App. A: Sequences and difference equations (Part 1, 29 sept)

Joakim Sundnes ${ }^{1,2}$ Hans Petter Langtangen ${ }^{1,2}$

Simula Research Laboratory ${ }^{1}$
University of Oslo, Dept. of Informatics ${ }^{2}$

Sep 27, 2017

Wednesday 27 september

- Live programming of ex 5.13, 5.29, 5.39
- Animations in matplotlib
- Making our own modules (from Chapter 4)

Friday 29 september

- Live programming of ex 5.39 , A. 1
- Programming of difference equations (Appendix A)
- Intro to programming of sequences
- A difference equation for growth and interest
- A system of (two) difference equations
- Fibonacci numbers

Sequences is a central topic in mathematics:

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{n}, \ldots,
$$

Example: all odd numbers

$$
1,3,5,7, \ldots, 2 n+1, \ldots
$$

For this sequence we have a formula for the n-th term:

$$
x_{n}=2 n+1
$$

and we can write the sequence more compactly as

$$
\left(x_{n}\right)_{n=0}^{\infty}, \quad x_{n}=2 n+1
$$

Other examples of sequences

$$
\begin{gathered}
1,4,9,16,25, \ldots \quad\left(x_{n}\right)_{n=0}^{\infty}, x_{n}=n^{2} \\
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \quad\left(x_{n}\right)_{n=0}^{\infty}, x_{n}=\frac{1}{n+1} \\
1,1,2,6,24, \ldots \quad\left(x_{n}\right)_{n=0}^{\infty}, x_{n}=n! \\
1,1+x, 1+x+\frac{1}{2} x^{2}, 1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}, \ldots \quad\left(x_{n}\right)_{n=0}^{\infty}, x_{n}=\sum_{j=0}^{n} \frac{x^{j}}{j!}
\end{gathered}
$$

- Infinite sequences have an infinite number of terms $(n \rightarrow \infty)$
- In mathematics, infinite sequences are widely used
- In real-life applications, sequences are usually finite: $\left(x_{n}\right)_{n=0}^{N}$
- Example: number of approved exercises every week in IN1900 $x_{0}, x_{1}, x_{2}, \ldots, x_{15}$
- Example: the annual value of a loan $x_{0}, x_{1}, \ldots, x_{20}$

Difference equations

- For sequences occuring in modeling of real-world phenomena, there is seldom a formula for the n-th term
- However, we can often set up one or more equations governing the sequence
- Such equations are called difference equations
- With a computer it is then very easy to generate the sequence by solving the difference equations
- Difference equations have lots of applications and are very easy to solve on a computer, but often complicated or impossible to solve for x_{n} (as a formula) by pen and paper!
- The programs require only loops and arrays

Modeling interest rates

Problem:

Put x_{0} money in a bank at year 0 . What is the value after N years if the interest rate is p percent per year?

Solution:

The fundam ental information relates the value at year n, x_{n}, to the value of the previous year, x_{n-1}

$$
x_{n}=x_{n-1}+\frac{p}{100} x_{n-1}
$$

How to solve for x_{n} ? Start with x_{0}, compute x_{1}, x_{2},

Modeling interest rates

Problem:

Put x_{0} money in a bank at year 0 . What is the value after N years if the interest rate is p percent per year?

Solution:
 The fundamental information relates the value at year n, x_{n}, to the value of the previous year, x_{n-1}

$$
x_{n}=x_{n-1}+\frac{p}{100} x_{n-1}
$$

How to solve for x_{n} ? Start with x_{0}, compute x_{1}, x_{2},

Problem:

Put x_{0} money in a bank at year 0 . What is the value after N years if the interest rate is p percent per year?

Solution:

The fundamental information relates the value at year n, x_{n}, to the value of the previous year, x_{n-1} :

$$
x_{n}=x_{n-1}+\frac{p}{100} x_{n-1}
$$

How to solve for x_{n} ? Start with x_{0}, compute x_{1}, x_{2}, \ldots

We solve the equation by repeating a simple procedure (relation) many times (boring, but well suited for a computer!)

```
Program for }\mp@subsup{x}{n}{}=\mp@subsup{x}{n-1}{}+(p/100)\mp@subsup{x}{n-1}{}
from numpy import *
from matplotlib.pyplot import *
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
index_set = range(N+1)
x = zeros(len(index_set))
    # Solution:
x[0] = x0
for n in index_set[1:]:
    x[n] = x[n-1] + (p/100.0)*x[n-1]
print(x)
plot(index_set, x, 'ro')
xlabel('years')
ylabel('amount')
show()
```


We do not need to store the entire sequence, but it is convenient for programming and later plotting

- Previous program stores all the x_{n} values in a NumPy array
- To compute x_{n}, we only need one previous value, x_{n-1}

Thus, we could only store the two last values in memory:

```
x_old = x0
for n in index_set[1:]:
    x_new = x_old + (p/100.)*x_old
    x_old = x_new # x_new becomes x_old at next step
```

However, programming with an array $\mathrm{x}[\mathrm{n}]$ is simpler, safer, and enables plotting the sequence, so we will continue to use arrays in the examples

