
Ch.1: Computing with formulas

Joakim Sundnes1,2 Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Aug 24, 2017

Why program?

Everybody in this country should learn how to program a
computer... because it teaches you how to think. Steve
Jobs, 1955-2011.

The teaching strategy is example-based

Present a case (example)
Present the complete program
Dissect and discuss every line
Simulate programs by hand (be the computer!)

Python versions 2 and 3

This course teaches the Python programming language
Two active versions; Python 2 (2.7) and Python 3 (3.6)
In IN1900 we teach Python 3, but the book is Python 2!
You can use the version you want
Very few important differences;

print(...) vs print ...
Integer division

More on this later

The learning strategy is about doing exercises

Study and try to understand examples
Program a lot!
This course has many compulsory exercises
The course curriculum is defined through exercises

Chapter 1 is about evaluating formulas

Why?
Everybody understands the problem
Many fundamental concepts are introduced

variables
arithmetic expressions
objects
printing text and numbers

Evaluating a mathematical formula

Height of a ball in vertical motion

y(t) = v0t −
1
2
gt2

where

y is the height (position) as function of time t

v0 is the initial velocity at t = 0
g is the acceleration of gravity

Task: given v0, g and t, compute y .

Use a calculator? A program is much more powerful!

What is a program?
A sequence of instructions to the computer, written in a
programming language, somewhat like English, but very much
simpler - and very much stricter.

This course teaches the Python language.

Our first example program:

Evaluate y(t) = v0t − 1
2gt

2 for v0 = 5, g = 9.81 and t = 0.6:

y = 5 · 0.6− 1
2
· 9.81 · 0.62

The complete Python program:
print(5*0.6 - 0.5*9.81*0.6**2)

How to write and run the program

A program is plain text, written in a plain text editor
Use Atom, Gedit, Emacs, Vim or Spyder (not MS Word!)

Step 1. Write the program in a text editor, here the line
print(5*0.6 - 0.5*9.81*0.6**2)

Step 2. Save the program to a file (say) ball.py. (.py denotes
Python.)
Step 3. Move to a terminal window and go to the folder
containing the program file.
Step 4. Run the program:
Terminal> python ball.py

The program prints out 1.2342 in the terminal window.

Python can be used interactively as a calculator and to test
statements

So far we have performed calculations in Python programs
Python can also be used interactively in what is known as a
shell
Type python (or ipython) in the terminal window
A Python shell is entered where you can write statements after
»> (IPython has a different prompt)

Terminal> python
Python 3.6.1 |Anaconda 4.4.0 (x86_64)| (default, May 11 2017, 13:04:09)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 5*0.6-0.5*9.81*0.6**2
1.2342
>>> print(5*0.6-0.5*9.81*0.6**2)
1.2342

In this course we probably use computers differently from
what you are used to

When you use a computer, you always run some programs
The computer cannot do anything without being precisely told
what to do, and humans write and use programs to tell the
computer what to do
Most people are used to double-click on a symbol to run a
program - in this course we give commands in a terminal
window because that is more efficient if you work intensively
with programming
Hard math problems suddenly become straightforward by
writing programs

Some frequently used computer science terms

Program or code or application
Source code (program text)
Code/program snippet
Execute or run a program
Algorithm (recipe for a program)
Implementation (writing the program)
Verification (does the program work correctly?)
Bugs (errors) and debugging

Computer science meaning of terms is often different from the
human language meaning

Some frequently used computer science terms

Program or code or application
Source code (program text)
Code/program snippet
Execute or run a program
Algorithm (recipe for a program)
Implementation (writing the program)
Verification (does the program work correctly?)
Bugs (errors) and debugging

Computer science meaning of terms is often different from the
human language meaning

Some frequently used computer science terms

Program or code or application
Source code (program text)
Code/program snippet
Execute or run a program
Algorithm (recipe for a program)
Implementation (writing the program)
Verification (does the program work correctly?)
Bugs (errors) and debugging

Computer science meaning of terms is often different from the
human language meaning

A short program can calculate any integral
You cannot calculate this integral by hand:

∫ 1

−∞
e−x

2
dx .

