
Dictionaries and strings (part 2)

Ole Christian Lingjærde, Dept of Informatics, UiO

20 October 2017

Today’s agenda

Quiz
Exercise 6.7
String manipulation

Quiz 1

Question A
d = {-2:-1, -1:0, 0:1, 1:2, 2:-2}
print(d[0])
What is printed out?

Question B
d = {-2:-1, -1:0, 0:1, 1:2, 2:-2}
print(d[d[0]])
What is printed out?

Question C
d = {-2:-1, -1:0, 0:1, 1:2, 2:-2}
print(d[-2]*d[2])
What is printed out?

Quiz 2

Question A
table = {'age':[35,20], 'name':['Anna','Peter']}
for key in table:

print('%s: %s' % (key,table[key]))
What is printed out?

Question B
table = {'age':[35,20], 'name':['Anna','Peter']}
vals = list(table.values())
print(vals)
print(vals[0])
print(vals[0][0])
What is printed out?

Question C
table = {'age':[35,20], 'name':['Anna','Peter']}
print(table['name'][1], table['age'][1])
What is printed out?

Quiz 3

Question A
d = {3:5, 6:7}
e = {4:6, 7:8}
d.update(e)
What is the content of dictionary d now?

Question B
d = {3:5, 6:7}
e = {4:6, 7:8}
d.update(e)
d.update(e)
What is the content of dictionary d now?

Question C
d = {6:100}
e = {6:6, 7:8}
d.update(e)
What is the content of dictionary d now?

Quiz 4

The file ’teledata.txt’ gives information about mobile customers:

Age Income Gender Monthly calls ID
45 720k Female 46 A001
27 440k Male 3 A002
17 0 Male 52 A006
24 60k Female 18 A014
...

How could you store the data using five lists?
How could you store the data using one list?
How could you store the data in a dictionary (what information
would be key and what datatype would you use for the values)?

Exercise 6.7

Make a nested dictionary from a file

The file human_evolution.txt holds information about various
human species and their height, weight, and brain volume. Make a
program that reads this file and stores the tabular data in a nested
dictionary humans. The keys in humans correspond to the species
name (e.g., H. erectus), and the values are dictionaries with keys
’period’, ’height’, ’weight’, ’volume’. For example,

humans[’H. habilis’][’weight’]

should equal ’55 - 70’. Let the program print to screen the humans
dictionary in a nice tabular form similar to that in the file.

Filename: humans

Step 1: reading the file

We first download the file and inspect it visually:

To read the table, we need to skip some lines at the top and
bottom. How do we determine where the data start and stop?

Solution 1: we see that the data span lines 4-10.
Solution 2: data lines always start with ’H. ’.
Solution 3: data occur between the lines with hyphens.

All would work, but here we go for the third solution.

How to do it in Python

Read all lines into a list
infile = open('human_evolution.txt', 'r')
lines = infile.readlines()

Find first line with data
k = 0
while lines[k][0] != '-': # When no hyphen

k = k + 1 # ... we continue the search
first = k + 1 # First line after hyphen

Find last line with data
k = first # Start point for search
while lines[k][0] != '-': # When no hyphen

k = k + 1 # ... we continue the search
last = k - 1 # Last line before hyphen

Now we are ready to process the data
for i in range(first, last+1):

Do something with lines[i]

Step 2: splitting a line into columns

Want to split each data line into columns, for example:

words[0] : 'H. habilis'
words[1] : '2.2 - 1.6'
words[2] : '1.0 - 1.5'
...

Possible solutions:

Split on whitespace - but how to go from there?
Find position of each column from the header

Here we go for the second solution.

How to do it in Python

Read all lines into a list
infile = open('human_evolution.txt', 'r')
lines = infile.readlines()

Find column positions from second line in file
s = lines[1]
start = [0, s.index('(mill. yrs)'),

s.index('height (m)'),
s.index('mass (kg)'),
s.index('(cm**3)')]

stop = start[1:len(start)] + [80]

start: [0, 21, 37, 50, 62]
stop: [21, 37, 50, 62, 80]

The k'th column in the i'th line is now easy to find:
words[0] = lines[i][start[0]:stop[0]]
words[1] = lines[i][start[1]:stop[1]]
...etc

Putting step 1 and 2 together

infile = open('human_evolution.txt', 'r')
lines = infile.readlines()

s = lines[1]
start = [0, s.index('(mill. yrs)'), s.index('height (m)'), ...]
stop = start[1:len(start)] + [80]

k = 0
while lines[k][0] != '-':

k = k + 1
first = k + 1
k = first
while lines[k][0] != '-':

k = k + 1
last = k - 1

humans = {}
for i in range(first, last+1):

species = lines[i][start[0]:stop[0]]
period = lines[i][start[1]:stop[1]]
height = lines[i][start[2]:stop[2]]
weight = lines[i][start[3]:stop[3]]
volume = lines[i][start[4]:stop[4]]
Store the data in a dictionary

Step 3: storing the data

Consider the last step in the algorithm above:

for i in range(first, last+1):
species = lines[i][start[0]:stop[0]].strip()
period = lines[i][start[1]:stop[1]].strip()
height = lines[i][start[2]:stop[2]].strip()
weight = lines[i][start[3]:stop[3]].strip()
volume = lines[i][start[4]:stop[4]].strip()
Store the data in a dictionary

The variables represent one line of data from the file. We want to
store it in the dictionary humans as one (key,value) pair.

