
Ch.7: Introduction to classes (part 2)

Joakim Sundnes1,2 Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Oct 27, 2017

Plan for Oct 27

Recap of class introduction
More class examples:

Bank account
A linear function
A circle

Exercises (7.1), 7.2, 7.3, 7.10
(More on classes; special methods)

Why use classes (1)?

For short, simple Python programs, classes are never really
necessary, but they can make a program more tidy and
readable
For large and complex programs, tidy and readable code is
extremely important
More important in other programming languages (Java, C++,
etc)
Python has convenient built-in data types (lists, dictionaries)
that makes it less important to make your own classes
Classes and object-oriented programming (OOP) are standard
tools in software development
OOP was invented at the University of Oslo (!)

Why use classes (2)

Think about how we have used the str class:
>>> a = "this is a string"
>>> type(a)
<class 'str'>
>>> l = a.split()

The Python developers could have solved this without classes, by
making split a global function:
>>> a = "this is a string"
>>> l = split(a)

(Warning: this does not work, it is just a thought-example.) The
advantage of the class solution is that it packs together data and
functions that naturally belong together.

Representing a function by a class; the code

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

Usage:
y = Y(v0=3) # create instance (object)
v = y.value(0.1) # compute function value

Representing a function by a class; summary

Class Y collects the attributes v0 and g and the method value
as one unit
value(t) is function of t only, but has automatically access
to the parameters v0 and g as self.v0 and self.g

The great advantage: we can send y.value as an ordinary
function of t to any other function that expects a function
f(t) of one variable

def make_table(f, tstop, n):
for t in linspace(0, tstop, n):

print(t, f(t))

def g(t):
return sin(t)*exp(-t)

make_table(g, 2*pi, 101) # send ordinary function

y = Y(6.5)
make_table(y.value, 2*pi, 101) # send class method

Representing a function by a class; the general case

Given a function with n + 1 parameters and one independent
variable,

f (x ; p0, . . . , pn)

it is wise to represent f by a class where p0, . . . , pn are attributes
and where there is a method, say value(self, x), for computing
f (x)

class MyFunc:
def __init__(self, p0, p1, p2, ..., pn):

self.p0 = p0
self.p1 = p1
...
self.pn = pn

def value(self, x):
return ...

Rough sketch of a general Python class

class MyClass:
def __init__(self, p1, p2):

self.attr1 = p1
self.attr2 = p2

def method1(self, arg):
can init new attribute outside constructor:
self.attr3 = arg
return self.attr1 + self.attr2 + self.attr3

def method2(self):
print('Hello!')

m = MyClass(4, 10)
print m.method1(-2)
m.method2()

It is common to have a constructor where attributes are initialized,
but this is not a requirement - attributes can be defined whenever
desired

Rough sketch of a general Python class

class MyClass:
def __init__(self, p1, p2):

self.attr1 = p1
self.attr2 = p2

def method1(self, arg):
can init new attribute outside constructor:
self.attr3 = arg
return self.attr1 + self.attr2 + self.attr3

def method2(self):
print('Hello!')

m = MyClass(4, 10)
print m.method1(-2)
m.method2()

It is common to have a constructor where attributes are initialized,
but this is not a requirement - attributes can be defined whenever
desired

Rough sketch of a general Python class

class MyClass:
def __init__(self, p1, p2):

self.attr1 = p1
self.attr2 = p2

def method1(self, arg):
can init new attribute outside constructor:
self.attr3 = arg
return self.attr1 + self.attr2 + self.attr3

def method2(self):
print('Hello!')

m = MyClass(4, 10)
print m.method1(-2)
m.method2()

It is common to have a constructor where attributes are initialized,
but this is not a requirement - attributes can be defined whenever
desired

But what is this self variable? I want to know now!

Warning
You have two choices:

1 follow the detailed explanations of what self really is
(Section 7.1.3 in the book)

2 postpone understanding self until you have much more
experience with class programming (suddenly self becomes
clear!)

The syntax
y = Y(3)

can be thought of as
Y.__init__(y, 3) # class prefix Y. is like a module prefix

How self works in the value method

v = y.value(2)

can alternatively be written as
v = Y.value(y, 2)

So, when we do y.value(2), this is automatically translated to the
call Y.value(y,2).

