
Summary of chapters 1-5 (part 1)

Ole Christian Lingjærde, Dept of Informatics, UiO

6 October 2017

Today’s agenda

Exercise A.14, 5.14
Quiz

Exercise A.14
Find difference equations for computing sin x

The purpose of this exercise is to derive and implement difference
equations for computing a Taylor polynomial approximation to sin x :

sin x ≈ S(x ; n) =
n∑

j=0

(−1)j x2j+1

(2j + 1)!

To compute S(x ; n) efficiently, write the sum as S(x ; n) =
∑n

j=0 aj ,
and derive a relation between two consecutive terms in the series:

aj = −
x2

(2j + 1)2j
aj−1.

Introduce sj = S(x ; j − 1) and aj as the two sequences to compute.
We have s0 = 0 and a0 = x .

a) Formulate the two difference equations for sj and aj .

Hint: Section A.1.8 explains how this task can be solved for the
Taylor approximation of ex .

Exercise A.14 (cont’d)

b) Implement the system of difference equations in a function
sin_Taylor(x, n) which returns sn+1 and |an+1|. The latter is
the first neglected term in the sum (since sn+1 =

∑n
j=0 aj) and may

act as a rough measure of the size of the error in the Taylor
polynomial approximation.

c) Verify the implementation by computing the difference equations
for n = 2 by hand (or in a separate program) and comparing with
the output from the sin_Taylor function. Automate this
comparison in a test function.

d) Make a table or plot of sn for various x and n values to illustrate
that the accuracy of a Taylor polynomial (around x = 0) improves
as n increases and x decreases.

Hint: sin_Taylor(x, n) can give extremely inaccurate
approximations to sin x if x is not sufficiently small and n
sufficiently large. In a plot you must therefore define the axis
appropriately.

Key idea
Computing series with many terms can be time-consuming. A
common strategy is to see if the nth term can be found faster using
the (n − 1)st term.

Calculating S(x ; n) = a0 + a1 + · · ·+ an

Suppose in the following that x is fixed and let sn+1 = S(x ; n).
1) We can find sn+1 from sn and an:

sn+1 = sn + an

2) We can also find an using an−1 and x :

an−1 = (−1)n−1 x2n−1

(2n − 1)!
and an = (−1)n x2n+1

(2n + 1)!

Thus we have the relation:

an = −an−1 ·
x2

2n(2n + 1)

Answer to exercise A.14 a)

Question
Formulate the two difference equations for sn and an.

Answer
Set s0 = 0 and a0 = x . For n = 1, 2, . . . let

sn = sn−1 + an−1
an = −an−1 · x2/(2n(2n + 1))

Answer to exercise A.14 b)

Question
Implement the system of difference equations in a function
sin_Taylor(x, n) which returns sn+1 and |an+1|.

Answer 1: storing all updates
def sin_Taylor(x,n):

s = [0.0]*(n+2)
a = [0.0]*(n+2); a[0] = x
for i in range(1,n+2):

s[i] = s[i-1] + a[i-1]
a[i] = -a[i-1]*x**2/(2*i*(2*i+1))

return s[n+1], abs(a[n+1])

Answer 2: storing only last update
def sin_Taylor2(x,n):

s = 0
a = x
for i in range(1,n+2):

s = s + a
a = -a*x**2/(2*i*(2*i+1))

return s, abs(a)

Answer to exercise A.14 c)

Question
Verify the implementation by computing the difference equations
for n = 2 and comparing with the output from the sin_Taylor
function. Automate this comparison in a test function.

Answer (part 1)
def sin_two_terms(x):

s = [0]*4
a = [0]*4

a[0] = x

s[1] = s[0] + a[0]
a[1] = -a[0]*x**2 / (2*1*(2*1+1))

s[2] = s[1] + a[1]
a[2] = -a[1]*x**2 / (2*2*(2*2+1))

s[3] = s[2] + a[2]
a[3] = -a[2]*x**2 / (2*3*(2*3+1))

return s[3], abs(a[3])

Answer to exercise A.14 c)

Answer (part 2)
def sin_Taylor(x):

