
Summary of chapters 1-5 (part 1)

Ole Christian Lingjærde, Dept of Informatics, UiO

4 October 2017

Today’s agenda

Exercise A.4
Lists versus arrays: which should I use?
Vectorization: when does it work?
Plotting: simple recipes

Exercise A.4

Compute the development of a loan

Solve (A.16)-(A.17) in a Python function:

yn = p
12·100xn−1 +

L
N

xn = xn−1 +
p

12·100xn−1 − yn

Questions (should always be asked in such problems):

In what order should we update the equations?
What initial conditions are required?
What range of n-values should we compute the equations for?

Filename: loan.

In what order should we update the equations?

yn = p
12·100xn−1 +

L
N

xn = xn−1 +
p

12·100xn−1 − yn

The order is not always important. But here it is, since one
equation requires the output from the other.

We should assume that we already know xn−1, xn−2, . . . and
also yn−1, yn−2, . . . (from previous updates).
We can then calculate yn (need only xn−1)
We can then calculate xn (need both xn−1 and yn)

What initial conditions are required?

yn = p
12·100xn−1 +

L
N

xn = xn−1 +
p

12·100xn−1 − yn

We can often (and here) assume that the sequences xn and yn start
at n = 0. This means we should give values to x0 and y0 before we
start computing the equations for n = 1, 2,

Closer inspection reveals that x0 and not y0 is used to
compute the equations for n = 1.
To choose initial values x0 and y0, recall that x0 is the initial
size L of the loan and y0 is the amount paid back during the
first month (which is usually 0)

Range of n-values to use

yn = p
12·100xn−1 +

L
N

xn = xn−1 +
p

12·100xn−1 − yn

We should start calculating equations for n = 1.
We thus need a loop over n = 1, 2, . . . ,N for some fixed
number N.
The choice of N can be left to the user of the method.

Lists and arrays

Lists and arrays can both be used to store a vector of values. Key
differences:

Lists
Very flexible data structures (can add or delete elements, can
contain different data types, etc), but you have to do all
mathematical operations on them one element at a time.

Arrays

Less flexible (can not add or delete elements, contains only one
data type at a time) but you have a whole battery of mathematical
operations (numpy) that can be applied on whole arrays, which
makes programming easier and faster, and program execution
faster.

So what should I use?

Arrays are useful for handling numerical vectors (or matrices)
and are required for vectorized array computations and access
to the vast library of functions in the numpy package.
Lists are always an option unless you need the functionality
above (or are asked to use arrays).
Remember: you can always switch from array to list
(l = list(a)) and from list to array (a = np.array(l)).
Not very efficient for very long lists/arrays (often important in
real applications).

Comparing lists and arrays

List Array
x = [1,2,3,4] x = np.array([1,2,3,4])
x = [0]*n x = np.zeros(n)
x = [1]*n x = np.ones(n)
x = range(n) x = np.arange(n)
xnew = x xnew = x
xnew = x[:] xnew = x.copy()
xnew = x+x xnew = np.append(x,x)
h = float(b-a)/(n-1)
x = [a+i*h for i in range(n)] x = np.linspace(a,b,n)
for elem in x: for elem in x:

print(elem) print(elem)
xnew = [0]*len(x)
for i in range(len(x)):

xnew[i] = math.sin(x[i]) xnew = np.sin(x)
xnew = [0]*len(x)
for i in range(len(x)):

xnew[i] = x[i] + 2*x[i]**2 xnew = x + 2*x**2

Challenge

There are often many ways of doing things in Python:
Python 2 or Python 3? (small differences in syntax)
Lists or numpy-arrays? (large differences in syntax)
Plot with matplotlib or scitools?
Write np.linspace(..) and plt.plot(..) or just
linspace(..) and plot(..)?
Use from numpy import * etc?
Initiate lists with a = [0]*n or use a.append(..)?

Advice
Be consistent, it saves you time (less choices to make).
Lists are more versatile than arrays and can very often be used.
But you have to know numpy-arrays as well.
Don’t automatically include from numpy import *, etc.