Another class example: a bank account

Attributes: name of owner, account number, balance
Methods: deposit, withdraw, pretty print

class Account:
def __init__(self, name, account_number, initial_amount):

self.name = name
self.no = account_number
self.balance = initial_amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def dump(self):
s = '%s, %s, balance: %s' % \

(self.name, self.no, self.balance)
print(s)

UML diagram of class Account

Example on using class Account

>>> a1 = Account('John Olsson', '19371554951', 20000)
>>> a2 = Account('Liz Olsson', '19371564761', 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a2.withdraw(10500)
>>> a1.withdraw(3500)
>>> print("a1's balance:", a1.balance)
a1's balance: 13500
>>> a1.dump()
John Olsson, 19371554951, balance: 13500
>>> a2.dump()
Liz Olsson, 19371564761, balance: 9500

Use underscore in attribute names to avoid misuse

Possible, but not intended use:
>>> a1.name = 'Some other name'
>>> a1.balance = 100000
>>> a1.no = '19371564768'

The assumptions on correct usage:
The attributes should not be changed!
The balance attribute can be viewed
Changing balance is done through withdraw or deposit

Remedy:
Attributes and methods not intended for use outside the class can
be marked as protected by prefixing the name with an underscore
(e.g., _name). This is just a convention - and no technical way of
avoiding attributes and methods to be accessed.

Use underscore in attribute names to avoid misuse

Possible, but not intended use:
>>> a1.name = 'Some other name'
>>> a1.balance = 100000
>>> a1.no = '19371564768'

The assumptions on correct usage:
The attributes should not be changed!
The balance attribute can be viewed
Changing balance is done through withdraw or deposit

Remedy:
Attributes and methods not intended for use outside the class can
be marked as protected by prefixing the name with an underscore
(e.g., _name). This is just a convention - and no technical way of
avoiding attributes and methods to be accessed.

Use underscore in attribute names to avoid misuse

Possible, but not intended use:
>>> a1.name = 'Some other name'
>>> a1.balance = 100000
>>> a1.no = '19371564768'

The assumptions on correct usage:
The attributes should not be changed!
The balance attribute can be viewed
Changing balance is done through withdraw or deposit

Remedy:
Attributes and methods not intended for use outside the class can
be marked as protected by prefixing the name with an underscore
(e.g., _name). This is just a convention - and no technical way of
avoiding attributes and methods to be accessed.

Use underscore in attribute names to avoid misuse

Possible, but not intended use:
>>> a1.name = 'Some other name'
>>> a1.balance = 100000
>>> a1.no = '19371564768'

The assumptions on correct usage:
The attributes should not be changed!
The balance attribute can be viewed
Changing balance is done through withdraw or deposit

Remedy:
Attributes and methods not intended for use outside the class can
be marked as protected by prefixing the name with an underscore
(e.g., _name). This is just a convention - and no technical way of
avoiding attributes and methods to be accessed.

Improved class with attribute protection (underscore)

class AccountP:
def __init__(self, name, account_number, initial_amount):

self._name = name
self._no = account_number
self._balance = initial_amount

def deposit(self, amount):
self._balance += amount

def withdraw(self, amount):
self._balance -= amount

def get_balance(self): # NEW - read balance value
return self._balance

def dump(self):
s = '%s, %s, balance: %s' % \

(self._name, self._no, self._balance)
print(s)

Usage of improved class AccountP

a1 = AccountP('John Olsson', '19371554951', 20000)
a1.withdraw(4000)

print(a1._balance) # it works, but a convention is broken

print(a1.get_balance()) # correct way of viewing the balance

a1._no = '19371554955' # also works, but is a "serious crime"!

Question: Why is this useful?

Hint: Think of large library codes, that will be used by many other
programmers for many years.

Another example: a class for a circle

A circle is defined by its center point x0, y0 and its radius R
These data can be attributes in a class
Possible methods in the class: area, circumference
The constructor initializes x0, y0 and R

class Circle:
def __init__(self, x0, y0, R):

self.x0, self.y0, self.R = x0, y0, R

def area(self):
return pi*self.R**2

def circumference(self):
return 2*pi*self.R

>>> c = Circle(2, -1, 5)
>>> print('A circle with radius %g at (%g, %g) has area %g' % \
... (c.R, c.x0, c.y0, c.area()))
A circle with radius 5 at (2, -1) has area 78.5398

Class introduction - summary

Classes pack together data and functions that naturally belong
together
We define a class, and then create instances (or objects) of
that class

Different instances will have different data, but they all have
the same functions operating on that data

In IN1900 codes, classes are never really necessary, but
sometimes convenient
In "real-world" programs, with tens of 1000s of lines, the extra
organization offered by classes may be the difference between
a code that works and one that doesn’t

