
Dictionaries and strings (part 1)

Ole Christian Lingjærde, Dept of Informatics, UiO

18 October 2017

Today’s agenda

Exercise 5.16 and 5.18
Dictionaries - a tool for storing value pairs
Reading files into dictionaries

Exercise 5.16

Plot data from a file

The files density_water.dat and density_air.dat files in
the folder src/plot13 contain data about the density of
water and air (respectively) for different temperatures. The
data files have some comment lines starting with # and some
lines are blank. The rest of the lines contain density data: the
temperature in the first column and the corresponding density
in the second column.
The goal of this exercise is to read the data in such a file and
plot the density versus the temperature as distinct (small)
circles for each data point. Let the program take the name of
the data file as command-line argument. Apply the program to
both files.

Filename: read_density_data

Planning the work

We obtain density_water.dat and density_air.dat from
the site https://github.com/hplgit/scipro-primer/ and
save them in a local directory where we also put the program
file to be made.
In the program we obtain the file name using sys.argv[1].
We read each file one line at a time and then split into words
to obtain the two numbers on each line using split().
For every line we read, we first check if it is a comment/blank
line and in that case we do nothing (except continue reading).
We plot using the package matplotlib.pyplot.

Implementation

Exercise 5.16

import sys
import matplotlib.pyplot as plt

fname = sys.argv[1]
temp = []; dens = []
infile = open(fname, 'r')
for line in infile:

words = line.split();
if len(words) >= 2 and words[0] != '#':

temp.append(float(words[0]))
dens.append(float(words[1]))

infile.close()
plt.plot(temp, dens, 'bo')
plt.show()

Exercise 5.18

Fit a polynomial to data points

The purpose of this exercise is to find a simple mathematical
formula for how the density of water or air depends on the
temperature.

The idea is to load density and temperature data from file as
explained in Exercise 5.16 and then apply some NumPy utilities
that can find a polynomial that approximates the density as a
function of the temperature.

Exercise 5.18 (cont’d)

NumPy has a function polyfit(x, y, deg) for finding a best fit
of a polynomial of degree deg to a set of data points given by the
array arguments x and y. The polyfit function returns a list of the
coefficients in the fitted polynomial, where the first element is the
coefficient for the term with the highest degree, and the last
element corresponds to the constant term.

For example, given points in x and y, polyfit(x, y, 1) returns
the coefficients a, b in a polynomial a ∗ x + b that fits the data in
the best way.

Exercise 5.18 (cont’d)

NumPy also has a utility poly1d, which can take the tuple or list of
coefficients calculated by, e.g., polyfit and return the polynomial
as a Python function that can be evaluated. The following code
snippet demonstrates the use of polyfit and poly1d:

coeff = polyfit(x, y, deg)
p = poly1d(coeff)
print(p) # Prints the polynomial expression
y_fitted = p(x) # Computes the polynomial at the x points

Use red circles for data points and a blue line for the polyn.
plot(x, y, ’ro’, x, y_fitted, ’b-’,
legend=(’data’, ’fitted polynomial of degree %d’ % deg))

Exercise 5.18 (cont’d)

Questions:

Write a function fit(x, y, deg) that creates a plot of data
in x and y arrays along with polynomial approximations of
degrees collected in the list deg as explained above.
We want to call fit to make a plot of the density of water
versus temperature and another plot of the density of air
versus temperature. In both calls, use deg=[1,2] such that we
can compare linear and quadratic approximations to the data.
From a visual inspection of the plots, can you suggest simple
mathematical formulas that relate the density of air to
temperature and the density of water to temperature?

Filename: fit_density_data.

Answer to 5.18 a)

def fit(x, y, deg):
import matplotlib.pyplot as plt
import numpy as np
plt.plot(x, y, 'bo')
x1 = np.linspace(np.min(x), np.max(x), 100)
for d in deg:

coef = np.polyfit(x, y, d) # Polynomial coefficients
p = np.poly1d(coef) # Polynomial function
y1 = p(x1) # Polynomial value at x1 points
plt.plot(x1, y1, 'r-')

plt.show()

