
App. A: Sequences and difference equations (Part 1,
29 sept)

Joakim Sundnes1,2 Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Sep 27, 2017

Plan for week 39

Wednesday 27 september
Live programming of ex 5.13, 5.29, 5.39
Animations in matplotlib

Making our own modules (from Chapter 4)

Friday 29 september
Live programming of ex 5.39, A.1
Programming of difference equations (Appendix A)
Intro to programming of sequences

A difference equation for growth and interest
A system of (two) difference equations
Fibonacci numbers

Sequences

Sequences is a central topic in mathematics:

x0, x1, x2, . . . , xn, . . . ,

Example: all odd numbers

1, 3, 5, 7, . . . , 2n + 1, . . .

For this sequence we have a formula for the n-th term:

xn = 2n + 1

and we can write the sequence more compactly as

(xn)
∞
n=0, xn = 2n + 1

Other examples of sequences

1, 4, 9, 16, 25, . . . (xn)
∞
n=0, xn = n2

1,
1
2
,
1
3
,
1
4
, . . . (xn)

∞
n=0, xn =

1
n + 1

1, 1, 2, 6, 24, . . . (xn)
∞
n=0, xn = n!

1, 1+x , 1+x+
1
2
x2, 1+x+

1
2
x2+

1
6
x3, . . . (xn)

∞
n=0, xn =

n∑
j=0

x j

j!

Finite and infinite sequences

Infinite sequences have an infinite number of terms (n→∞)
In mathematics, infinite sequences are widely used
In real-life applications, sequences are usually finite: (xn)Nn=0

Example: number of approved exercises every week in IN1900
x0, x1, x2, . . . , x15

Example: the annual value of a loan
x0, x1, . . . , x20

Difference equations

For sequences occuring in modeling of real-world phenomena,
there is seldom a formula for the n-th term
However, we can often set up one or more equations governing
the sequence
Such equations are called difference equations
With a computer it is then very easy to generate the sequence
by solving the difference equations
Difference equations have lots of applications and are very
easy to solve on a computer, but often complicated or
impossible to solve for xn (as a formula) by pen and paper!
The programs require only loops and arrays

Modeling interest rates

Problem:
Put x0 money in a bank at year 0. What is the value after N years
if the interest rate is p percent per year?

Solution:
The fundamental information relates the value at year n, xn, to the
value of the previous year, xn−1:

xn = xn−1 +
p

100
xn−1

How to solve for xn? Start with x0, compute x1, x2, ...

Modeling interest rates

Problem:
Put x0 money in a bank at year 0. What is the value after N years
if the interest rate is p percent per year?

Solution:
The fundamental information relates the value at year n, xn, to the
value of the previous year, xn−1:

xn = xn−1 +
p

100
xn−1

How to solve for xn? Start with x0, compute x1, x2, ...

Modeling interest rates

Problem:
Put x0 money in a bank at year 0. What is the value after N years
if the interest rate is p percent per year?

Solution:
The fundamental information relates the value at year n, xn, to the
value of the previous year, xn−1:

xn = xn−1 +
p

100
xn−1

How to solve for xn? Start with x0, compute x1, x2, ...

Solve difference equation for interest rates

We solve the equation by repeating a simple procedure (relation)
many times (boring, but well suited for a computer!)

Program for xn = xn−1 + (p/100)xn−1:
from numpy import *
from matplotlib.pyplot import *
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
index_set = range(N+1)
x = zeros(len(index_set))

Solution:
x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (p/100.0)*x[n-1]
print(x)
plot(index_set, x, 'ro')
xlabel('years')
ylabel('amount')
show()

We do not need to store the entire sequence, but it is
convenient for programming and later plotting

Previous program stores all the xn values in a NumPy array
To compute xn, we only need one previous value, xn−1

Thus, we could only store the two last values in memory:
x_old = x0
for n in index_set[1:]:

x_new = x_old + (p/100.)*x_old
x_old = x_new # x_new becomes x_old at next step

However, programming with an array x[n] is simpler, safer, and
enables plotting the sequence, so we will continue to use arrays in
the examples

Daily interest rate

A more relevant model is to add the interest every day
The interest rate per day is r = p/D if p is the annual interest
rate and D is the number of days in a year
A common model in business applies D = 360, but n counts
exact (all) days