<as before>

def sin_two_terms(x):
<as before>

def test_sin_Taylor():
x = 0.63 # Just an arbitrary x-value for validation
tol = 1e-14 # Tolerance
s_expected, a_expected = sin_two_terms(x)
s_computed, a_computed = sin_Taylor(x,2)
success1 = abs(s_computed - s_expected) < tol
success2 = abs(a_computed - a_expected) < tol
success = success1 and success2
message = 'Output is different from expected!'
assert success, message

Answer to exercise A.14 c)

Answer (part 3)
In [10]: sin_two_terms(0.63)
Out[10]: (0.5891525304525, 7.815437776125003e-06)

In [11]: sin_Taylor(0.63, 2)
Out[11]: (0.5891525304525, 7.815437776125003e-06)

In [12]: test_sin_Taylor()

In [13]:

Answer to exercise A.14 d)

Question
Make a table or plot of sn for various x and n values to illustrate
that the accuracy of a Taylor polynomial (around x = 0) improves
as n increases and x decreases.

Answer (part 1)

We first make a plan:
For a given x and n we can calculate the Taylor approximation
sn+1 with the statement s = sin_Taylor(x,n)[0].
To calculate sn for various x and n, we must decide what
x-values and n-values to use.
We decide here to use a uniform grid of M x-values on [0, 1],
and n = 1, 2, . . . ,N.
We write a method producing an M x N table of all the
calculated s-values.

Answer to exercise A.14 d)

Answer (part 2)
def make_table(M,N):

import numpy as np
x = np.linspace(0, 1, M)
n = np.arange(1,N+1)
S = np.zeros((M,N))
for i in range(M):

for j in range(N):
S[i,j] = sin_Taylor(x[i], n[j])[0]

return S, x, n

Exercise 5.14
Plot data in a two-column file

The file:
https://github.com/hplgit/scipro-primer/blob/master/src/plot/xy.dat

contains two columns of numbers, corresponding to x and y
coordinates on a curve. The start of the file looks as this:
-1.0000 -0.0000
-0.9933 -0.0087
-0.9867 -0.0179
-0.9800 -0.0274
-0.9733 -0.0374

Make a program that reads the first column into a list x and the
second column into a list y. Plot the curve. Print out the mean y
value as well as the maximum and minimum y values.

Hint: Read the file line by line, split each line into words, convert to
float, and append to x and y. The computations with y are simpler
if the list is converted to an array.

Filename: read_2columns.

Answer to exercise 5.14

Read file
infile = open('xy.dat12', 'r')
x = []
y = []
for line in infile:

s = line.split()
x.append(eval(s[0]))
y.append(eval(s[1]))

infile.close()

Plot the points (x[i],y[i])
import matplotlib.pyplot as plt
plt.plot(x, y, 'mo')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

Print mean, min and max of y
import numpy as np
ya = np.array(y)
print('Mean of y: %g' % np.mean(ya))
print('Min of y: %g' % np.min(ya))
print('Max of y: %g' % np.max(ya))

Result

Quiz 1

What is printed out by these programs?

Program A
x = []
for i in range(5):

x.append(i)
print(x)

Program B
x = []
for i in range(5):

x = x + [i]
print(x)

Program C
x = []
for i in range(5):

x = [i] + x
print(x)

Quiz 2

What is printed out by these programs?

Program A
x = [0, 1, 2, 3]
for i in range(len(x)):

x[i] = i * x[i]
print(x)

Program B
x = [0, 1, 2, 3, 4]
for i in range(len(x)-1):

x[i] = x[i+1]**2
print(x)

Program C
x = [0, 1, 2, 3, 4]
for i in range(1,5):

x[i] = x[i-1]**2
print(x)

Quiz 3

What is printed out by these programs?

Program A
x = [2*i for i in range(1,4)]
print(x)

Program B
x = [1, 2, 3, 4, 5, 6, 7]
for i in range(len(x)):

x[i] = x[6-i]
print(x)

Program A
x = range(3)*2
y = [range(3)]*2
z = range(1,1)*2
print(x)
print(y)
print(z)

Quiz 4

What is printed out by these programs?

