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Plan for the rest of the fall (1)

Friday November 10:
Short quiz
Exer 9.4, 9.6 (inheritance, OOP)
How to solve any scalar ODE

Wednesday November 15:
Exer E.21, E.22, 8.x
Vector ODEs (Systems of ODEs)
Random numbers and games

Friday November 17:
More on vector ODEs
Disease modeling (final project)



Plan for the rest of the fall (2)

November 20 - November 27:
Final project on disease modeling
No ordinary lectures
Time for questions about the project ("orakel") will be
announced
Lectures "on demand" Nov 22 and Nov 24 (project relevant)

November 27 - Exam:
Repetition lectures ("on demand")



Quiz (special methods)

What is printed by the following code? Why?

from numpy import *

class MyList:
def __init__(self,values):

self.values = values

def __add__(self,other):
result = []
for i in range(len(self.values)):
result.append(str(self.values[i])+'+' \

+str(other.values[i]))
return result

l1 = [2,3,4]; l2 = [5,6,1]
a1 = array(l1); a2 = array(l2)
m1 = MyList(l1); m2 = MyList(l2)
print(l1+l2)
print(a1+a2)
print(m1+m2)



1 How to solve any ordinary scalar differential equation



How to solve any ordinary scalar differential equation

u′(t) = αu(t)(1− R−1u(t))

u(0) = U0
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Logistic growth: alpha=0.2, R=1, dt=0.1



Examples on scalar differential equations (ODEs)

Terminology:
Scalar ODE: a single ODE, one unknown function
Vector ODE or systems of ODEs: several ODEs, several
unknown functions

Examples:

u′ = αu exponential growth

u′ = αu
(
1− u

R

)
logistic growth

u′ + b|u|u = g falling body in fluid



We shall write an ODE in a generic form: u′ = f (u, t)

Our methods and software should be applicable to any ODE
Therefore we need an abstract notation for an arbitrary ODE

u′(t) = f (u(t), t)

The three ODEs on the last slide correspond to

f (u, t) = αu, exponential growth

f (u, t) = αu
(
1− u

R

)
, logistic growth

f (u, t) = −b|u|u + g , body in fluid

Our task: write functions and classes that take f as input and
produce u as output



Such abstract f functions are widely used in mathematics

We can make generic software for:

Numerical differentiation: f ′(x)

Numerical integration:
∫ b
a f (x)dx

Numerical solution of algebraic equations: f (x) = 0

Applications:

1 d
dx x

a sin(wx): f (x) = xa sin(wx)

2
∫ 1
−1(x2 tanh−1 x − (1 + x2)−1)dx :
f (x) = x2 tanh−1 x − (1 + x2)−1, a = −1, b = 1

3 Solve x4 sin x = tan x : f (x) = x4 sin x − tan x



We use finite difference approximations to derivatives to
turn an ODE into a difference equation

u′ = f (u, t)

Assume we have computed u at discrete time points t0, t1, . . . , tk .
At tk we have the ODE

u′(tk) = f (u(tk), tk)

Approximate u′(tk) by a forward finite difference,

u′(tk) ≈ u(tk+1)− u(tk)

∆t

Insert in the ODE at t = tk :

u(tk+1)− u(tk)

∆t
= f (u(tk), tk)

Terms with u(tk) are known, and this is an algebraic (difference)
equation for u(tk+1)



The Forward Euler (or Euler’s) method; idea
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The Forward Euler (or Euler’s) method; mathematics

Solving with respect to u(tk+1)

u(tk+1) = u(tk) + ∆tf (u(tk), tk)

This is a very simple formula that we can use repeatedly for u(t1),
u(t2), u(t3) and so forth.

Difference equation notation:
Let uk denote the numerical approximation to the exact solution
u(t) at t = tk .

uk+1 = uk + ∆tf (uk , tk)

This is an ordinary difference equation we can solve!



Let’s apply the method!

Problem: The world’s simplest ODE

u′ = u, t ∈ (0,T ]

Solve for u at t = tk = k∆t, k = 0, 1, 2, . . . , tn, t0 = 0, tn = T

Forward Euler method:

uk+1 = uk + ∆t f (uk , tk)

Solution by hand:

What is f ? f (u, t) = u

uk+1 = uk + ∆tf (uk , tk) = uk + ∆tuk = (1 + ∆t)uk

First step:
u1 = (1 + ∆t)u0

but what is u0?



