find the full shape of the
front, and determine the value in h and w when you include the effect
of overhangs and the full front shape. Compare these values with the
values found above.
f) (Advanced) Determine the fractal dimension DF of the front using
the function walk.m.

Project 16.29: Finite size scaling of n(s, p)

a) Develop a finite size scaling ansatz/theory for n(s, pc, L). You should
provide arguments for the behavior in the various limits.
b) Plot n(s, pc, L) as a function of s for L = 100, 200, 400, 800.
c) Demonstrate the validity of the scaling theory by producing a data-
collapse plot for n(s, pc, L).
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Project 16.30: The Density of the Backbone

The backbone of a spanning cluster is the union of all self-avoiding walks
from one side of the cluster to the opposite. The backbone corresponds to
the sites the contribute to the flow conductivity of the spanning cluster.
The remaining sites are the dangling ends.

We call the mass of the backboneMB, and the density of the backbone
PB = MB/L

d, where L is the system size, and d the dimensionality of the
percolation system. Here, we will study two-dimensional site percolation.

a) Argue that the functional form of PB(p) when p→ p+
c is

PB(p) = P0(p− pc)x ,

and find an expression for the exponent x. You can assume that the
fractal dimension of the backbone, DB, is known.

b) Assume that the functional form of PB(p) when p→ p+
c and ξ � L

is
PB(p) = P0(p− pc)x ,

Determine the exponent x by numerical experiment. If needed, you may
use that ν = 4/3.

16.3 Grand project

This project spans the entire book, and consists of several subprojects. It
was used as a compulsory project to guide the students during the corse.

In this project, we will develop the tools and knowhow necessary to
study scaling in numerical, experimental and real-world data. You will
gain experience with image analysis, discrete models for phase transitions,
finite size scaling models, the geometry of percolation clusters including
subset geometry, and dynamic processes on fractals, with particular
emphasis on the dynamics of a random walker on a self-similar fractal:
the percolation cluster.

Project 16.31: Generating percolation clusters

First, we use Matlab to generate and visualize percolation cluster. We
generate an L×L matrix of uniformly distributed random numbers, and
introduce the tools necessary to visualize and analyze the clusters.

We generate the percolation matrix consisting of occupied (1) and
unoccupied (0) sites, using
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L = 100;
r = rand(L,L);
p = 0.6;
z = r<p; % This generates the binary array
[lw,num] = bwlabel(z,4);

We have then produced the array lw that contains labels for each of
the connected clusters, and the variable num that contains the number of
clusters.

We can examine the array directly by mapping the labels onto a
color-map, using label2rgb.

img = label2rgb(lw,’jet’,’k’,’shuffle’);
image(img);

We can extract information about the labeled image using
regionprops, for example, we can extract an array of the areas
of the clusters using

s = regionprops(lw,’Area’);
area = cat(1,s.Area);

You can also extract information about the BoundingBox and other
properties of clusters using similar commands

s = regionprops(lw,’BoundingBox’);
bbox = cat(1,s.BoundingBox);

a) Using these features, make a program to calculate P (p, L) for various
p.

Hint. You can use either BoundingBox or intersect and union to find
the spanning cluster.

b) How robust is your algorithm to changes in boundary conditions?
Could you do a rectangular grid where Lx � Ly? Could you do a more
complicated set of boundaries? Can you think of a simple method to
ensure that you can calculate P for any boundary geometry?

Project 16.32: The behavior of Π(p, L) and P (p, L)

a) Write a program to find P (p, L) and Π(p, L) for L =
2, 4, 8, 16, 32, 64, 128. Comment on the number of samples you need to
make to get a good estimate for P and Π.
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b) We know that when p > pc, the probability P (p, L) for a given site
to belong to the percolation cluster, has the form

P (p, L) ∼ (p− pc)β .

Use your program to find an expression for β. For this you may need
that pc = 0.59275.

Project 16.33: Determining the exponent of power-law
distributions

First, we need to develop tools to analyse power-law type probability
densities.

