App. A: Sequences and difference equations (Part 1,

29 sept)

2

Joakim Sundnes?: Hans Petter Langtangen!+

Simula Research Laboratory?!

University of Oslo, Dept. of Informatics?

Sep 27, 2017

Plan for week 39

Wednesday 27 september
@ Live programming of ex 5.13, 5.29, 5.39
@ Animations in matplotlib

e Making our own modules (from Chapter 4)

Friday 29 september
@ Live programming of ex 5.39, A.1
@ Programming of difference equations (Appendix A)

@ Intro to programming of sequences

o A difference equation for growth and interest
o A system of (two) difference equations
o Fibonacci numbers

Sequences

Sequences is a central topic in mathematics:

X0y X1, X2y «voy Xpy.ooy

Example: all odd numbers

1,3,5,7,....2n+1,...

For this sequence we have a formula for the n-th term:

Xp=2n+1

and we can write the sequence more compactly as

(xn)5Zo, xn=2n+1

Other examples of sequences

1, 4,0, 16, 25, ... (x3)g, Xo = Nn°
1 1 1 1
17 57 5’ Z: (Xn)zo:()a Xn = m
1, 1,26 24, ... (x2)>2, Xp=n!
1, 1%, Lxt oy Thxh ox? =3 PI obs
, 14X, +x+§x , +x+§x +6X N Y _;ﬂ

v

Finite and infinite sequences

o Infinite sequences have an infinite number of terms (n — o0)
@ In mathematics, infinite sequences are widely used

o In real-life applications, sequences are usually finite: (x,)V_,
@ Example: number of approved exercises every week in IN1900
X0, X1, X2, ...4,X15

Example: the annual value of a loan

X0, X1, -.-,X20

Difference equations

@ For sequences occuring in modeling of real-world phenomena,
there is seldom a formula for the n-th term

@ However, we can often set up one or more equations governing
the sequence

@ Such equations are called difference equations

@ With a computer it is then very easy to generate the sequence
by solving the difference equations

o Difference equations have lots of applications and are very
easy to solve on a computer, but often complicated or
impossible to solve for x, (as a formula) by pen and paper!

@ The programs require only loops and arrays

Modeling interest rates

Modeling interest rates

Put xg money in a bank at year 0. What is the value after N years
if the interest rate is p percent per year?

Modeling interest rates

Put xg money in a bank at year 0. What is the value after N years
if the interest rate is p percent per year?

| A\

Solution:
The fundamental information relates the value at year n, x,, to the
value of the previous year, x,_1:
p
Xp = Xp—1 + ——Xpn—
n n—1 100 n—1
How to solve for x,? Start with xp, compute x1, xo, ...

Solve difference equation for interest rates

We solve the equation by repeating a simple procedure (relation)
many times (boring, but well suited for a computer!)

Program for x, = x,—1 + (p/100)x,_1:

from numpy import *
from matplotlib.pyplot import *

x0 = 100 # initial amount
p=>5 # interest rate
N =4 # number of years

index_set = range(N+1)
x = zeros(len(index_set))

Solution:
x[0] = x0
for n in index_set[1:]:
x[n] = x[n-1] + (p/100.0)*x[n-1]
print(x)
plot(index_set, x, 'ro')
xlabel('years')
ylabel('amount')
show ()

We do not need to store the entire sequence, but it is

convenient for programming and later plotting

@ Previous program stores all the x, values in a NumPy array

@ To compute x,, we only need one previous value, x, 1

Thus, we could only store the two last values in memory:

x_old = x0
for n in index_set[1:]:
x_new = x_old + (p/100.)*x_old
x_old x_new # xz_new becomes z_old at next step

However, programming with an array x[n] is simpler, safer, and
enables plotting the sequence, so we will continue to use arrays in
the examples

Daily interest rate

@ A more relevant model is to add the interest every day

@ The interest rate per day is r = p/D if p is the annual interest
rate and D is the number of days in a year

@ A common model in business applies D = 360, but n counts
exact (all) days

Just a minor change in the model:

r
Xn = Xp—1 + 7=Xp—1

100
How can we find the number of days between two dates?

>>> import datetime

>>> datel = datetime.date(2017, 9, 29) # Sep 29, 2017
>>> date2 = datetime.date(2018, 8, 4) # Adug 4, 2018
>>> diff = date2 - datel

