
Ch.3: Functions and branching

Ole Christian Lingjærde, Dept of Informatics, UiO

September 4-8, 2017 (PART 2)

Today’s agenda

A small quiz
Live-programming of exercises 3.20, 3.23, 3.28
More about functions + branching

Quiz 1

If a = ['A',['B',['B','C']]] then which of the expressions
below are equal to B?

a[0]
a[1][1]
a[2][0]
a[1][-2]
a[-1][0]
a[1][1][0]
a[a.index(’B’)]
a[len(a)-1][len(a)-1][0]

Quiz 2

Creating lists
Create the list a = ['A', 'A',, 'A'] of length 5000
Create the list b = ['A0', 'A1', ..., 'A4999']

Equal or not?
Suppose a = [0, 2, 4, 6, 8, 10]. Which of the expressions
below are equal to True?

a[0] == a[-6]
a[1] == a[-5]
a[1:4] == [2, 4, 6, 8]
a[1:4] == [a[i] for i in range(1,4)]
a is a
a[:] is a

Quiz 3

Suppose the following statements are performed:
a = [0, 1, 2, 3, 4]
b = a
b[0] = 50
print(a[0], b[0])

What is printed out here?

Quiz 4

Suppose the following statements are performed:
a = [0, 1, 2, 3, 4]
b = a[:]
b[0] = 50
print(a[0], b[0])

What is printed out here?

Quiz 5

Suppose we have defined a function
def h(x, y, z=0):

import math
res = x * math.sin(y) + z
return res

Which of these function calls are allowed?
r = h(0)
r = h(0, 1)
r = h(0, 1, 2)
r = h(x=0, 1, 2)
r = h(0, y=1)
r = h(0, 1, z=3)
r = h(0, 0, x=0)
r = h(z=0, x=1)
r = h(z=0, x=1, y=2)

Quiz 6

What is printed out here:
def myfunc(k):

x = k * 2
print('x = %g' % x)

x = 5
print('x = %g' % x)
myfunc(5)
print('x = %g' % x)

Exercise 3.20

Write functions

Three functions hw1, hw2, and hw3 work as follows:

>>> print(hw1())
>>> Hello, World
>>>
>>> hw2()
>>> Hello, World
>>>
>>> print(hw3('Hello, ', 'World'))
>>> Hello, World
>>>
>>> print(hw3('Python ', 'function'))
>>> Python function

Write the three functions.

Filename: hw_func.

Exercise 3.23

Wrap a formula in a function

Implement the formula (1.9) from Exercise 1.12 in a Python
function with three arguments: egg(M, To=20, Ty=70).

t =
M2/3cρ1/3

Kπ2(4π/3)2/3
ln

[
0.76

T0 − Tw

Ty − Tw

]
.

The parameters ρ, K, c, and Tw can be set as local (constant)
variables inside the function. Let t be returned from the function.
Compute t for these conditions:

Soft (Ty < 70) and hard boiled (Ty > 70)
Small (M = 47g) and large (M = 67g) egg
Fridge (T0 = 4C) and hot room (T0 = 25C).

Filename: egg_func.

Exercise 3.28

Find the max and min elements in a list

Given a list a, the max function in Python’s standard library
computes the largest element in a: max(a). Similarly, min(a)
returns the smallest element in a.

Write your own max and min functions.

Hint: Initialize a variable max_elem by the first element in the list,
then visit all the remaining elements (a[1:]), compare each
element to max_elem, and if greater, set max_elem equal to that
element. Use a similar technique to compute the minimum element.

Filename: maxmin_list.

More about functions: an example
Consider a function of t, with parameters A, a, and ω:

f (t;A, a, ω) = Ae−at sin(ωt)

Possible implementation in Python:

from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
return A*exp(-a*t)*sin(omega*t)

Observe that t is a positional argument, while A, a, and ω are
keyword arguments. That gives us large freedom when calling the
function:

v1 = f(0.2) # Only give t
v2 = f(0.2, omega=1) # Change default value of omega
v3 = f(0.2, omega=1, A=2.5) # Change default value of omega and A
v4 = f(A=5, a=0.1, omega=1, t=1.3) # Change all three parameters
v5 = f(0.2, 1, 2.5) # Change default value of A and a

Even functions can be used as arguments in functions

In Python, functions are allowed to take functions as arguments.
Thus we can "pass on" a function to another function.