- A more relevant model is to add the interest every day
- The interest rate per day is $r=p / D$ if p is the annual interest rate and D is the number of days in a year
- A common model in business applies $D=360$, but n counts exact (all) days

Just a minor change in the model:

$$
x_{n}=x_{n-1}+\frac{r}{100} x_{n-1}
$$

How can we find the number of days between two dates?

```
>>> import datetime
>>> date1 = datetime.date(2017, 9, 29) # Sep 29, 2017
>>> date2 = datetime.date(2018, 8, 4) # Aug 4, 2018
>>> diff = date2 - date1
>>> print diff.days
309
```

```
from numpy import *
from matplotlib.pyplot import *
x0 = 100
p = 5
r = p/360.0
import datetime
date1 = datetime.date(2017, 9, 29)
date2 = datetime.date(2018, 8, 4)
diff = date2 - date1
N = diff.days
index_set = range(N+1)
x = zeros(len(index_set))
x[0] = x0
for n in index_set[1:]:
    x[n] = x[n-1] + (r/100.0)*x[n-1]
plot(index_set, x, 'ro')
xlabel('days')
ylabel('amount')
show()
```


Varying p means p_{n} :

- Could not be handled in school (cannot apply $\left.x_{n}=x_{0}\left(1+\frac{p}{100}\right)^{n}\right)$
- A varying p causes no problems in the program: just fill an array p with correct interest rate for day n

Modified program:

```
p = zeros(len(index_set))
# fill p[n] for n in index_set (might be non-trivial...)
r = p/360.0 # daily interest rate
x = zeros(len(index_set))
x[0] = x0
for n in index_set[1:]:
    x[n] = x[n-1] +(r[n-1]/100.0)*x[n-1]
```

- A loan L is paid back with a fixed amount L / N every month over N months + the interest rate of the loan
- p : annual interest rate, $p / 12$: monthly rate
- Let x_{n} be the value of the loan at the end of month n

The fundamental relation from one month to the text:

$$
x_{n}=x_{n-1}+\frac{p}{12 \cdot 100} x_{n-1}-\left(\frac{p}{12 \cdot 100} x_{n-1}+\frac{L}{N}\right)
$$

which simplifies to

$$
x_{n}=x_{n-1}-\frac{L}{N}
$$

(L / N makes the equation nonhomogeneous)

How to make a living from a fortune with constant consumption

- We have a fortune F invested with an annual interest rate of p percent
- Every year we plan to consume an amount c_{n} (n counts years)
- Let x_{n} be our fortune at year n

A fundamental relation from one year to the other is

$$
x_{n}=x_{n-1}+\frac{p}{100} x_{n-1}-c_{n}
$$

Simplest possibility: keep c_{n} constant, but inflation demands c_{n} to increase...

How to make a living from a fortune with inflation-adjusted consumption

- Assume I percent inflation per year
- Start with c_{0} as q percent of the interest the first year
- c_{n} then develops as money with interest rate I
x_{n} develops with rate p but with a loss c_{n} every year:

$$
\begin{aligned}
& x_{n}=x_{n-1}+\frac{p}{100} x_{n-1}-c_{n-1}, \quad x_{0}=F, c_{0}=\frac{p q}{10^{4}} F \\
& c_{n}=c_{n-1}+\frac{l}{100} c_{n-1}
\end{aligned}
$$

This is a coupled system of two difference equations, but the programming is still simple: we update two arrays, first $\mathrm{x}[\mathrm{n}]$, then $c[n]$, inside the loop (good exercise!)

No programming or math course is complete without an example on Fibonacci numbers:

$$
x_{n}=x_{n-1}+x_{n-2}, \quad x_{0}=1, x_{1}=1
$$

Mathematical classification

This is a homogeneous difference equation of second order (second order means three levels: $n, n-1, n-2$). This classification is important for mathematical solution technique, but not for simulation in a program.

Fibonacci derived the sequence by modeling rat populations, but the sequence of numbers has a range of peculiar mathematical properties and has therefore attracted much attention from mathematicians.

Program for generating Fibonacci numbers

```
import sys
from numpy import zeros
N = int(sys.argv[1])
x = zeros(N+1, int)
x[0] = 1
x[1] = 1
for }n\mathrm{ in range(2,N+1):
    x[n] = x[n-1] + x[n-2]
    print(n, x[n])
```

Run the program with $N=100$:
22
33
45
58
613
917540113804746346429
fibonacci.py:9: RuntimeWarning: overflow encountered in long_scalars $x[n]=x[n-1]+x[n-2]$
$92-6246583658587674878$
Note:

- NumPy 'int' supports up to 9223372036854775807
- Can be fixed by avoiding arrays, and changing from NumPy int to standard Python int
- See the book for details
- A sequence where x_{n} is expressed by x_{n-1}, x_{n-2} etc is a difference equation
- In general no explicit formula for x_{n}, so hard to solve on paper for large n
- Easy to solve in Python:
- Start with x_{0}
- Compute x_{n} from x_{n-1} i a for loop
- Easily extended to systems of difference equations
- Just update all the sequences in the same for loop