Generate the following set of data-points in Matlab:

z = rand(1e6,1).^(-3+1);

Your task is to determine the distribution function fZ(z) for this
distribution. Hint: the distribution is on the form f(u) ∝ uα.

a) Find the cumulative distribution, that is, P (Z > z). You can then
find the actual distribution from

fZ(z) = dP (Z > z)
dz

.

b) Generate a method to do logarithmic binning in Matlab. That is, you
estimate the density by doing a histogram with bin-sizes that increase
exponentially in size. Hint: Remember to divide by the correct bin-size.

Project 16.34: Cluster number density n(s, p)

We will generate the cluster number density n(s, p) from the two-
dimensional data-set.

a) Estimate n(s, p) for a sequence of p values approaching pc = 0.59275
from above and below.

Hint 1: The cluster sizes are extracted using .Area as described in a
previous exercise.

Hint 2: Remember to remove the percolating cluster.
Hint 3: Use logarithmic binning.

b) Estimate n(s, pc;L) for L = 2k for k = 4, . . . , 9. Use this plot to
estimate τ .

c) Can you estimate the scaling of sξ ∼ |p− pc|−1/σ using this data-set?
Hint 1: Use n(s, p)/n(s, pc) = F (s/sξ) = 0.5 as the definition of sξ.
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Project 16.35: Mass scaling of percolating cluster

Find the mass M(L) of the percolating cluster at p = pc as a function
of L, for L = 2k, k = 4, . . . , 11. Plot log(M) as a function of log(L) and
determine the exponent D.

Project 16.36: (Optional) Correlation function

a) Write a program to find the correlation function, g(r, p, L) for L = 256.
Plot g(r, p, L) for p = 0.55 to p = 0.65 for L = 256.
b) Find the correlation length ξ(p, L) for L = 256 for the p-values used
above. Plot ξ as a fuction of p− pc, and determine ν.

Project 16.37: (Optional) Finite Size Scaling

a) Write a program to find the radius of gyration, Rg(s, p, L) for L = 256
and for p close to pc.
b) Measure the dimension D.
c) Plot Rss−νD as a function of s for p > pc and for p < pc. Comment
on the results.

Project 16.38: Finite Size Scaling

In this exercise we will use a finite size scaling ansatz to provide estimates
of ν, pc, and the average percolation probability 〈p〉 in a system of size
L.

We define pΠ=x so that

Π(pΠ=x) = x ,

notice that pΠ=x is a function of system size L used for the simulation.
a) Find pΠ=x for x = 0.8 and x = 0.3 for L = 25, 50, 100, 200, 400, 800.
Plot pΠ=x as a function of L.

According to the scaling theory we have

px1 − px2 = (Cx1 − Cx2)L−1/ν .

b) log(pΠ=0.8− pΠ=0.3) as a function of log(L) to estimate the exponent
ν. How does it compare to the exact results.

In the following, please use the exact value of ν.
The scaling theory also predicted that

pΠ=x = pc + CxL
−1/ν .
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c) Plot pΠ=x as a function of L−1/ν to estimate pc. Generate a data-
collapse plot for Π(p, L) to find the function Φ(u) from the lecture
notes.
d) (Optional) Plot Π ′(p, L) as a function of p for the various L values.
Generate a data-collapse plot of Π ′(p, L). Find 〈p〉 and plot 〈p〉 as a
function of L−1/ν to find pc.

Project 16.39: Singly connected bonds
We have provided a subroutine and an example program that implements
the left/right-turning walker algorithm. The algorithm works on a given
cluster. From one end of the cluster, two walkers are released. The walkers
can only walk according to the connectivity rules on the lattice. That
is, for a nearest-neighbor lattice, they can only walk to their nearest
neighbors. The left-turning walker always tries to turn left from its
previous direction. If this site is empty, it tries the next-best site, which
is to continue straight ahead. If that is empty, it tries to move right,
and if that is empty, it moves back along the direction it came. The
right-turning walker follows a similar rule, but prefers to turn right in
each step. The first walker to reach the other end of the cluster stops,
and the other walker stops when it reaches this site.

