

Overview

- Imaging methods:
 - T1- , T2 and T2* based analysis
 - Dose-response
- Kinetic modeling:
 - One- and two-compartments
 - 'Perfusion' and 'Permeability', DSC, DCE
- Arterial input function (AIF) and deconvolution
- 'Leakage' effects in tumor perfusion analysis
- Sequence considerations and protocol requirements

MR-based perfusion imaging Two approaches:

- Arterial spin labeling (ASL)
 - Use of blood as endogenous contrast agent (flow)
- Contrast-enhanced imaging
 - I.v. injection of gadolinium based contrast agents
 VASO (volume)
 - Dynamic First-pass imaging (flow / volume

Perfusion models

Biomarkers accessible through DCE and DSC analysis

- Tissue blood flow (perfusion, CBF)
- Tissue blood volume (CBV)
- Mean Transit Time (MTT)

10/12/2013

- Capillary permeability (K^{trans})
- Extracellular volume (Ve, distribution volume)

Perfusion MRI applications

- Acute stroke
 - CBV/CBF mismatch (MTT)
- Tumor imaging
 - Contrast agent permeability analysis (DCE)
 - Blood volume analysis (DSC)

Two different kinetic models:

I.V. effect: Central Volume Principle (flow/volume)
E.V. leakage: Permeability analysis (Ktrans, EES, volume)

10/12/2013

Important considerations

- Non-linear relaxation effects must be considered in vivo!
- Susceptibility (χ) -> tissue magnetization: local variations (Δχ) enhances relaxivity (T₂*)
- Gd-induced T₂* effects *increases* with ↑Bo whereas T₁-effects *reduces* with ↑Bo

10/12/2013

Basline T1-map

- Conversion of SI change to absolute change in 1/T1 requires knowledge of baseline T1
- Different from DSC (T2*) where baseline T2* is not required
- Two methods used for T1-calculation:
 - Inversion/saturation recovery with multiple delay times
 - GRE with multiple flip angles
- HOWEVER: question whether baseline T1 estimation improves accuracy...1
 - ¹ Haacke et al. Magn Reson Med 2007

Perfusion analysis T1- vs T2/T2* pros and cons

T1-weighted:

- Better image quality (GRE vs EPI) More linear dose-response (?)
- Poorer CA sensitivity in brain X
- Poorer temp res / coverage ×
- Requires baseline T1-map (?) X

T2/T2*-weighted (DSC):

- Higher CA sensitivity in
- Higher temp resolution Increasing CA sensitivity with Bo √ √
- Poorer image quality X X More geometric distortions
- $\hat{\mathsf{x}}$
- Complex leakage effects (tumor CBV) Non-linear dose response (quantification) ×

Perfusion definitions

Meier & Zieler. On the theory of Indicator-Dilution method for measurement of blood flow and volume. J Appl Physiol. 1954 30

The deconvolution problem

$$C(t) = CBF \cdot C_a(t) \otimes R(t)$$

- Can be solved for R(t) using standard deconvolution methods like: Singular value decomposition (SVD)¹
 - Fourier (FFT) based deconvolution
- NOTE: For some deconvolution methods CBF estimates are sensitive to T_{max} . Delay-insensitive deconvolution methods exist like block-circulant SVD² or FFT-based methods³
- ¹ Osteergaard et al. Magn Reson Med. 1996; 36(5):715-25 ² Wu et al. Magn Reson Med 2003; 50:164-174 ³ Salluzzi M. Magn Reson Imaging. 2005 ;23(3):481-92

CBF quantification from **DSC** - Challenges:

- AIF:
 - Correct identification
 - Dispersion effects
 - Non-linear dose-response
 - Partial volume effects
- Knowledge of tissue-specific constants
- Deconvolution of noisy data 0

AIF determination^{1,2,3,4 etc..} Cee AT Shee Alf carves 5.8 🔥 Fed 1 Cer ¹ Mouridsen et al Magn Reson Med 2006;55(3):524-31 ² Caroll et al. Radiology 2003;227(2):593-600 ³ Bjørnerud and Emblem, JCBFB 2010 ⁴ Knutsson et al JMRI 2006

Do we really need to quantify perfusion?

- Tumor perfusion: most studies based on normalized CBV analysis. A few studies on quantitative analysis but with lower specificity¹
- In acute stroke, T_{max} may be the most sensitive parameter²
- In longitudinal studies (e.g. treatment • response) quantitative analysis may have merit³
- AIF determination or tissue normalization may be required in most cases

Law et al. Am J Neuroradiol 27:1975- 82 ; 2006 Christensen S et al. Stroke. 2009;40(6):2055-61; 2009 Sorensen et al . Cancer Res 72(2) 2012

Relative, vs normalized vs absolute perfusion values...