Just a minor change in the model:

xn = xn−1 +
r

100
xn−1

How can we find the number of days between two dates?
>>> import datetime
>>> date1 = datetime.date(2017, 9, 29) # Sep 29, 2017
>>> date2 = datetime.date(2018, 8, 4) # Aug 4, 2018
>>> diff = date2 - date1
>>> print diff.days
309

Program for daily interest rate

from numpy import *
from matplotlib.pyplot import *

x0 = 100 # initial amount
p = 5 # annual interest rate
r = p/360.0 # daily interest rate
import datetime
date1 = datetime.date(2017, 9, 29)
date2 = datetime.date(2018, 8, 4)
diff = date2 - date1
N = diff.days
index_set = range(N+1)
x = zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (r/100.0)*x[n-1]

plot(index_set, x, 'ro')
xlabel('days')
ylabel('amount')
show()

But the annual interest rate may change quite often...

Varying p means pn:

Could not be handled in school (cannot apply
xn = x0(1+ p

100)
n)

A varying p causes no problems in the program: just fill an
array p with correct interest rate for day n

Modified program:
p = zeros(len(index_set))
fill p[n] for n in index_set (might be non-trivial...)

r = p/360.0 # daily interest rate
x = zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (r[n-1]/100.0)*x[n-1]

Payback of a loan

A loan L is paid back with a fixed amount L/N every month
over N months + the interest rate of the loan
p: annual interest rate, p/12 : monthly rate
Let xn be the value of the loan at the end of month n

The fundamental relation from one month to the text:

xn = xn−1 +
p

12 · 100
xn−1 − (

p

12 · 100
xn−1 +

L

N
)

which simplifies to

xn = xn−1 −
L

N

(L/N makes the equation nonhomogeneous)

How to make a living from a fortune with constant
consumption

We have a fortune F invested with an annual interest rate of p
percent
Every year we plan to consume an amount cn (n counts years)
Let xn be our fortune at year n

A fundamental relation from one year to the other is

xn = xn−1 +
p

100
xn−1 − cn

Simplest possibility: keep cn constant, but inflation demands cn to
increase...

How to make a living from a fortune with inflation-adjusted
consumption

Assume I percent inflation per year
Start with c0 as q percent of the interest the first year
cn then develops as money with interest rate I

xn develops with rate p but with a loss cn every year:

xn = xn−1 +
p

100
xn−1 − cn−1, x0 = F , c0 =

pq

104F

cn = cn−1 +
I

100
cn−1

This is a coupled system of two difference equations, but the
programming is still simple: we update two arrays, first x[n], then
c[n], inside the loop (good exercise!)

The mathematics of Fibonacci numbers

No programming or math course is complete without an example
on Fibonacci numbers:

xn = xn−1 + xn−2, x0 = 1, x1 = 1

Mathematical classification
This is a homogeneous difference equation of second order (second
order means three levels: n, n − 1, n − 2). This classification is
important for mathematical solution technique, but not for
simulation in a program.

Fibonacci derived the sequence by modeling rat populations, but the sequence
of numbers has a range of peculiar mathematical properties and has therefore
attracted much attention from mathematicians.

Program for generating Fibonacci numbers

import sys
from numpy import zeros

N = int(sys.argv[1])
x = zeros(N+1, int)
x[0] = 1
x[1] = 1
for n in range(2, N+1):

x[n] = x[n-1] + x[n-2]
print(n, x[n])

Fibonacci numbers can cause overflow in NumPy arrays

Run the program with N = 100:
2 2
3 3
4 5
5 8
6 13
...
91 7540113804746346429
fibonacci.py:9: RuntimeWarning: overflow encountered in long_scalars

x[n] = x[n-1] + x[n-2]
92 -6246583658587674878

Note:
NumPy ’int’ supports up to 9223372036854775807
Can be fixed by avoiding arrays, and changing from NumPy
int to standard Python int

See the book for details

Summary of difference equations (part 1)

A sequence where xn is expressed by xn−1, xn−2 etc is a
difference equation
In general no explicit formula for xn, so hard to solve on paper
for large n

Easy to solve in Python:
Start with x0
Compute xn from xn−1 i a for loop

Easily extended to systems of difference equations
Just update all the sequences in the same for loop