How to refer to numpy-functions

Avoid mixing explicit and implicit package references in a program
(e.g. np.linspace(..) and linspace(..)). When using the
numpy package, it is recommended to follow this practice:

General rule: Use import numpy as np and refer to numpy
functions as np.linspace(..), np.zeros(..), etc.
Exception: For mathematical functions (sin, cos, log, ...) you
may use from numpy import sin, cos and refer to as
sin(..), cos(..), etc.

For more details, see the text book (5th ed.), page 235 and 243.

Vectorization

A key feature of the numpy package is that it allows vectorized
computations. For example, the following (non-vectorized) code:

def f_list(N):
import math
x = [0]*N; y = [0]*N; z = [0]*N
for i in range(N):

x[i] = 1 + i**2
for i in range(N):

y[i] = 1 + i * x[i] - math.tanh(x[i])
for i in range(N):

z[i] = abs(y[i])
return z

becomes the following vectorized code:

def f_array(N):
import numpy as np
x = 1 + np.arange(N)**2
y = 1 + np.arange(N) * x - np.tanh(x)
z = np.abs(y)
return z

How much faster is the vectorized code?

Comparing CPU time
import time
N = 10**7

t0 = time.clock()
f_list(N)
t1 = time.clock() - t0
print('Nonvectorized: %4.2f seconds' % t1)

t0 = time.clock()
f_array(N)
t1 = time.clock() - t0
print('Vectorized: %4.2f seconds' % t1)

Terminal> python compare_time.py
Nonvectorized: 6.67 seconds
Vectorized: 0.29 seconds

In this example, the vectorized method is 23 times faster!

Vectorization is not always possible

Many array computations can in principle be performed in parallel
on all elements in the array; such computations are well suited for
vectorization. Other array computations have to be performed in
sequence (example: x[1] requires x[0], x[2] requires x[1], etc). Such
computations are usually less suitable for vectorization.

Vectorization is not always possible

Most examples in Appendix A (Difference Equations) are not
well suited for vectorization.
The reason is that difference equations express xn in terms of
one or more of the terms xn−1, xn−2, Thus we need a loop
to calculate x1, x2, . . . one by one.
The choice between list and array is then a matter of taste and
what other computations we want to do in the program.

Example: generating all rational numbers

It is easy to print all positive rational numbers (up until a certain
size) using a double for-loop:

for i in range(1,n):
for j in range(1,n):

print('%d / %d' % (i,j))

However, the same number will occur many times, since
1/2 = 2/4 etc.
Question: is there a way to avoid this?

Example (cont’d)

A more elegant solution to the above problem involves the Stern
sequence defined by the following difference equations:

x2n = xn
x2n+1 = xn + xn+1

and with x0 = 0 and x1 = 1.
Amazingly, the sequence yn = xn/xn+1 contains every positive
rational number exactly once. So if we solve the difference
equations the unique rationals are just

x1/x2, x2/x3, x3/x4, . . .

Example (cont’d)

Below is Python code to print the first rational numbers generated
from the Stern sequence introduced on the previous slide:

def stern(N):
x = [0]*(2*N)
x[0] = 0; x[1] = 1
for n in range(1,N):

x[2*n] = x[n]
x[2*n+1] = x[n] + x[n+1]

return x

def printRationals(N):
x = stern(N)
for n in range(2*N-1):

print('%d / %d' % (x[n], x[n+1]))

We test the method
import sys
printRationals(eval(sys.argv[1]))

Testing the method

Terminal> python stern.py 10
0 / 1
1 / 1
1 / 2
2 / 1
1 / 3
3 / 2
2 / 3
3 / 1
1 / 4
4 / 3
3 / 5
5 / 2
2 / 5
5 / 3
3 / 4
4 / 1
1 / 5
5 / 4
4 / 7

Curve plotting

The book mentions various options for plotting curves,
including matplotlib.pyplot, scitools.std, EasyViz,
Mayavi. Only the first one in required for this course.
The recommended way to use plot functions is to
import matplotlib.pyplot as plt and then use
plt.plot(..) etc to use plot functions (see p. 243 in the
book).
When you use plot(x,y) the variables x and y can be either
lists or numpy-arrays.

Plotting a single curve

Suppose x and y are numerical lists or arrays of the same length.