A little program can compute this and “all” other integrals:

from numpy import *

def integrate(f, a, b, n=100):
"""
Integrate f from a to b,
using the Trapezoidal rule with n intervals.
"""
x = linspace(a, b, n+1) # Coordinates of the intervals
h = x[1] - x[0] # Interval spacing
I = h*(sum(f(x)) - 0.5*(f(a) + f(b)))
return I

Define my special integrand
def my_function(x):

return exp(-x**2)

minus_infinity = -20 # Approximation of minus infinity
I = integrate(my_function, minus_infinity, 1, n=1000)
print('Value of integral:', I)

The program computes an approximation with error 10−12

within 0.1 s (n = 106)!

Computers are very picky about grammar rules and typos

Look at the two lines
print(5*0.6 - 0.5*9.81*0.6**2)
write(5*0,6 - 0,5*9,81*0,6^2)

Would you consider these two lines to be equal?

Humans may say yes, computers always no
The second line has no meaning as a Python program
write is not a legal Python word in this context, comma has
another meaning than in math, and the hat is not
exponentiation
We have to be extremely accurate with how we write
computer programs!
It takes time and experience to learn this

Computers are very picky about grammar rules and typos

Look at the two lines
print(5*0.6 - 0.5*9.81*0.6**2)
write(5*0,6 - 0,5*9,81*0,6^2)

Would you consider these two lines to be equal?

Humans may say yes, computers always no
The second line has no meaning as a Python program
write is not a legal Python word in this context, comma has
another meaning than in math, and the hat is not
exponentiation
We have to be extremely accurate with how we write
computer programs!
It takes time and experience to learn this

Store numbers in variables to make a program more readable

From mathematics you are used to variables, e.g.,

v0 = 5, g = 9.81, t = 0.6, y = v0t −
1
2
gt2

We can use variables in a program too, and this makes the last
program easier to read and understand:
v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print(y)

This program spans several lines of text and use variables,
otherwise the program performs the same calculations and gives the
same output as the previous program

There is great flexibility in choosing variable names

In mathematics we usually use one letter for a variable
The name of a variable in a program can contain the letters
a-z, A-Z, underscore _ and the digits 0-9, but cannot start
with a digit
Variable names are case-sensitive (e.g., a is different from A)

initial_velocity = 5
accel_of_gravity = 9.81
TIME = 0.6
VerticalPositionOfBall = initial_velocity*TIME - \

0.5*accel_of_gravity*TIME**2
print(VerticalPositionOfBall)

(Note: the backslash allows an instruction to be continued on the
next line)

Good variable names make a program easier to understand!

Some words are reserved in Python

Certain words have a special meaning in Python and cannot be
used as variable names. These are: and, as, assert, break,
class, continue, def, del, elif, else, except, exec, finally,
for, from, global, if, import, in, is, lambda, not, or, pass,
print, raise, return, try, with, while, and yield.

Comments are useful to explain how you think in programs

Program with comments:
program for computing the height of a ball
in vertical motion
v0 = 5 # initial velocity
g = 9.81 # acceleration of gravity
t = 0.6 # time
y = v0*t - 0.5*g*t**2 # vertical position
print(y)

Note:
Everything after # on a line is a comment and ignored by
Python
Comments are used to explain what the computer instructions
mean, what variables mean, how the programmer reasoned
when she wrote the program, etc.
Bad comments say no more than the code:
a = 5 # set a to 5

A program consists of statements

a = 1 # 1st statement (assignment statement)
b = 2 # 2nd statement (assignment statement)
c = a + b # 3rd statement (assignment statement)
print(c) # 4th statement (print statement)

Normal rule: one statement per line, but multiple statements per
line is possible with a semicolon in between the statements:
a = 1; b = 2; c = a + b; print(c)

Assignment statements evaluate right-hand side and assign
the result to the variable on the left-hand side

myvar = 10
myvar = 3*myvar # = 30

Syntax is the exact specification of instructions to the
computer

Programs must have correct syntax, i.e., correct use of the
computer language grammar rules, and no misprints!