We want the key to be species and the value to be another
dictionary. We can achieve this as follows:

humans[species] = {'period': period, 'height': height,
'weight': weight, 'volume': volume}

Putting step 1, 2 and 3 together

infile = open('human_evolution.txt', 'r')
lines = infile.readlines()

s = lines[1]
start = [0, s.index('(mill. yrs)'), s.index('height (m)'), ...]
stop = start[1:len(start)] + [80]

k = 0
while lines[k][0] != '-':

k = k + 1
first = k + 1
k = first
while lines[k][0] != '-':

k = k + 1
last = k - 1

for i in range(first, last+1):
species = lines[i][start[0]:stop[0]].strip()
period = lines[i][start[1]:stop[1]].strip()
height = lines[i][start[2]:stop[2]].strip()
weight = lines[i][start[3]:stop[3]].strip()
volume = lines[i][start[4]:stop[4]].strip()
humans[species] = {'period': period, 'height': height,

'weight': weight, 'volume': volume}

Step 4: printing table on screen

Print a title
s = '%-23s %-13s %-13s %-13s %-25s' % \

('species', 'period', 'height', 'weight', 'volume')
print(s)

Print table contents
for sp in humans:

d = humans[sp]
period = d['period']
height = d['height']
weight = d['weight']
volume = d['volume']
s = '%-23s %-13s %-13s %-13s %-25s' % \

(sp, period, height, weight, volume)
print(s)

Result

Text processing

We have seen that Python is well suited for mathematical
calculations and visualizations.
Python is also an efficient tool for processing of text strings. *
Applications involving text processing are very common.
Many advanced applications of text processing (e.g. web
search and DNA analysis) involve mathematical and statistical
computations.

Example: web search
Google and other web search tools do advanced text processing.
Crawlers browse WWW for files and analyse their content.

Example: DNA analysis
DNA sequences are very long strings with known and undiscovered
patterns. Algorithms to find and compare such patterns are very
important in modern biology and medicine.

Text processing: a quick recap

s = 'This is a string, ok?'

To split a string into individual words:
s.split() # ['This', 'is', 'a', 'string,', 'ok?']

To split a string with another delimiter
s.split(',') # ['This is a string', ' ok?']
s.split('a string') # ['This is ', ', ok?']

To find the location of a substring:
s.index('is') # 2

To check if a string contains a substring:
'This' in s # True
'this' in s # False

To select a particular character in a string:
s[0] # 'T'
s[1] # 'h'
s[2] # 'i'
s[3] # 's'

Extracting substrings

s = 'This is a string, ok?'

Remove the first character
s[1:] # 'his is a string, ok?'

Remove the first and the last character
s[1:-1] # 'his is a string, ok'

Remove the two first and two last characters
s[2:-2] # 'is is a string, o'

The characters with index 2,3,4
s[2:5] # 'is '

Select everything starting from a substring
s[s.index('is a'):] # 'is a string, ok?'

Remove trailing blanks
s = ' A B C '
s.strip() # 'A B C'
s.lstrip() # 'A B C '
s.rstrip() # ' A B C'

Concatenating strings

a = ['I', 'am', 'happy']

Join list elements
''.join(a) # 'Iamhappy'

Join list elements with space between them
' '.join(a) # 'I am happy'

Join list elements with '%%' between them
'%%'.join(a) # 'I%%am%%happy'

Substituting substrings

s = 'This is a string, ok?'

Replace every blank by 'X'
s.replace(' ', 'X') # 'ThisXisXaXstring,Xok?'

Replace one word by another
s.replace('string', 'text') # 'This is a text, ok?'

Replace the text before the comma by 'Fine'
s.replace(s[:s.index(',')], 'Fine') # 'Fine, ok?'

Replace the text from the comma by ' dummy'
s.replace(s[s.index(','):], ' dummy') # 'This is a string dummy'

Line breaks in text strings

Lines are separated by different control characters on different
platforms.

Concatenate with Unix/Linux/Mac type line break
s1 = '\n'.join(['Line A', 'Line B', 'Line C'])

Concatenate with Windows type line break
s2 = '\r\n'.join(['Line A', 'Line B', 'Line C'])

Platform dependent line splitting:
s1.split('\n') # Works: ['Line A', 'Line B', 'Line C']
s1.split('\r\n') # FAILS: ['Line A\nLine B\nLine C']

s2.split('\n') # FAILS: ['Line A\r', 'Line B\r', 'Line C']
s2.split('\r\n') # Works: ['Line A', 'Line B', 'Line C']

Better line splitting (platform independent):
s1.splitlines() # Works: ['Line A', 'Line B', 'Line C']
s2.splitlines() # Works: ['Line A', 'Line B', 'Line C']

A few more string functions

Check if a string only contains digits
s = '314'
s.isdigit() # True
s = ' 314'
s.isdigit() # False
s = '3.14'
s.isdigit() # False

Change to lower-case or upper-case
s = 'ABC def'
s.lower() # 'abc def'
s.upper() # 'ABC DEF'

Starts with and ends with substring
s = 'This is a string'
s.startswith('This is') # True
s.endswith('This is') # False

Example

Suppose we want to read pairs of numbers (x,y) from a file.