>>> print diff.days

309

Program for daily interest rate

from numpy import *
from matplotlib.pyplot import *

x0 = 100 # anitial amount
p=>5 # annual interest rate
r = p/360.0 # daily interest rate

import datetime

datel = datetime.date(2017, 9, 29)
date2 = datetime.date(2018, 8, 4)
diff = date2 - datel

N = diff.days

index_set = range(N+1)

x = zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:
x[n] = x[n-1] + (x/100.0)*x[n-1]

plot(index_set, x, 'ro')
xlabel('days')
ylabel('amount')

show ()

But the annual interest rate may change quite often...

Varying p means p;:

@ Could not be handled in school (cannot apply
xn = x0(1+ 155)")

@ A varying p causes no problems in the program: just fill an
array p with correct interest rate for day n

Modified program:

p = zeros(len(index_set))
fill p[n] for m in indexr_set (might be non-trivial...)

r = p/360.0 # daily interest rate
x = zeros(len(index_set))
x[0] = x0

for n in index_set[1:]:
x[n] = x[n-1] + (r[n-11/100.0)*x[n-1]

Payback of a loan

@ A loan L is paid back with a fixed amount L/N every month
over N months + the interest rate of the loan

@ p: annual interest rate, p/12 : monthly rate

o Let x, be the value of the loan at the end of month n

The fundamental relation from one month to the text:

L
Xp = Xp—1 + an—l - (Xp—1 + N)

p
12 -100 12 - 100

which simplifies to
L
Xn = Xp—1 — N
(L/N makes the equation nonhomogeneous)

How to make a living from a fortune with constant

consumption

@ We have a fortune F invested with an annual interest rate of p
percent

@ Every year we plan to consume an amount ¢, (n counts years)

@ Let x, be our fortune at year n

A fundamental relation from one year to the other is
Xp = Xp—1 + Lx 1—C
n n— 100" n

Simplest possibility: keep ¢, constant, but inflation demands ¢, to
increase...

How to make a living from a fortune with inflation-adjusted

consumption

@ Assume / percent inflation per year
e Start with ¢ as g percent of the interest the first year

@ ¢, then develops as money with interest rate /

xp develops with rate p but with a loss ¢, every year:

Xn:Xn—1+Wp0Xn—1_Cn—la xo = F, CO:%F
Cn = Cp—1 + mcn—l

This is a coupled system of two difference equations, but the
programming is still simple: we update two arrays, first x[n], then
c[n], inside the loop (good exercise!)

The mathematics of Fibonacci numbers

No programming or math course is complete without an example
on Fibonacci numbers:

Xn = Xp—1 +Xn—27 X0 = 17 X1 = 1

Mathematical classification

| \

This is a homogeneous difference equation of second order (second
order means three levels: n, n — 1, n — 2). This classification is
important for mathematical solution technique, but not for
simulation in a program.

Fibonacci derived the sequence by modeling rat populations, but the sequence
of numbers has a range of peculiar mathematical properties and has therefore
attracted much attention from mathematicians.

Program for generating Fibonacci numbers

import sys
from numpy import zeros

N = int(sys.argv[1])
x = zeros(N+1, int)
x[0] =1
x[1] =1

for n in range(2, N+1):
x[n] = x[n-1] + x[n-2]
print(n, x[nl)

Fibonacci numbers can cause overflow in NumPy arrays

Run the program with N = 100:
22

oUW
= 00 01 W

3

91 7540113804746346429
fibonacci.py:9: RuntimeWarning: overflow encountered in long_scalars

x[n] = x[n-1] + x[n-2]
92 -6246583658587674878

Note:
@ NumPy 'int’ supports up to 9223372036854775807

o Can be fixed by avoiding arrays, and changing from NumPy
int to standard Python int

@ See the book for details

Summary of difference equations (part 1)

@ A sequence where x, is expressed by x,_1,x, o etcis a
difference equation
@ In general no explicit formula for x,, so hard to solve on paper
for large n
@ Easy to solve in Python:
o Start with xg
o Compute x, from x,_1 i a for loop
@ Easily extended to systems of difference equations
o Just update all the sequences in the same for loop