Answer to 5.18 b)
import matplotlib.pyplot as plt
import numpy as np

def fit(x, y, deg):
plt.plot(x, y, 'bo')
x1 = np.linspace(np.min(x), np.max(x), 100)
for d in deg:

coef = np.polyfit(x, y, d) # Polynomial coefficients
p = np.poly1d(coef) # Polynomial function
y1 = p(x1) # Polynomial value at x1 points
plt.plot(x1, y1, 'r-')

fnames = ['density_air.dat', 'density_water.dat']

for i in range(len(fnames)):
plt.subplot(1,2,i+1)
temp = []; dens = []
infile = open(fnames[i], 'r')
for line in infile:

words = line.split();
if len(words) >= 2 and words[0] != '#':

temp.append(float(words[0]))
dens.append(float(words[1]))

infile.close()
fit(temp, dens, deg=[1,2])
plt.title(fnames[i])

plt.show()

Result

Answer to 5.18 c)

Conclusion
In one plot the linear and quadratic fits are almost identical,
and both fit the data well.
In the other plot the linear and quadratic fits are quite
different, and the quadratic fit follows the data very well.
We conclude that in both cases, the data are consistent with a
quadratic relationship between x = temperature and y =
density.

Implementing mappings in Python

A mathematical function (or "mapping") f is a rule that assigns a
unique value f (x) to a given x . We can implement this in Python
with functions or with dictionaries.

Task: A mathematical function f has the rules f (5) = 10 and
f (11) = 15. Implement this mapping in Python.

Using functions
def f(x):

if x == 5:
return 10

elif x==11:
return 15

print(f(5)) # Result: prints out 10

Using dictionaries
d = {5: 10, 11: 15}
print(d[5]) # Result: prints out 10

Another example

Task: Implement a mapping with the rules:

'Norway' --> 'Oslo'
'Sweden' --> 'Stockholm'
'France' --> 'Paris'

Using functions
def f(x):

if x == 'Norway':
return 'Oslo'

elif x == 'Sweden':
return 'Stockholm'

elif x == 'France':
return 'Paris'

Using dictionaries
d = {'Norway': 'Oslo', 'Sweden': 'Stockholm', 'France': 'Paris'}

Extending an existing mapping

Task: Extend the previous mapping with an additional pair:

'Norway' --> 'Oslo'
'Sweden' --> 'Stockholm'
'France' --> 'Paris'
'Nepal' --> 'Kathmandu'

Using functions
We basically have to write the function all over again, this time
with the four pairs above.

Using dictionaries
We can easily extend the previous dictionary:
d['Nepal'] = 'Kathmandu'

Lists vs. dictionaries

Lists
We can think of a list in Python as a collection of pairs:

a = [6, 3, 7] # The pairs (0,6), (1,3), (2,7)
print(a[2]) # Access the value with index 2

The index is implicit when we define the list, but it can used later
to access values in the list.

Dictionaries
A dictionary is also a collection of pairs:

d = {0:6, 1:3, 2:7} # The pairs (0,6), (1,3), (2,7)
print(d[2]) # Access the value with index 2

The index (=key) is explicitly given when we define the dictionary,
and can also be used later to access values in the dictionary.

Dictionaries give index freedom

For a list, indexes are always 0, 1,, N-1 (where N is the
length of the list). For a dictionary, indexes (= keys) can be
whatever we like.

Examples:

The pairs (-2,6), (6,3), (3,7)
d = {-2:6, 6:3, 3:7}

The pairs ('Hamar','Norway'), ('Uppsala','Sweden')
d = {'Hamar':'Norway', 'Uppsala':'Sweden'}

The pairs ('pi', 3.14), ('e', 2.718), ('g', 9.81)
d = {'pi':3.14, 'e':2.718, 'g':9.81}

The pairs ((0,0), 'lowerleft') and ((1,1), 'upperright')
d = {(0,0):'lowerleft', (1,1):'upperright'}

There are some restrictions on keys: They should be unique and of
an immutable data type (int, float, complex, string, tuple, ...).

Any immutable object can be used as key

Some data objects in Python can be modified after creation - such
objects are called mutable. Other data objects are not modifiable -
these are called immutable. Examples:

A list object can be modified. For example, we can replace the
ith value by a new value (a[i] = new_value) without
creating an entirely new list.
A tuple object can not be modified. Attempting to change the
ith value by a new value results in an error message. If we
need to make changes, we have to create a whole new tuple
from scratch.