The path of the two walkers is illustrated in fig. ?? The sites that are
visited by both walkers consitute the singly connected bonds. The union
of the two walks consitutes what is called the external perimeter (Hull)
of the cluster.
a) Run the program exwalk.m to visualize the singly connected bonds.
Can you understand how this algorithm finds the singly connected bonds?
Why are some of the bonds of a different color?
b) Find the mass, MSC , of the singly connected bonds as a function
of system size L for p = pc and use this to estimate the exponent DSC :
MSC ∝ LDSC . Can you find the behavior of PSC = MSC/L

d as a function
of p− pc?

Project 16.40: Random walks on the spanning cluster
In this exercise we will use and modify the program testpercwalk.m to
study random walks in percolation systems, and on the spanning cluster
in particular. We want to find the dimension dw of a two-dimensional
random walk on the spanning cluster.
a) Find the distance 〈R2〉 as a function of the number of steps N for
random walks on the spanning cluster for p > pc. Plot log〈R2〉 as a
function of N for various values of p. Can you produce a data-collapse
plot for 〈R2〉 as a function of N?
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Fig. 16.3 Illustrations of the left-right turning walker.

b) Can you find the behavior of the correlation length ξ from this plot?
Discuss the behavior of the characteristic cross-over time t0 based on the
plot. Find the dimension, dw of the walk, from the relation 〈R2〉 ∝ N2/dw .

c) Find the distribution P (R,N) for the position R as a function of the
number of steps N for a random walker on the spanning cluster.

d) (Advanced and optional) Can you produce a data-collapse for the
distribution P (R,N). Can you determine the functional form of the
distributoin P (R,N). Is it a Gaussian?





Index

D, 68, 78, 87
L, 30
P , 28, 37
P (p, L), 10
S, 26, 40, 55
Z, 2, 35
Λ, 98
Π, 12, 17
β, 38
γ, 28, 40, 56
ν, 30
φ, 1
σ, 42
ξ, 29, 85
c, 1
gs,t, 40
n(s, p), 17, 28, 29, 41, 54
p, 4, 35, 37
pc, 2, 90
s, 20
sξ, 42

average cluster size, 24, 40, 55
first moment, 27

average path, 119

backbone, 120
Bethe lattice, 35
blob model, 120
bond lattice, 106
box counting, 83, 126

Cayley tree, 35
characteristic cluster size, 22, 42
characteristic length, 29
cluster, 7
cluster number density, 17, 19, 28, 41, 54
cluster radius, 63
cluster size, 20

cluster size distribution, 7
conditional probability, 12
configuration, 13
connected, 7
connectivity, 2
correlation function, 29, 71
correlation length, 71, 85
cross-over length, 69

dangling ends, 120
data collapse, 23, 88
data-collapse, 54
density of spanning cluster, 28, 29, 36
density of the spanning cluster, 10
deterministic system, 124
dimension, 68
mass, 83

distribution of cluster sizes, 20

effective percolation threshold, 89

finite cluster, 7
finite lattice, 86
finite size scaling, 28, 30, 85
average cluster size, 88
mass, 87

finite size scaling ansatz, 85
finite-dimensional percolation
average cluster size, 55
cluster number density, 54
scaling ansatz, 54
scaling function, 54

fixpoint, 95
marginal, 98
non-trivial, 96
trivial, 95
unstable, 98

fractal, 68, 82, 93
fractal dimension, 68, 78, 87

217



218 Index

fragmentation, 113

hyper-scaling, 87

inf-dimensional percolation
average cluster size, 40
β, 38
characteristic cluster size, 42
cluster number density, 41
density of spanning cluster, 36
occupation probability, 36
p, 36, 37
percolation threshold, 37
scaling ansatz, 45, 55
scaling relations, 45
spanning cluster, 36
sξ, 42

iterative fractal, 124

lacunarity, 126

Mandelbrot-Given curve, 124
mass, 86
mass of spanning cluster, 79
minimal path, 119

