FYS4630/FYS9630

Assignment \#3 Wednesday October 1, 2014

1) Problem 5.2
2) Solar flux at the top of the atmosphere is F^{s}. Cosine to the solar zenith angle is μ_{0}. Assume isotropic scattering. Consider single scattered radiation only. Explain why the radiative transfer equation for $I^{-}(\tau, \mu, \varphi)$ to be solved is (use Eq 6.6. and Eq. 6.7 on page 172) :

$$
-\mu \frac{d I^{-}(\tau, \mu, \varphi)}{d \tau}=I^{-}(\tau, \mu, \varphi)-\frac{a}{4 \pi} F^{s} e^{-\tau / \mu_{0}}
$$

What is the intensity of solar radiation that has been scattered only once at optical depth, $I^{-}(\tau, \mu, \varphi)$ if $\mu \neq \mu_{0}$?

What is $I^{-}\left(\tau, \mu=\mu_{0}, \varphi\right)$?