Keys in dictionaries can be any immutable object. Examples:

d = {1: 34, 2: 67, 3: 0} # Key is int
d = {1:6424, 'X':64345} # Key is int or string
d = {(0,0): 4, (1,-1): 5} # Key is a tuple
d = {[0,0]: 4, [-1,1]: 5} # WRONG: key cannot be a list

A dictionary is an unordered collection of key-value pairs

Keys and values
We have seen that a dictionary is a collection of pairs (a,b). The
first element in each pair is called a key and the second element a
value. In the dictionary d = {'Oslo': 3}, ’Oslo’ is a key and 3
the corresponding value. Note that the keys must be unique,
i.e. two pairs can not have the same key.

Dictionaries are unordered
A dictionary does not store pairs in a particular sequence. One may
envisage a dictionary as a bag of pairs (a,b) in no particular order.

Creating dictionaries

To create a dictionary, we initialize it and then insert new pairs as
needed. A typical application is to store data that we read from file
where one of the columns constitutes a unique identifier.

Initializing a dictionary
Create an empty dictionary:
d = {}

Create a dictionary with two pairs:
d = {'Oslo': 13, 'London': 15.4}

Alternative to create a dictionary with two pairs:
d = dict(Oslo=13, London=15.4)

Extending a dictionary
Suppose d is a dictionary

Add a pair to the dictionary d:
d['Madrid'] = 26.0

Add a dictionary d2 to d:
d.update(d2)

Removing an entry from a dictionary

We can remove a pair (a,b) from a dictionary using del d[a].

Examples:

In [1]: d = {'pi':3.14, 'e':2.718, 'g':9.81}
In [2]: del d['e'] # Remove the pair ('e', 2.718)
In [3]: del d['pi'] # Remove the pair ('pi', 3.14)
In [4]: d = dict(Yes=1, No=0)
In [5]: del d['Maybe']

KeyError Traceback (most recent call last)
<ipython-input-37-759d96d71ff6> in <module>()
----> 1 del d['Maybe']

KeyError: 'Maybe'

Is a key present in a dictionary?

We can test if a key is present in a dictionary using ’key in d’.

Examples:

d = {'Bergen': 'Norway', 'Cambridge': 'UK'}

if 'Oxford' in d:
print('Oxford is a key in the dictionary')

else:
print('Oxford is not a key in the dictionary')

value = d.get('Bergen', '') # Now value == 'Norway'
value = d.get('Oxford', '') # Now value = ''

Looping over the elements in a dictionary

Looping over elements in arbitrary order
d = {-2:6, 6:3, 3:7}
for key in d:

print('Key = %g and value = %g' % (key, d[key]))

Looping over elements in sorted key order
d = {-2:6, 6:3, 3:7}
for key in sorted(d):

print('Key = %g and value = %g' % (key, d[key]))

Obtaining a list of all keys/values

Suppose we have defined a list

d = {'Paris': 17.5, 'London': 15.4, 'Madrid': 26.0}

Python 2
>>> d.keys()
['Paris', 'London', 'Madrid']
>>> d.values()
[17.5, 15.4, 26.0]

Python 3
>>> d.keys()
<listiterator at 0x111b2a4d0>
>>> list(d.keys())
['Paris', 'London', 'Madrid']
>>> d.values()
<listiterator at 0x111b2a710>
>>> list(d.values())
[17.5, 15.4, 26.0]

Example: Polynomials represented by dictionaries

The information in the polynomial

p(x) = −1+ x2 + 3x7

can be represented by a dict with power as key (int) and
coefficient as value (float):
p = {0: -1, 2: 1, 7: 3.5}

Evaluate such a polynomial
∑

i∈I cix
i for some x :

def f(p,x):
val = 0.0
for power in p:

val += p[power] * x ** power
return val

Shorter version:
def f2(p,x):

return sum(p[power] * x ** power for power in p)

Polynomials can also be represented by lists

The list index corresponds to the power, e.g., the data in
−1+ x2 + 3x7 is represented as
p = [-1, 0, 1, 0, 0, 0, 0, 3]

The general polynomial
∑N

i=0 cix
i is stored as

[c0, c1, c2, ..., cN].

Evaluate such a polynomial
∑N

i=0 cix
i for some x :

def f3(p, x):
val = 0
for power in range(len(p)):

val += p[power] * x ** power
return val

What is best for polynomials: lists or dictionaries?

