Ch.7: Introduction to classes

2

Hans Petter Langtangen'? Joakim Sundnes!:

Simula Research Laboratory!

University of Oslo, Dept. of Informatics?

Oct 27, 2017

Plan for Oct 25

@ Exercises 6.10, 6.11
o Introduction to classes

@ Exercise 7.1

Basics of classes (1)

@ Classes are an essential part of object oriented programming
@ We have used classes since day 1 in IN1900:

>>> § = "This is a string"
>>> type(S)

<class 'str'>

>>> L = S.split()

>>> type(L)

<class 'list'>

Basics of classes (2)

o Classes pack data and functions together

o Every time we make a string object in Python, we create an
instance of the built-in class str

o Calls like 8.split () calls the function split() associated
with the instance S

@ We will now learn how to make our own classes

Class = functions + data (variables) in one unit

@ A class packs together data (a collection of variables) and
functions as one single unit

@ As a programmer you can create a new class and thereby a
new object type (like float, list, file, ...)

@ A class is much like a module: a collection of “global” variables
and functions that belong together

@ There is only one instance of a module while a class can have
many instances (copies)

@ Modern programming applies classes to a large extent
o It will take some time to master the class concept
@ Let's learn by doing!

Representing a function by a class; background

Consider a function of t with a parameter vy:

1
y(t;w) = vt — Egt2

We need both vy and t to evaluate y (and g = 9.81), but how
should we implement this?

Having t and vy as arguments:

def y(t, v0):
g = 9.81
return vO*xt - 0.5*gkt**x2

Having t as argument and vy as global variable:

def y(t):
g =9.81
return vO*xt - O.5%gkt**2

Motivation: y(t) is a function of t only

Representing a function by a class; idea

@ With a class, y(t) can be a function of t only, but still have
v0 and g as parameters with given values.

@ The class packs together a function y(t) and data (vO, g)

Representing a function by a class; technical overview

o We make a class Y for y(t; vp) with variables vO and g and a
function value(t) for computing y(t; vp)

@ Any class should also have a function __init__ for
initialization of the variables

Y

_init__
value
formula
_call__
__str_

g
vO

Representing a function by a class; the code

class Y:
def __init__(self, v0):
self.v0 = vO
self.g = 9.81

def value(self, t):
return self.vO*t - 0.5*self.gxt**2

Usage:
y = Y(v0=3) # create instance (object)
v = y.value(0.1) # compute function wvalue

Representing a function by a class; the constructor

When we write
y = Y(v0=3)

we create a new variable (instance) y of type Y. Y(3) is a call to
the constructor.

def __init__(self, vO0):

self.v0 = vO
self.g = 9.81

What is this self variable? Stay cool - it will be understood

later as you get used to it

What is this self variable? Stay cool - it will be understood

later as you get used to it

@ Think of self asy, i.e., the new variable to be created.
self.v0 = ... means that we attach a variable vO to self

(¥)-

@ Y(3) means Y.__init__(y, 3), i.e., set self=y, v0=3

@ Remember: self is always first parameter in a function, but
never inserted in the call!

o After y = Y(3), y has two variables vO and g

print y.vO0
print y.g

What is this self variable? Stay cool - it will be understood

later as you get used to it

@ Think of self asy, i.e., the new variable to be created.
self.v0 = ... means that we attach a variable vO to self

(¥)-

@ Y(3) means Y.__init__(y, 3), i.e., set self=y, v0=3

@ Remember: self is always first parameter in a function, but
never inserted in the call!

o After y = Y(3), y has two variables vO and g

print y.vO0
print y.g

In mathematics you don't understand things. You just get
used to them. John von Neumann, mathematician,
1903-1957.

Representing a function by a class; the value method

o Functions in classes are called methods
o Variables in classes are called attributes

Here is the value method:

def value(self, t):
return self.vO*t - 0.5%self.gkt**2

Example on a call:

v = y.value(t=0.1)

self is left out in the call, but Python automatically inserts y as
the self argument inside the value method. Think of the call as

Y.value(y, t=0.1)

Inside value things “appear’ as
return y.vO*t - 0.5%y.gxt*x*2

self gives access to “global variables” in the class object.

Classes introduction - summary

@ A class is simply a collection of functions and data that
naturally belong together

@ Functions in a class are usually called methods, data are called
attributes

@ We create instances (or objects) of a class, and each instance
can have different values for the attributes

o All classes should have a method __init__, called a
constructur, which is called every time a new instance is
created

@ The constructur will typically initialize all data in an instance

@ All methods in a class should have self as first argument in
the definition, but not in the call. This may be confusing at
first, but one gets used to it.