nearest neighbor, 2
next-nearest neighbor, 2, 22

occupation probability, 36
one-dimensional percolation, 17
average cluster size, 24
characteristic cluster size, 22
characteristic length, 29
cluster number density, 17
correlation function, 29

correlation length, 29
finite size scaling, 30
γ, 28
ν, 30
percolation threshold, 17
renormalization, 101
scaling ansatz, 23, 55
σ, 22
spanning cluster, 28
sxi, 22

percolation threshold, 2
porosity, 4
power-law, 22

radius of gyration, 63
random media, 1
renormalization, 93

scaling ansatz, 43, 45, 54
scaling function, 54
scaling relations, 45
self-avoiding walk, 119
self-similar, 93
self-similar scaling, 81
Sierpinski gasket, 81, 126
singly connected site, 118
site lattice, 103
spanning cluster, 7, 10, 17, 36, 86

Taylor expansion, 22, 41, 98
thermodynamic limit, 85
triangular lattice, 104

unifractal, 127


	Introduction to percolation
	Basic concepts in percolation
	Percolation probability
	Spanning cluster
	Percolation in small systems
	Exercises

	One-dimensional percolation
	Percolation probability
	Cluster number density
	Definition of cluster number density
	Measuring the cluster number density
	Shape of the cluster number density
	Numerical measurement of the cluster number density
	Average cluster size

	Spanning cluster
	Correlation length
	(Advanced) Finite size effects
	Finite size effects in (p,L) and pc

	Exercises

	Infinite-dimensional percolation
	Percolation threshold
	Spanning cluster
	Average cluster size
	Cluster number density
	Advanced: Embedding dimension
	Exercises

	Finite-dimensional percolation
	Cluster number density
	Numerical estimation of n(s,p)
	Measuring probabilty densities of rare events
	Measurements of n(s,p) when p pc
	Scaling theory for n(s,p)
	Scaling ansatz for 1d percolation
	Scaling ansatz for Bethe lattice

	Consequences of the scaling ansatz
	Average cluster size
	Density of spanning cluster

	Percolation thresholds
	Exercises

	Geometry of clusters
	Characteristic cluster size
	Analytical results in one dimension
	Numerical results in two dimensions
	Scaling behavior in two dimensions

	Geometry of finite clusters
	Correlation length

	Geometry of the spanning cluster
	Spanning cluster above pc
	Fractal cluster geometry
	Exercises

	Finite size scaling
	Overview
	Finite size
	Spanning cluster
	Average cluster size
	Percolation threshold

	Renormalization
	The renormalization mapping
	Examples
	One-dimensional percolation
	Renormalization on 2d site lattice
	Renormalization on 2d triangular lattice
	Renormalization on 2d bond lattice

	Universality
	Case: Fragmentation

	Subset geometry
	Subsets of the spanning cluster
	Walks on the cluster
	Renormalization calculation
	Deterministic fractal models
	Lacunarity
	Numerical methods

	Inter-dimensional cross-overs
	Percolation on a strip

	Introduction to disorder
	Flow in disordered media
	Conductivity
	Scaling arguments
	Conductance of the spanning cluster
	Conductivity for p>pc
	Renormalization calculation
	Finite size scaling

	Internal flux distribution
	Multi-fractals
	Real conductivity
	Effective Medium Theory
	Flow in hierarchical systems

	Elastic properties of disordered media
	Rigidity percolation

	Diffusion in disordered media
	Random walks on clusters
	Diffusion for p<pc
	Diffusion for p>pc
	Scaling theory
	Diffusion on the spanning cluster
	The diffusion constant D
	The probability density P(r r r r,t)


	Dynamic processes in disordered media
	Diffusion fronts
	Invasion percolation
	Gravity stabilization
	Gravity destabilization

	Directed percolation

	Computer Code
	Percolation
	Program !findpi.m! 
	Function !logbin.m! 
	Program !findns.m! 
	Program !excoarse.m! 
	Program !exwalk.m! 

	Disorder
	Program !exflow.m! 
	Program !testpercwalk.m! 
	Program !invperc.m! 


	Exercises
	Percolation
	Disordered systems
	Grand project