Dictionaries need only store the nonzero terms. Compare dict vs list
for the polynomial 1− x200:
p = {0: 1, 200: -1} # len(p) is 2
p = [1, 0, 0, 0, ..., 200] # len(p) is 201

Dictionaries can easily handle negative powers, e.g., 1
2x
−3 + 2x4

p = {-3: 0.5, 4: 2}
print f(p, x=4)

Example: reading a file with two columns

Many data files consist of columns of data, such as this one where
the first column is a unique patient identifier and the second is a
measure of DNA damage:

MB.0000 0.00096
MB.0002 0.24787
MB.0005 0.2779
MB.0006 0.29428
MB.0010 0.61225
... ...

We can read this file into a dictionary as follows:

damage = {}
infile = open('DNAdamage.txt', 'r')
for line in infile:

words = line.split()
damage[words[0]] = float(words[1])

infile.close()

To print the DNA damage for patient MB.0005:
print(damage['MB.0005']) # 0.00096

Example: reading a file with three columns

Data file:
Oslo 21.8 'Norway'
Bergen 17.6 'Norway'
London 18.1 'UK'
Berlin 19 'Germany'
Paris 23 'France'
Rome 26 'Italy'
Helsinki 17.8 'Finland'

Program:
infile = open('cityinfo.txt', 'r')
data = {}
for line in infile:

words = line.split()
data[words[0]] = [float(words[1]), words[2]]

infile.close()

To print the information about Paris:
print(data['Paris']) # [23.0, "'France'"]
print(data['Paris'][0]) # 23.0
print(data['Paris'][1]) # 'France'

A tabular file can be read into a nested dictionary

Data file table.dat:
A B C D

1 11.7 0.035 2017 99.1
2 9.2 0.037 2019 101.2
3 12.2 no no 105.2
4 10.1 0.031 no 102.1
5 9.1 0.033 2009 103.3
6 8.7 0.036 2015 101.9

Create a dict data[p][i] (dict of dict) to hold measurement no. i
(1, 2, etc.) of property p ('A', 'B', etc.)

We must first develop the plan (algorithm) for doing this

1 Examine the first line:
1 split it into words
2 initialize a dictionary with the property names as keys and

empty dictionaries {} as values

2 For each of the remaining lines:
1 split line into words
2 for each word after the first: if word is not no, convert to float

and store

Good exercise: do this now!
(See the book for a complete implementation.)

Example: Download data from the web and visualize

Problem:
Compare the stock prices of Microsoft, Apple, and Google over
decades
http://finance.yahoo.com/ offers such data in files with
tabular form

Date,Open,High,Low,Close,Volume,Adj Close
2014-02-03,502.61,551.19,499.30,545.99,12244400,545.99
2014-01-02,555.68,560.20,493.55,500.60,15698500,497.62
2013-12-02,558.00,575.14,538.80,561.02,12382100,557.68
2013-11-01,524.02,558.33,512.38,556.07,9898700,552.76
2013-10-01,478.45,539.25,478.28,522.70,12598400,516.57
...
1984-10-01,25.00,27.37,22.50,24.87,5654600,2.73
1984-09-07,26.50,29.00,24.62,25.12,5328800,2.76

http://finance.yahoo.com/

We need to analyze the file format to find the algorithm for
interpreting the content

Date,Open,High,Low,Close,Volume,Adj Close
2014-02-03,502.61,551.19,499.30,545.99,12244400,545.99
2014-01-02,555.68,560.20,493.55,500.60,15698500,497.62
2013-12-02,558.00,575.14,538.80,561.02,12382100,557.68
2013-11-01,524.02,558.33,512.38,556.07,9898700,552.76
2013-10-01,478.45,539.25,478.28,522.70,12598400,516.57
...
1984-10-01,25.00,27.37,22.50,24.87,5654600,2.73
1984-09-07,26.50,29.00,24.62,25.12,5328800,2.76

File format:

Columns are separated by comma
First column is the date, the final is the price of interest
The prizes start at different dates

We need algorithms before we can write code

Algorithm for reading data:
1 skip first line
2 read line by line
3 split each line wrt. comma
4 store first word (date) in a list of dates
5 store final word (prize) in a list of prices
6 collect date and price list in a dictionary (key is company)
7 make a function for reading one company’s file

Plotting:
1 Convert year-month-day time specifications in strings into year

coordinates along the x axis
2 Note that the companies’ price history starts at different years

No code is presented here...

See the book for all details. If you understand this quite
comprehensive example, you know and understand a lot!