Program A
x = [[0,1,2],[4,5,6],[8,9,10]]
print(x[1][1])
print(x[-1][1])
print(x[1][-1])
print(x[-1][-1])

Program B
x = [[0,1,2],[4,5,6],[8,9,10]]
x.reverse()
print(x)

Program C
x = [[0,1,2],[1,2,3],[2,3,4]]
y = [[1,2,3,4,5][e[-1]] for e in x]
print(y)

Quiz 5
What is printed out by these programs?

Program A
import numpy as np
x = np.linspace(0, 1, 11)
y = x + x
print(y)

Program B
import numpy as np
x = np.array([1,2,3])
y = np.ones(3)
z = y * x ** x
print(z)

Program C
import numpy as np
x = np.array([1,2,3,4,5])
y = x[0:3]
y += 1
print(x)
print(y)

Summary of file reading

You should remember the following functions:

Essentials for file reading
To open a file:

infile = open('filnavn.txt', 'r')

To read whole file into a string:
s = infile.read()

To read whole file into a list (each element is a line):
a = infile.readlines()

To skip a line:
infile.readline()

To read all remaining lines and split into separate words:
for line in infile:

a = line.split()
a[0], a[1], ... are the words on the line

To close the file:
infile.close()

Quiz 6

Suppose the file ’names.txt’ looks like this:

Kari Ola Katrine Ingrid
Nils Are Jonas Ella
Arne Elin Arvid Kristin

Explain what the following program does:

X = []
infile = open('names.txt', 'r')
for line in infile:

X.append(line.split())
infile.close()

outfile = open('names2.txt', 'w')
for i in range(len(X[0])):

for j in range(len(X)):
outfile.write(X[j][i] + ' ')

outfile.write('\n')
outfile.close()

Quiz 7
From blood one can measure CRP (C-reactive protein) level.
Normal level is CRP < 5, while CRP > 10 is usually a sign of
infection. We have a text file ’CRP.txt’ with two columns (CRP
value and social security number) which starts like this:

CRP ID
4.3 01016663223
1.2 15106364267
13.6 08049886252
7.2 24128763233
3.1 31047920251
46.12 27098360656
... ...

Suppose the file has been read into two lists crp (float) and id
(string). Write code to calculate and print on screen:

The highest measured CRP value
How many CRP values are above 10
The IDs of all patients with CRP values above 10

Answer to Quiz 7

import numpy as np

The highest measured CRP value
acrp = np.array(crp)
max_crp = max(acrp)
print(max_crp)

How many CRPs above 10
high_crp = sum(acrp > 10)
print(high_crp)

IDs of patients with CRP > 10
aid = np.array(id)
high_id = aid[acrp > 10]
print(high_id)

Quiz 8

Write code to plot the points (i, CRP[i]) with red circles, and with
suitable labels on the x-axis and y-axis.

Answer to Quiz 8

import matplotlib.pyplot as plt
t = range(len(crp))
plt.plot(t, crp, 'ro')
plt.xlabel('Measurement no')
plt.ylabel('crp')
plt.show()

Note
You should remember the import statement for plotting and the
most used plot functions, so you can avoid looking up references
every time you need to use them (also, no aids are allowed at the
midterm exam).

Quiz 9

Consider the following program:
import sys
try:

x = eval(sys.argv[1])
except IndexError:

print(.....)
sys.exit(1)

except ValueError:
print(.....)
sys.exit(1)

x = x**2 + 1
print('x = %g' % x)

Fill in the missing parts (.....) with sensible text strings.

Answer to Quiz 9

import sys
try:

x = eval(sys.argv[1])
except IndexError:

print('Missing command line argument')
sys.exit(1)

except ValueError:
print('Command line argument cannot be interpreted')
sys.exit(1)

x = x**2 + 1
print('x = %g' % x)

Quiz 10

What is printed out in these programs?

Program A
n = 5
def f(n):

n = n+5
return n**2

n = f(n)
print(n)

Program B
def f(n):

if n > 1:
return n + f(n-1)

else:
return 1

print(f(4))

Answer to Quiz 10

Program A
In [94]: n = 5

...: def f(n):

...: n = n+5

...: return n**2

...: n = f(n)

...: print(n)

...:
100

Program B
In [95]: def f(n):

...: if n > 1:

...: return n + f(n-1)

...: else:

...: return 1

...: print(f(4))

...:
10