An ODE needs an initial condition: u(0) = U0

Numerics:
Any ODE u′ = f (u, t) must have an initial condition u(0) = U0,
with known U0, otherwise we cannot start the method!

Mathematics:
In mathematics: u(0) = U0 must be specified to get a unique
solution.

Example:

u′ = u

Solution: u = Cet for any constant C . Say u(0) = U0: u = U0e
t .



What about the general case u′ = f (u, t)?

Given any U0:

u1 = u0 + ∆tf (u0, t0)

u2 = u1 + ∆tf (u1, t1)

u3 = u2 + ∆tf (u2, t2)

u4 = u3 + ∆tf (u3, t3)

...



We start with a specialized program for u′ = u, u(0) = U0

Algorithm:

Given ∆t (dt) and n

Create arrays t and u of length n + 1
Set initial condition: u[0] = U0, t[0]=0
For k = 0, 1, 2, . . . , n − 1:

t[k+1] = t[k] + dt
u[k+1] = (1 + dt)*u[k]



We start with a specialized program for u′ = u, u(0) = U0

Program:
import numpy as np
import sys

dt = float(sys.argv[1])
U0 = 1
T = 4
n = int(T/dt)

t = np.zeros(n+1)
u = np.zeros(n+1)

t[0] = 0
u[0] = U0
for k in range(n):

t[k+1] = t[k] + dt
u[k+1] = (1 + dt)*u[k]

# plot u against t



The solution if we plot u against t

∆t = 0.4 and ∆t = 0.2:
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The algorithm for the general ODE u′ = f (u, t)

Algorithm:

Given ∆t (dt) and n

Create arrays t and u of length n + 1
Create array u to hold uk and
Set initial condition: u[0] = U0, t[0]=0
For k = 0, 1, 2, . . . , n − 1:

u[k+1] = u[k] + dt*f(u[k], t[k]) (the only change!)
t[k+1] = t[k] + dt



Implementation of the general algorithm for u′ = f (u, t)

General function:
def ForwardEuler(f, U0, T, n):

"""Solve u'=f(u,t), u(0)=U0, with n steps until t=T."""
import numpy as np
t = np.zeros(n+1)
u = np.zeros(n+1) # u[k] is the solution at time t[k]

u[0] = U0
t[0] = 0
dt = T/float(n)

for k in range(n):
t[k+1] = t[k] + dt
u[k+1] = u[k] + dt*f(u[k], t[k])

return u, t

Magic:

This simple function can solve any ODE (!)



Example on using the function

Mathematical problem:

Solve u′ = u, u(0) = 1, for t ∈ [0, 4], with ∆t = 0.4
Exact solution: u(t) = et .

Basic code:
def f(u, t):

return u

U0 = 1
T = 3
n = 30
u, t = ForwardEuler(f, U0, T, n)

Compare exact and numerical solution:
from scitools.std import plot, exp
u_exact = exp(t)
plot(t, u, 'r-', t, u_exact, 'b-',

xlabel='t', ylabel='u', legend=('numerical', 'exact'),
title="Solution of the ODE u'=u, u(0)=1")



Now you can solve any ODE!

Recipe:

Identify f (u, t) in your ODE
Make sure you have an initial condition U0

Implement the f (u, t) formula in a Python function f(u, t)

Choose ∆t or no of steps n
Call u, t = ForwardEuler(f, U0, T, n)

plot(t, u)

Warning:
The Forward Euler method may give very inaccurate solutions if ∆t
is not sufficiently small. For some problems (like u′′ + u = 0) other
methods should be used.



