FYS4630/FYS9630

Assignment \#5 Wednesday October 8, 2014

1) The two-stream equations for a homogeneous atmosphere and isoptropic scattering phase function is:

$$
\begin{aligned}
& \bar{\mu} \frac{d I^{+}(\tau)}{d \tau}=I^{+}(\tau)-\frac{a}{2} I^{+}(\tau)-\frac{a}{2} I^{-}(\tau)-(1-a) B \\
& -\bar{\mu} \frac{d I^{-}(\tau)}{d \tau}=I^{-}(\tau)-\frac{a}{2} I^{+}(\tau)-\frac{a}{2} I^{-}(\tau)-(1-a) B
\end{aligned}
$$

We assume istropic incidence at the top of the atmosphere: $I^{-}(\tau=0)=\mathfrak{J}$ and nonreflecting lower boundary, $I^{+}\left(\tau=\tau^{*}\right)=0$. (This is prototype problem 1)

Solve the two-stream equations above for $\mathrm{a}=1$ (conservative scattering) and show that:

$$
\begin{gathered}
I^{+}(\tau)=\frac{\mathfrak{J} \cdot\left(\tau^{*}-\tau\right)}{2 \bar{\mu}+\tau^{*}} \\
I^{-}(\tau)=\frac{\mathfrak{J} \cdot\left[2 \bar{\mu}+\left(\tau^{*}-\tau\right)\right]}{2 \bar{\mu}+\tau^{*}} \\
S(\tau)=\frac{\mathfrak{J} \cdot\left[\bar{\mu}+\left(\tau^{*}-\tau\right)\right]}{2 \bar{\mu}+\tau^{*}} \\
F(\tau)=-\frac{4 \pi \bar{\mu}^{2} \mathfrak{J}}{2 \bar{\mu}+\tau^{*}} \\
H(\tau)=0
\end{gathered}
$$

2) Derive Eqs. 7.94-7.99 on page 247