This is a program with two syntax errors:
myvar = 5.2
prinnt(Myvar)

prinnt(Myvar)

NameError: name 'prinnt' is not defined

Only the first encountered error is reported and the program is
stopped (correct the error and continue with next error)

Programming demands significantly higher standard of
accuracy. Things don’t simply have to make sense to
another human being, they must make sense to a
computer. Donald Knuth, computer scientist, 1938-

Syntax is the exact specification of instructions to the
computer

Programs must have correct syntax, i.e., correct use of the
computer language grammar rules, and no misprints!

This is a program with two syntax errors:
myvar = 5.2
prinnt(Myvar)

prinnt(Myvar)

NameError: name 'prinnt' is not defined

Only the first encountered error is reported and the program is
stopped (correct the error and continue with next error)

Programming demands significantly higher standard of
accuracy. Things don’t simply have to make sense to
another human being, they must make sense to a
computer. Donald Knuth, computer scientist, 1938-

Blanks (whitespace) can be used to nicely format the
program text

Blanks may or may not be important in Python programs. These
statements are equivalent (blanks do not matter):
v0=3
v0 = 3
v0= 3
v0 = 3

Here blanks do matter:
counter = 1
while counter <= 4:

counter = counter + 1 # correct (4 leading blanks)

while counter <= 4:
counter = counter + 1 # invalid syntax

(more about this in Ch. 2)

A program takes some known input data and computes
some output data

v0 = 3; g = 9.81; t = 0.6
position = v0*t - 0.5*g*t*t
velocity = v0 - g*t
print('position:', position, 'velocity:', velocity)

Input: v0, g, and t

Output: position and velocity

Evaluating a formula for temperature conversion

Given C as a temperature in Celsius degrees, compute the
corresponding Fahrenheit degrees F :

F =
9
5
C + 32

Program:
C = 21
F = (9/5)*C + 32
print(F)

Execution:
Terminal> python c2f_v1.py
69.80000000000001

WARNING: Python 2 gives a different answer!

Terminal> python2 c2f_v1.py
53

Many programming languages give the same error; Java, C, C++,
...

The error is caused by (unintended) integer division

9/5 is not 1.8 but 1 in most computer languages (!)
If a and b are integers, a/b implies integer division: the largest
integer c such that cb ≤ a

Examples: 1/5 = 0, 2/5 = 0, 7/5 = 1, 12/5 = 2
In mathematics, 9/5 is a real number (1.8) - this is called float
division in Python and is the division we want
One of the operands (a or b) in a/b must be a real number
("float") to get float division
A float in Python has a dot (or decimals): 9.0 or 9. is float
No dot implies integer: 9 is an integer
9.0/5 yields 1.8, 9/5. yields 1.8, 9/5 yields 1

Corrected version (works in Python 2 and 3):
C = 21
F = (9.0/5)*C + 32

Variables refer to objects. Objects have types.

Variables refer to objects:
a = 5 # a refers to an integer (int) object
b = 9 # b refers to an integer (int) object
c = 9.0 # c refers to a real number (float) object
d = b/a # d refers to an int/int => int object
e = c/a # e refers to float/int => float object

We can convert between object types:
a = 3 # a is int
b = float(a) # b is float 3.0
c = 3.9 # c is float
d = int(c) # d is int 3
d = round(c) # d is float 4.0
d = int(round(c)) # d is int 4
d = str(c) # d is str '3.9'
e = '-4.2' # e is str
f = float(e) # f is float -4.2

Arithmetic expressions are evaluated as you have learned in
mathematics

Example: 5
9 + 2a4/2, in Python written as 5/9 + 2*a**4/2

Same rules as in mathematics: proceed term by term
(additions/subtractions) from the left, compute powers first,
then multiplication and division, in each term
r1 = 5/9 (=0)
r2 = a**4

r3 = 2*r2

r4 = r3/2

r5 = r1 + r4

Use parenthesis to override these default rules - or use
parenthesis to explicitly tell how the rules work:
(5/9) + (2*(a**4))/2