Example: If we know how to compute f (x) then we can use the
following approximation to find numerically the 2nd derivative of
f (x) in a given point:

f ′′(x) ≈ f (x − h)− 2f (x) + f (x + h)

h2

Python implementation:

def diff2(f, x, h=1E-6):
r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
return r

Here, the first argument to diff2(.) is a function.

A small sidetrack

The function we just defined had one keyword argument h=1E-6. Is
there any good reason to choose h = 0.000001 rather than a
smaller or larger value?

Mathematically, we expect the approximation to improve when
h gets smaller.
However, when we solve problems numerically we also need to
take into account rounding errors.
Some numerical problems are more sensitive to rounding errors
than others, so in practice we may have to do a bit of trial and
error.

The effect of changing the value of h
To study the effect of changing h we write a small program:

def g(t):
return t**(-6)

Compute g''(t) for smaller and smaller values of h:
for k in range(1,14):

h = 10**(-k)
print ('h=%.0e: %.5f' % (h, diff2(g, 1, h)))

Output (g ′′(1) = 42)
h=1e-01: 44.61504
h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
h=1e-05: 41.99999
h=1e-06: 42.00074
h=1e-07: 41.94423
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
h=1e-11: 0.00000
h=1e-12: -666133814.77509
h=1e-13: 66613381477.50939

Rounding errors dominate for small h-values

For h < 10−8 the results are totally wrong!

Problem 1: for small h we subtract numbers of roughly equal
size and this gives rise to rounding error.
Problem 2: for small h the rounding error is divided by a very
small number (h2), which amplifies the error.

Possible solution: use float variables with more digits.

Python has a (slow) float variable (decimal.Decimal) with
arbitrary number of digits
Using 25 digits gives accurate results for h ≤ 10−13

However, higher accuracy is rarely needed in practice.

Functions vs. main program

The main program is the part of the program that is not inside any
functions. In general:

Execution starts with the first statement in the main program
and proceeds line by line, top to bottom.
Functions are only executed when they are called

Note: functions can be called from the main program or from a
function. During program execution, this can sometimes result in
long "chains" of function calls.

Recursive functions

Functions can call other functions. A function can even call
itself! In that case, the function is called recursive.
For this to make sense, there must be some way of stopping
the self-calls (or the program will never stop).

Example (allowed but makes little sense):

def f(x):
print(x)
f(x+1)

What is printed out from the call f(0)?

Recursive functions are an important topic in both mathematics and
computer science. They can sometimes be used to solve problems
very elegantly. This is the topic for more advanced courses.

Anonymous functions (lambda functions)

Sometimes a function just involves the calculation of an expression.
In that case, we can use the lambda construction to define it.

Example: the function

def f(x,y):
return x**2 - y**2

can be defined in just one line with the lambda construction:

f = lambda x, y: x**2 - y**2

Lambda functions can be used directly as arguments:

z = g(lambda x, y: x**2 - y**2, 4)

Can you guess why lambda functions are also called anonymous
functions?

Documenting functions is important

To add a brief description (doc string) to a function, place it right
after the function header and inside triple quotes.

Examples:

def C2F(C):
"""Convert Celsius degrees (C) to Fahrenheit."""
return (9.0/5)*C + 32

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the expression for a
straight line y = a*x + b through two specified points.

x0, y0: the first point (floats).
x1, y1: the second point (floats).
return: a, b (floats) for the line (y=a*x+b).
"""
a = (y1 - y0)/(x1 - x0)
b = y0 - a*x0
return a, b

If-tests

An if-test allows the program to take different actions depending on
what the current state of the program is. An if-test thus branches
(splits) the flow of actions.