- Relative: rCBV, rCBF*
 - commonly used for parameters derived without deconvolution or normalization

$$rCBV = \int \Delta R_2 *(t)dt$$
$$rCBF = \Delta R_2 *^{max} or \frac{\int t\Delta R_2 *(t)dt}{\int \Delta R_2 *(t)dt}$$
$$rMTT = rCBV / rCBF$$

* Zierler. Circ Res 1965

CA extravasation issues

EITHER:

- Attempt to minimize effect (sequence, predose) OR
- Correct for effect
- Sequence optimization
 - Correction schemes:
 - Gamma variate fitting
 - Pre-bolus (T1-saturation)⁴
 - Correction algorithms^{1,2,3}

¹Weisskoff et al. Proc ISMRM 1994 ²Ouarles et al. Magn Reson Med 2005 ³ Bjørnerud et al. JCBFM 2011 ⁴ Hu et al. AJNR 2010

Limitations of 'Weisskoff' leakage correction method

- Only corrects for T1-dominant leakage
 Can be overcome by letting leakage constant assume both positive (T2) and negative (T1) values
- Assumes MTT in tumor to be equal to MTT in reference tissue (unaffected brain)
 - Inherent limitation which will result in over-estimation of (T2-dominant) leakage and consequent underestimation of (corrected) CBV in regions of elevated MTT.

CA Extravasation (metastasis)

CA leakage: over- or under estimation of rCBV*

The 'hotspot' approach*

Normalised CBV (nCBV) = CBV_{Hot} _{Spot} / CBV_{Ref}

nCBV < ~2 : Low grade (grade I-II) nCBV > ~2 : High grade (grade III-IV)

* Covarrubias et al, The Oncologist, 2004;9:528-537

Problems with the 'hot-spot' approach

- Differentiate tumour/ edema/ necrosis / blood
- What is the correct reference tissue? (WM vs GW)
- User dependence (def of hottest spot)
- Not all gliomas behave in the same way (astrocytomas vs oligodendrogliomas)

Tumor heterogeneity analysis

Low grade

High grade

Permeability definitions*

- Ktrans = Transfer constant; Flux of CA from intravascular (iv) space to extravascular space (EES) [1/minutes] or [mL/100g/min]
- V_e = distribution volume of CA in EES [percent] or [mL/100g]
- $\mathbf{k}_{ep} = \mathcal{K}^{trans} / V_e = rate constant = Flux$ of CA from EES to iv space[1/minutes] or [mL/100g/min]
- **V**_p=Plasma volume ; volume of plasma fraction in tissue [percent] or [mL/100g/min]
- K^{trans} is generally a function of perfusion!

'Tofts et al. JMRI 1999

Permeability analysis

- Requires determination of AIF usually better defined than in DSC
- Requires deconvolution but 'better behaved' since • residue function is known (single exponential)
- Assume similar dose-response in source and reference tissue..(water exchange effects, T2*-effects)
- NB: CBV can be estimated from both one- and twocompartment models

Permeability analysis- time-scale of effects

Summary (I)

- 'Perfusion-MRI' commonly used to refer to both CBF/CBV analysis (one-compartment) AND permeability analysis (two-compartment)
 CBV can be estimated from both models
 Perfusion analysis: T1-, T2- or T2*-weighted
 Permeability analysis: T1-weighted
 DSC (T2/T2*)
 High CA sensitivity in brain tissue
 More sensitive to artifacts
 Complex dose-response
 DCE (T1)

- Complex doseresponse
 DCE (T1)
 Low CA sensitivity in brain tissue
 High sensitivity for extravasation
 Less artifacts
 Better AIF definition

Summary (II)

- DSC sequence considerations:
 - CA sensitivity: TE, Bo, dose, SE vs GRE-EPI
 - Higher Bo lower TE or CA dose
 - Capillary (T2) vs macrovessel (T2*) sensitivity
 - · Leakage effects in DSC: sufficient scanduration for leakage corection (2 min)
 - Temp res <= 1.5 sec

Summary (III)

- DCE /T1-w) sequence consideration
 - CA sensitivity: TR, TD, flip, dose, minimum TE
 - Baseline T1-map
 - Multi-flip
 - IR/SR
 - · Added value in question..
 - Temp resolution (incl CBV) <= 10 s
 - Scan duration >= 5 minutes