Standard mathematical functions are found in the math
module

What if we need to compute sin x , cos x , ln x , etc. in a
program?
Such functions are available in Python’s math module
In general: lots of useful functionality in Python is available in
modules - but modules must be imported in our programs

Compute
√
2 using the sqrt function in the math module:

import math
r = math.sqrt(2)
or
from math import sqrt
r = sqrt(2)
or
from math import * # import everything in math
r = sqrt(2)

Another example on computing with functions from math

Evaluate

Q = sin x cos x + 4 ln x

for x = 1.2.
from math import sin, cos, log
x = 1.2
Q = sin(x)*cos(x) + 4*log(x) # log is ln (base e)
print(Q)

The printf syntax gives great flexibility in formatting text
with numbers

Output from calculations often contain text and numbers, e.g.,
At t=0.6 s, y is 1.23 m.

We want to control the formatting of numbers: no of decimals,
style: 0.6 vs 6E-01 or 6.0e-01. So-called printf formatting is
useful for this purpose:
t = 0.6; y = 1.2342
print('At t=%g s, y is %.2f m.' % (t, y))

The printf format has “slots” where the variables listed at the end
are put: %g ← t, %.2f ← y

Examples on different printf formats

%g most compact formatting of a real number
%f decimal notation (-34.674)
%10.3f decimal notation, 3 decimals, field width 10
%.3f decimal notation, 3 decimals, minimum width
%e or %E scientific notation (1.42e-02 or 1.42E-02)
%9.2e scientific notation, 2 decimals, field width 9
%d integer
%5d integer in a field of width 5 characters
%s string (text)
%-20s string, field width 20, left-adjusted

(See the the book for more explanation and overview)

Using printf formatting in our program

Triple-quoted strings (""") can be used for multi-line output, and
here we combine such a string with printf formatting:
v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2

print("""
At t=%f s, a ball with
initial velocity v0=%.3E m/s
is located at the height %.2f m.
""" % (t, v0, y))

Running the program:
Terminal> python ball_print2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

Summary of Chapter 1 (part 1)

Programs must be accurate!
Variables are names for objects
We have met different object types: int, float, str
Choose variable names close to the mathematical symbols in
the problem being solved
Arithmetic operations in Python: term by term (+/-) from left
to right, power before * and / - as in mathematics; use
parenthesis when there is any doubt
(If you use Python 2: Watch out for unintended integer
division!)

Summary of Chapter 1 (part 2)

Mathematical functions like sin x and ln x must be imported from
the math module:
from math import sin, log
x = 5
r = sin(3*log(10*x))

Use printf syntax for full control of output of text and numbers!
Important terms: object, variable, algorithm, statement,
assignment, implementation, verification, debugging

Summarizing example: throwing a ball (problem)

We throw a ball with velocity v0, at an angle θ with the horizontal,
from the point (x = 0, y = y0). The trajectory of the ball is a
parabola (we neglect air resistance):

y = x tan θ − 1
2v0

gx2

cos2 θ
+ y0

Program tasks:
initialize input data (v0, g , θ, y0)
import from math
compute y

We give x , y and y0 in m, g = 9.81m/s2, v0 in km/h and θ in
degrees - this requires conversion of v0 to m/s and θ to radians

Summarizing example: throwing a ball (solution)

Program:
g = 9.81 # m/s**2
v0 = 15 # km/h
theta = 60 # degrees
x = 0.5 # m
y0 = 1 # m

print """v0 = %.1f km/h
theta = %d degrees
y0 = %.1f m
x = %.1f m""" % (v0, theta, y0, x)

convert v0 to m/s and theta to radians:
v0 = v0/3.6
from math import pi, tan, cos
theta = theta*pi/180

y = x*tan(theta) - 1/(2*v0)*g*x**2/((cos(theta))**2) + y0

print('y = %.1f m' % y)