Sample file:
(1.3,0) (-1,2) (3,-1.5)
(0,1) (1,0) (1,1)
(0,-0.01) (10.5,-1) (2.5,-2.5)

Algorithm:
1 Read one line at a time
2 For each line, split line into words
3 For each word, strip off parentheses and split the rest on

comma

How to do it in Python

infile = open('pairs.dat', 'r')
pairs = [] # Create a list to hold all the pairs
for line in infile:

words = line.split()
for w in words:

w = w[1:-1] # Remove parentheses
numbers = w.split(',')
pair = (float(numbers[0]), float(numbers[1]))
pairs.append(pair)

The pairs list

[(1.3, 0.0),
(-1.0, 2.0),
(3.0, -1.5),
(0.0, 1.0),
(1.0, 0.0),
(1.0, 1.0),
(0.0, -0.01),
(10.5, -1.0),
(2.5, -2.5)]

Alternative solution: Python syntax in file format

Suppose the file format
(1.3, 0) (-1, 2) (3, -1.5)
...

was slightly different:
[(1.3, 0), (-1, 2), (3, -1.5),
...
]

Running eval on the perturbed format produces the desired list!
text = open('read_pairs2.dat', 'r').read()
text = '[' + text.replace(')', '),') + ']'
pairs = eval(text)

Web pages are nothing but text files

The text is a mix of HTML commands and the text displayed in the
browser:
<html>
<body bgcolor="orange">
<h1>A Very Simple Web Page</h1> <!-- headline -->
Ordinary text is written as ordinary text, but when we
need headlines, lists,

emphasized words, or
 boldfaced words,

we need to embed the text inside HTML tags. We can also
insert GIF or PNG images, taken from other Internet sites,
if desired.
<hr> <!-- horizontal line -->

</body>
</html>

Programs can extract data from web pages

A program can download a web page, as an HTML file, and
extract data by interpreting the text in the file (using string
operations).
Example: climate data from the UK

Download oxforddata.txt to a local file Oxford.txt:
import urllib
baseurl = 'http://www.metoffice.gov.uk/climate/uk/stationdata'
filename = 'oxforddata.txt'
url = baseurl + '/' + filename
urllib.urlretrieve(url, filename='Oxford.txt')

http://www.metoffice.gov.uk/climate/uk/stationdata/

The structure of the Oxfort.txt weather data file

Oxford
Location: 4509E 2072N, 63 metres amsl
Estimated data is marked with a * after the value.
Missing data (more than 2 days missing in month) is marked by ---.
Sunshine data taken from an automatic ...

yyyy mm tmax tmin af rain sun
degC degC days mm hours

1853 1 8.4 2.7 4 62.8 ---
1853 2 3.2 -1.8 19 29.3 ---
1853 3 7.7 -0.6 20 25.9 ---
1853 4 12.6 4.5 0 60.1 ---
1853 5 16.8 6.1 0 59.5 ---

...

2010 5 17.6 7.3 0 28.6 207.4
2010 6 23.0 11.1 0 34.5 230.5
2010 7 23.3* 14.1* 0* 24.4* 184.4* Provisional
2010 10 14.6 7.4 2 43.5 128.8 Provisional

Reading the climate data

Algorithm:
1 Read the place and location in the file header
2 Skip the next 5 (for us uninteresting) lines
3 Read the column data and store in dictionary
4 Test for numbers with special annotation, "provisional"

column, etc.

Program, part 1:
local_file = 'Oxford.txt'
infile = open(local_file, 'r')
data = {}
data['place'] = infile.readline().strip()
data['location'] = infile.readline().strip()
Skip the next 5 lines
for i in range(5):

infile.readline()

Reading the climate data - program, part 2

Program, part 2:
data['data'] ={}
for line in infile:

columns = line.split()

year = int(columns[0])
month = int(columns[1])

if columns[-1] == 'Provisional':
del columns[-1]

for i in range(2, len(columns)):
if columns[i] == '---':

columns[i] = None
elif columns[i][-1] == '*' or columns[i][-1] == '#':

Strip off trailing character
columns[i] = float(columns[i][:-1])

else:
columns[i] = float(columns[i])

Reading the climate data - program, part 3

Program, part 3
for line in infile:

...
tmax, tmin, air_frost, rain, sun = columns[2:]

if not year in data['data']:
data['data'][year] = {}

data['data'][year][month] = {'tmax': tmax,
'tmin': tmin,
'air frost': air_frost,
'sun': sun}