Curve only
import matplotlib.pyplot as plt
plt.plot(x, y) # Create plot
plt.savefig('Figure1.pdf') # Save plot as pdf
plt.show() # Show plot on screen

Curve with decoration
import matplotlib.pyplot as plt
plt.plot(x, y, 'r-') # Red line (use 'ro' for red circle)
plt.xlabel('x') # Label on x-axis
plt.ylabel('y') # Label on y-axis
plt.title('My plot') # Title on top of plot
plt.axis([0,5,0,1]) # Range on x-axis [0,5] and y-axis [0,1]
plt.show()

Example 1

The tangent function
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-3.14, 3.14, 100)
y = np.tan(x)
plt.plot(x, y, 'r-') # Red line (use 'ro' for red circle)
plt.xlabel('x') # Label on x-axis
plt.ylabel('tan(x)') # Label on y-axis
plt.title('The tangent function')
plt.show()

Result

Example 2

The sequence 0.25, sin(0.25), sin(sin(0.25)),...
import matplotlib.pyplot as plt
import math
N = 5000
y = [0]*N
y[0] = 0.25
for i in range(1,N):

y[i] = math.sin(y[i-1])
plt.plot(range(N), y, 'b-') # Blue line
plt.xlabel('n') # Label on x-axis
plt.ylabel('x(n)') # Label on y-axis
plt.title('The sequence x(n) = sin(x(n-1)), x(0)=0.25')
plt.show()

Result

Example 3

The Stern sequence rational numbers
def stern(N):

x = [0]*(2*N)
x[0] = 0; x[1] = 1
for n in range(1,N):

x[2*n] = x[n]
x[2*n+1] = x[n] + x[n+1]

return x

import matplotlib.pyplot as plt
N = 100
x = stern(N)
y = [float(x[n])/x[n+1] for n in range(2*N-1)]
plt.plot(range(2*N-1), y, 'r.')
plt.title('Rational numbers from Stern sequence')
plt.show()

Result

Plotting curves on top of each other

Suppose x1 and y1 are numerical lists or arrays of the same length,
and that x2 and y2 are numerical lists or arrays of the same length.

Curves only
import matplotlib.pyplot as plt
plt.plot(x1, y1, 'r-')
plt.plot(x2, y2, 'b-')
plt.show()

Curves with decoration
import matplotlib.pyplot as plt
plt.plot(x1, y1, 'r-')
plt.plot(x2, y2, 'b-')
plt.legend(['y1', 'y2'])
plt.xlabel('x')
plt.ylabel('y')
plt.title('My multiplot')
plt.axis([0,7,0,7])
plt.show()

Example 1: Polynomials

import matplotlib.pyplot as plt
import numpy as np

def p(t,k):
return t**(k+1)

col = ['r-', 'b-', 'm-', 'k-', 'g-']

t = np.linspace(-1, 1, 100)
for k in range(5):

plt.plot(t, p(t,k), col[k])

plt.xlabel('t')
plt.ylabel('p(t)')
plt.legend(['t', 't^2', 't^3', 't^4', 't^5'])
plt.title('Polynomials')
plt.show()

Result

Example 2: Julia set

import matplotlib.pyplot as plt
import numpy as np
n = 150
x = np.linspace(-2, 2, n); z = [0, 0]
for i in range(n):

for j in range(n):
z[0] = x[i]; z[1] = x[j]; k = 0
while abs(z[0])+abs(z[1]) < 100 and k < 100:

z = [z[0]**2-z[1]**2-0.75, 2*z[0]*z[1]]
k = k+1

if k < 100:
plt.plot(i, j, 'b.')

plt.show()

Result

Multipanel plots

Suppose x1 and y1 are numerical lists or arrays of the same length,
and that x2 and y2 are numerical lists or arrays of the same length.

Curves with titles
import matplotlib.pyplot as plt
plt.subplot(1,2,1)
plt.plot(x1, y1, 'r-')
plt.title('Title for left panel')
plt.subplot(1,2,2)
plt.plot(x2, y2, 'b-')
plt.title('Title for right panel')
plt.show()

Example: Polynomials

import matplotlib.pyplot as plt
import numpy as np

def p(t,k):
return t**k

t = np.linspace(-1, 1, 100)
for k in range(1,5):

plt.subplot(2,2,k)
plt.plot(t, p(t,k), 'r-')
plt.xlabel('t')
plt.ylabel('p(t)')
plt.legend(['t^%d' % k])

plt.show()

Result