Example: consider the function

f (x) =

{
sin x , 0 ≤ x ≤ π
0, otherwise

A Python implementation of f needs to test on the value of x and
branch into two computations:

from math import sin, pi

def f(x):
if 0 <= x <= pi:

return sin(x)
else:

return 0

General form of an if-test

Type 1 (if)
if condition:

<block of statements, executed when condition==True>

Type 2 (if-else)
if condition:

<block of statements, executed when condition==True>
else:

<block of statements, executed when condition==False>

Type 3 (if-elif-else)
if condition1:

<block of statements>
elif condition2:

<block of statements>
elif condition3:

<block of statements>
else:

<block of statements>

Example 1

A piecewise defined function

N(x) =


0, x < 0
x , 0 ≤ x < 1
2− x , 1 ≤ x < 2
0, x ≥ 2

Python implementation with if-elif-else:

def N(x):
if x < 0:

return 0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0

Example 2

The following function counts how many times s occurs in a:

def count(s, a):
cnt = 0
for e in a:

if e == s:
cnt += 1

return cnt

Example of use:

>>> count(5.3, [2.2, 6.6, 2.5, 5.3, 8.9, 5.3])
>>> 2
>>>
>>> count('Anna', ['Ola', 'Karianne', 'Anna', 'Jens'])
>>> 1
>>>
>>> count([1,2], [1, 5, [1,2], [1,2], 3])
>>> 2

Inline if-tests

Common construction:
if condition:

variable = value1
else:

variable = value2

More compact syntax with one-line if-else:
variable = (value1 if condition else value2)

Example:
def f(x):

return (sin(x) if 0 <= x <= 2*pi else 0)

A very special form of if-test: assert

Sometimes in a program you want to stop program execution and
give an error message if a condition is not true. For this purpose,
we can can use the assert statement. General form:

assert condition, message

Example:

>>> x = 5
>>> assert x > 0, "x should be positive" # Nothing happens
>>> x = -5
>>> assert x > 0, "x should be positive" # Generates error message
Traceback (most recent call last):

File "<ipython-input-30-c680011d20e2>", line 1, in <module>
assert x > 0, "x should be positive"

AssertionError: x should be positive

Writing test functions

Suppose we have written a new function with some return values.
To convince ourselves it works properly, we should try it for some
input values and see if the result matches what we expect.

Note: the strategy above only works if we actually know what the
answer should be. Often we know this for some input values.

Test strategy
Write the new function.
Write a test function that calls the new function with input
values chosen so we know what the output should be.
If the output from the new function differs from the expected
output, we stop execution and print an error message.

Example

def sum3(a): # Find sum of every 3rd element in a
res = sum([a[i] for i in range(0,len(a),3)])
return res

def test_sum3(): # Associated test function
"""Call sum3(a) to check that it works."""
a = [0,1,2,3,4,5] # Some chosen input value
expected = 3 # What the output should be
computed = sum3(a)
success = (computed == expected) # Did the test pass?
message = 'computed %s, expected %s' % (computed, expected)
assert success, message

Test functions with many tests

def sum3(a): # Find sum of every 3rd element in a
res = sum([a[i] for i in range(0,len(a),3)])
return res

def test_sum3(): # Associated test function
"""Call sum3(a) to check that it works."""
tol = 1E-14
inputs = [[6], [6,1], [6,1,2], [6,1,2,3]]
answers = [6, 6, 6, 9]
for a, expected in zip(inputs, answers):

computed = sum3(a)
message = '%s != %s' % (computed, expected)
assert abs(expected - computed) < tol, message

Recall that zip(a, b) creates pairs [a[i],b[i]]:
>>> zip(inputs, answers)
>>> [([6], 6), ([6, 1], 6), ([6, 1, 2], 6), ([6, 1, 2, 3], 9)]

More about test functions

A test function will run silently if all tests pass. If one test above
fails, assert will raise an AssertionError.

