
Ch.7: Introduction to classes

Hans Petter Langtangen1,2 Joakim Sundnes1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Oct 27, 2017

Plan for Oct 25

Exercises 6.10, 6.11
Introduction to classes
Exercise 7.1

Basics of classes (1)

Classes are an essential part of object oriented programming
We have used classes since day 1 in IN1900:

>>> S = "This is a string"
>>> type(S)
<class 'str'>
>>> L = S.split()
>>> type(L)
<class 'list'>

Basics of classes (2)

Classes pack data and functions together
Every time we make a string object in Python, we create an
instance of the built-in class str
Calls like S.split() calls the function split() associated
with the instance S

We will now learn how to make our own classes

Class = functions + data (variables) in one unit

A class packs together data (a collection of variables) and
functions as one single unit
As a programmer you can create a new class and thereby a
new object type (like float, list, file, ...)
A class is much like a module: a collection of “global” variables
and functions that belong together
There is only one instance of a module while a class can have
many instances (copies)
Modern programming applies classes to a large extent
It will take some time to master the class concept
Let’s learn by doing!

Representing a function by a class; background

Consider a function of t with a parameter v0:

y(t; v0) = v0t −
1
2
gt2

We need both v0 and t to evaluate y (and g = 9.81), but how
should we implement this?

Having t and v0 as arguments:
def y(t, v0):

g = 9.81
return v0*t - 0.5*g*t**2

Having t as argument and v0 as global variable:
def y(t):

g = 9.81
return v0*t - 0.5*g*t**2

Motivation: y(t) is a function of t only

Representing a function by a class; idea

With a class, y(t) can be a function of t only, but still have
v0 and g as parameters with given values.
The class packs together a function y(t) and data (v0, g)

Representing a function by a class; technical overview

We make a class Y for y(t; v0) with variables v0 and g and a
function value(t) for computing y(t; v0)

Any class should also have a function __init__ for
initialization of the variables

Y

__init__
value
formula
__call__
__str__

g
v0

Representing a function by a class; the code

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

Usage:
y = Y(v0=3) # create instance (object)
v = y.value(0.1) # compute function value

Representing a function by a class; the constructor

When we write
y = Y(v0=3)

we create a new variable (instance) y of type Y. Y(3) is a call to
the constructor:

def __init__(self, v0):
self.v0 = v0
self.g = 9.81

What is this self variable? Stay cool - it will be understood
later as you get used to it

Think of self as y, i.e., the new variable to be created.
self.v0 = ... means that we attach a variable v0 to self
(y).
Y(3) means Y.__init__(y, 3), i.e., set self=y, v0=3
Remember: self is always first parameter in a function, but
never inserted in the call!
After y = Y(3), y has two variables v0 and g

print y.v0
print y.g

In mathematics you don’t understand things. You just get
used to them. John von Neumann, mathematician,
1903-1957.

What is this self variable? Stay cool - it will be understood
later as you get used to it

Think of self as y, i.e., the new variable to be created.
self.v0 = ... means that we attach a variable v0 to self
(y).
Y(3) means Y.__init__(y, 3), i.e., set self=y, v0=3
Remember: self is always first parameter in a function, but
never inserted in the call!
After y = Y(3), y has two variables v0 and g

print y.v0
print y.g

In mathematics you don’t understand things. You just get
used to them. John von Neumann, mathematician,
1903-1957.

What is this self variable? Stay cool - it will be understood
later as you get used to it

Think of self as y, i.e., the new variable to be created.
self.v0 = ... means that we attach a variable v0 to self
(y).
Y(3) means Y.__init__(y, 3), i.e., set self=y, v0=3
Remember: self is always first parameter in a function, but
never inserted in the call!
After y = Y(3), y has two variables v0 and g

print y.v0
print y.g

In mathematics you don’t understand things. You just get
used to them. John von Neumann, mathematician,
1903-1957.

Representing a function by a class; the value method

Functions in classes are called methods
Variables in classes are called attributes

Here is the value method:
def value(self, t):

return self.v0*t - 0.5*self.g*t**2

Example on a call:
v = y.value(t=0.1)

self is left out in the call, but Python automatically inserts y as
the self argument inside the value method. Think of the call as
Y.value(y, t=0.1)

Inside value things “appear” as
return y.v0*t - 0.5*y.g*t**2

self gives access to “global variables” in the class object.

Classes introduction - summary

A class is simply a collection of functions and data that
naturally belong together
Functions in a class are usually called methods, data are called
attributes
We create instances (or objects) of a class, and each instance
can have different values for the attributes
All classes should have a method __init__, called a
constructur, which is called every time a new instance is
created
The constructur will typically initialize all data in an instance
All methods in a class should have self as first argument in
the definition, but not in the call. This may be confusing at
first, but one gets used to it.