Let us make a class instead of a function for solving ODEs

Usage of the class:
method = ForwardEuler(f, dt)
method.set_initial_condition(U0, t0)
u, t = method.solve(T)
plot(t, u)

How?
Store f , ∆t, and the sequences uk , tk as attributes
Split the steps in the ForwardEuler function into four
methods:

the constructor (__init__)
set_initial_condition for u(0) = U0
solve for running the numerical time stepping
advance for isolating the numerical updating formula
(new numerical methods just need a different advance
method, the rest is the same)



The code for a class for solving ODEs (part 1)

import numpy as np

class ForwardEuler_v1:
def __init__(self, f, dt):

self.f, self.dt = f, dt

def set_initial_condition(self, U0):
self.U0 = float(U0)



The code for a class for solving ODEs (part 2)

class ForwardEuler_v1:
...
def solve(self, T):

"""Compute solution for 0 <= t <= T."""
n = int(round(T/self.dt)) # no of intervals
self.u = np.zeros(n+1)
self.t = np.zeros(n+1)
self.u[0] = float(self.U0)
self.t[0] = float(0)

for k in range(self.n):
self.k = k
self.t[k+1] = self.t[k] + self.dt
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
# Create local variables to get rid of "self." in
# the numerical formula
u, dt, f, k, t = self.u, self.dt, self.f, self.k, self.t

unew = u[k] + dt*f(u[k], t[k])
return unew



Using a class to hold the right-hand side f (u, t)

Mathematical problem:

u′(t) = αu(t)

(
1− u(t)

R

)
, u(0) = U0, t ∈ [0, 40]

Class for right-hand side f (u, t):
class Logistic:

def __init__(self, alpha, R, U0):
self.alpha, self.R, self.U0 = alpha, float(R), U0

def __call__(self, u, t): # f(u,t)
return self.alpha*u*(1 - u/self.R)

Main program:
problem = Logistic(0.2, 1, 0.1)
time_points = np.linspace(0, 40, 401)
method = ForwardEuler(problem)
method.set_initial_condition(problem.U0)
u, t = method.solve(time_points)



Figure of the solution
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Numerical methods for ordinary differential equations
Forward Euler method:

uk+1 = uk + ∆t f (uk , tk)

4th-order Runge-Kutta method:

uk+1 = uk +
1
6

(K1 + 2K2 + 2K3 + K4)

K1 = ∆t f (uk , tk)

K2 = ∆t f (uk +
1
2
K1, tk +

1
2

∆t)

K3 = ∆t f (uk +
1
2
K2, tk +

1
2

∆t)

K4 = ∆t f (uk + K3, tk + ∆t)

And lots of other methods! How to program a wide collection of
methods? Use object-oriented programming!



A superclass for ODE methods

Common tasks for ODE solvers:
Store the solution uk and the corresponding time levels tk ,
k = 0, 1, 2, . . . , n
Store the right-hand side function f (u, t)

Set and store the initial condition
Run the loop over all time steps

Principles:
Common data and functionality are placed in superclass
ODESolver

Isolate the numerical updating formula in a method advance

Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance
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The superclass code

class ODESolver:
def __init__(self, f):

self.f = f

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError # implement in subclass

def set_initial_condition(self, U0):
self.U0 = float(U0)

def solve(self, time_points):
self.t = np.asarray(time_points)
self.u = np.zeros(len(self.t))
# Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

# Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
raise NotImplemtedError # to be impl. in subclasses



Implementation of the Forward Euler method

Subclass code:
class ForwardEuler(ODESolver):

def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
unew = u[k] + dt*f(u[k], t)
return unew

Application code for u′ − u = 0, u(0) = 1, t ∈ [0, 3], ∆t = 0.1:
from ODESolver import ForwardEuler
def test1(u, t):

return u

method = ForwardEuler(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)



The implementation of a Runge-Kutta method

Subclass code:
class RungeKutta4(ODESolver):

def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
dt2 = dt/2.0
K1 = dt*f(u[k], t)
K2 = dt*f(u[k] + 0.5*K1, t + dt2)
K3 = dt*f(u[k] + 0.5*K2, t + dt2)
K4 = dt*f(u[k] + K3, t + dt)
unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)
return unew

Application code (same as for ForwardEuler):
from ODESolver import RungeKutta4
def test1(u, t):

return u

method = RungeKutta4(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)



The user should be able to check intermediate solutions and
terminate the time stepping

Sometimes a property of the solution determines when to stop
the solution process: e.g., when u < 10−7 ≈ 0.
Extension: solve(time_points, terminate)

terminate(u, t, step_no) is called at every time step, is
user-defined, and returns True when the time stepping should
be terminated
Last computed solution is u[step_no] at time t[step_no]

def terminate(u, t, step_no):
eps = 1.0E-6 # small number
return abs(u[step_no,0]) < eps # close enough to zero?
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