Rules for test functions:
name begins with test_

no arguments
must have an assert success statement, where success is
True if the test passed and False otherwise
(assert success, msg prints msg on failure)

The optional msg parameter writes a message if the test fails.

Why write test functions according to these rules?

Easy to recognize where functions are verified
Test frameworks, like nose and pytest, can automatically run
all your test functions (in a folder tree) and report if any bugs
have sneaked in
This is a very well established standard

Terminal> py.test -s .
Terminal> nosetests -s .

We recommend py.test - it has superior output.

Unit tests
A test function as test_double() is often referred to as a unit
test since it tests a small unit (function) of a program. When all
unit tests work, the whole program is supposed to work.

Comments on test functions

Many find test functions to be a difficult topic
The idea is simple: make problem where you know the answer,
call the function, compare with the known answer
Just write some test functions and it will be easy
The fact that a successful test function runs silently is
annoying - can (during development) be convenient to insert
some print statements so you realize that the statements are
run

Summary of if-tests and functions

If tests:
if x < 0:

value = -1
elif x >= 0 and x <= 1:

value = x
else:

value = 1

User-defined functions:
def quadratic_polynomial(x, a, b, c):

value = a*x*x + b*x + c
derivative = 2*a*x + b
return value, derivative

function call:
x = 1
p, dp = quadratic_polynomial(x, 2, 0.5, 1)
p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

Positional arguments must appear before keyword arguments:
def f(x, A=1, a=1, w=pi):

return A*exp(-a*x)*sin(w*x)

A summarizing example for Chapter 3; problem

An integral ∫ b

a
f (x)dx

can be approximated by Simpson’s rule:

∫ b

a
f (x)dx ≈ b − a

3n

(
f (a) + f (b) + 4

n/2∑
i=1

f (a+ (2i − 1)h)

+ 2
n/2−1∑
i=1

f (a+ 2ih)
)

where n is an even integer.
Problem: make a function Simpson(f, a, b, n=500) for
computing an integral of f(x) by Simpson’s rule.

The program: function for computing the formula

def Simpson(f, a, b, n=500):
"""
Return the approximation of the integral of f
from a to b using Simpson's rule with n intervals.
"""

h = (b - a)/float(n)

sum1 = 0
for i in range(1, n/2 + 1):

sum1 += f(a + (2*i-1)*h)

sum2 = 0
for i in range(1, n/2):

sum2 += f(a + 2*i*h)

integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
return integral

The program: function, now with test for possible errors

def Simpson(f, a, b, n=500):

if a > b:
print('Error: a=%g > b=%g' % (a, b))
return None

Check that n is even
if n % 2 != 0:

print ('Error: n=%d is not an even integer!' % n)
n = n+1 # make n even

as before...
...
return integral

The program: application (and main program)

def h(x):
return (3./2)*sin(x)**3

from math import sin, pi

def application():
print ('Integral of 1.5*sin^3 from 0 to pi:')
for n in 2, 6, 12, 100, 500:

approx = Simpson(h, 0, pi, n)
print ('n=%3d, approx=%18.15f, error=%9.2E' % \

(n, approx, 2-approx))

application()

The program: verification (with test function)

Property of Simpson’s rule: 2nd degree polynomials are integrated
exactly!
def test_Simpson(): # rule: no arguments

"""Check that quadratic functions are integrated exactly."""
a = 1.5
b = 2.0
n = 8
g = lambda x: 3*x**2 - 7*x + 2.5 # test integrand
G = lambda x: x**3 - 3.5*x**2 + 2.5*x # integral of g
exact = G(b) - G(a)
approx = Simpson(g, a, b, n)
success = abs(exact - approx) < 1E-14 # tolerance for floats
msg = 'exact=%g, approx=%g' % (exact, approx)
assert success, msg

Can either call test_Simpson() or run nose or pytest:
Terminal> nosetests -s Simpson.py
Terminal> py.test -s Simpson.py
...
Ran 1 test in 0.005s

OK

