
App.E: Programming of differential equations

Hans Petter Langtangen1,2 Joakim Sundnes1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Nov 10, 2017



Plan for the rest of the fall (1)

Friday November 10:
Short quiz
Exer 9.4, 9.6 (inheritance, OOP)
How to solve any scalar ODE

Wednesday November 15:
Exer E.21, E.22, 8.x
Vector ODEs (Systems of ODEs)
Random numbers and games

Friday November 17:
More on vector ODEs
Disease modeling (final project)



Plan for the rest of the fall (2)

November 20 - November 27:
Final project on disease modeling
No ordinary lectures
Time for questions about the project ("orakel") will be
announced
Lectures "on demand" Nov 22 and Nov 24 (project relevant)

November 27 - Exam:
Repetition lectures ("on demand")



Quiz (special methods)

What is printed by the following code? Why?

from numpy import *

class MyList:
def __init__(self,values):

self.values = values

def __add__(self,other):
result = []
for i in range(len(self.values)):
result.append(str(self.values[i])+'+' \

+str(other.values[i]))
return result

l1 = [2,3,4]; l2 = [5,6,1]
a1 = array(l1); a2 = array(l2)
m1 = MyList(l1); m2 = MyList(l2)
print(l1+l2)
print(a1+a2)
print(m1+m2)



1 How to solve any ordinary scalar differential equation



How to solve any ordinary scalar differential equation

u′(t) = αu(t)(1− R−1u(t))

u(0) = U0

0 5 10 15 20 25 30 35 40 45
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

Logistic growth: alpha=0.2, R=1, dt=0.1



Examples on scalar differential equations (ODEs)

Terminology:
Scalar ODE: a single ODE, one unknown function
Vector ODE or systems of ODEs: several ODEs, several
unknown functions

Examples:

u′ = αu exponential growth

u′ = αu
(
1− u

R

)
logistic growth

u′ + b|u|u = g falling body in fluid



We shall write an ODE in a generic form: u′ = f (u, t)

Our methods and software should be applicable to any ODE
Therefore we need an abstract notation for an arbitrary ODE

u′(t) = f (u(t), t)

The three ODEs on the last slide correspond to

f (u, t) = αu, exponential growth

f (u, t) = αu
(
1− u

R

)
, logistic growth

f (u, t) = −b|u|u + g , body in fluid

Our task: write functions and classes that take f as input and
produce u as output



Such abstract f functions are widely used in mathematics

We can make generic software for:

Numerical differentiation: f ′(x)

Numerical integration:
∫ b
a f (x)dx

Numerical solution of algebraic equations: f (x) = 0

Applications:

1 d
dx x

a sin(wx): f (x) = xa sin(wx)

2
∫ 1
−1(x2 tanh−1 x − (1 + x2)−1)dx :
f (x) = x2 tanh−1 x − (1 + x2)−1, a = −1, b = 1

3 Solve x4 sin x = tan x : f (x) = x4 sin x − tan x



We use finite difference approximations to derivatives to
turn an ODE into a difference equation

u′ = f (u, t)

Assume we have computed u at discrete time points t0, t1, . . . , tk .
At tk we have the ODE

u′(tk) = f (u(tk), tk)

Approximate u′(tk) by a forward finite difference,

u′(tk) ≈ u(tk+1)− u(tk)

∆t

Insert in the ODE at t = tk :

u(tk+1)− u(tk)

∆t
= f (u(tk), tk)

Terms with u(tk) are known, and this is an algebraic (difference)
equation for u(tk+1)



The Forward Euler (or Euler’s) method; idea



The Forward Euler (or Euler’s) method; idea



The Forward Euler (or Euler’s) method; mathematics

Solving with respect to u(tk+1)

u(tk+1) = u(tk) + ∆tf (u(tk), tk)

This is a very simple formula that we can use repeatedly for u(t1),
u(t2), u(t3) and so forth.

Difference equation notation:
Let uk denote the numerical approximation to the exact solution
u(t) at t = tk .

uk+1 = uk + ∆tf (uk , tk)

This is an ordinary difference equation we can solve!



Let’s apply the method!

Problem: The world’s simplest ODE

u′ = u, t ∈ (0,T ]

Solve for u at t = tk = k∆t, k = 0, 1, 2, . . . , tn, t0 = 0, tn = T

Forward Euler method:

uk+1 = uk + ∆t f (uk , tk)

Solution by hand:

What is f ? f (u, t) = u

uk+1 = uk + ∆tf (uk , tk) = uk + ∆tuk = (1 + ∆t)uk

First step:
u1 = (1 + ∆t)u0

but what is u0?



An ODE needs an initial condition: u(0) = U0

Numerics:
Any ODE u′ = f (u, t) must have an initial condition u(0) = U0,
with known U0, otherwise we cannot start the method!

Mathematics:
In mathematics: u(0) = U0 must be specified to get a unique
solution.

Example:

u′ = u

Solution: u = Cet for any constant C . Say u(0) = U0: u = U0e
t .



What about the general case u′ = f (u, t)?

Given any U0:

u1 = u0 + ∆tf (u0, t0)

u2 = u1 + ∆tf (u1, t1)

u3 = u2 + ∆tf (u2, t2)

u4 = u3 + ∆tf (u3, t3)

...



We start with a specialized program for u′ = u, u(0) = U0

Algorithm:

Given ∆t (dt) and n

Create arrays t and u of length n + 1
Set initial condition: u[0] = U0, t[0]=0
For k = 0, 1, 2, . . . , n − 1:

t[k+1] = t[k] + dt
u[k+1] = (1 + dt)*u[k]



We start with a specialized program for u′ = u, u(0) = U0

Program:
import numpy as np
import sys

dt = float(sys.argv[1])
U0 = 1
T = 4
n = int(T/dt)

t = np.zeros(n+1)
u = np.zeros(n+1)

t[0] = 0
u[0] = U0
for k in range(n):

t[k+1] = t[k] + dt
u[k+1] = (1 + dt)*u[k]

# plot u against t



The solution if we plot u against t

∆t = 0.4 and ∆t = 0.2:

 0

 10

 20

 30

 40

 50

 60

 0  0.5  1  1.5  2  2.5  3  3.5  4

u

t

Solution of the ODE u’=u, u(0)=1

numerical
exact

 0

 10

 20

 30

 40

 50

 60

 0  0.5  1  1.5  2  2.5  3  3.5  4
u

t

Solution of the ODE u’=u, u(0)=1

numerical
exact



The algorithm for the general ODE u′ = f (u, t)

Algorithm:

Given ∆t (dt) and n

Create arrays t and u of length n + 1
Create array u to hold uk and
Set initial condition: u[0] = U0, t[0]=0
For k = 0, 1, 2, . . . , n − 1:

u[k+1] = u[k] + dt*f(u[k], t[k]) (the only change!)
t[k+1] = t[k] + dt



Implementation of the general algorithm for u′ = f (u, t)

General function:
def ForwardEuler(f, U0, T, n):

"""Solve u'=f(u,t), u(0)=U0, with n steps until t=T."""
import numpy as np
t = np.zeros(n+1)
u = np.zeros(n+1) # u[k] is the solution at time t[k]

u[0] = U0
t[0] = 0
dt = T/float(n)

for k in range(n):
t[k+1] = t[k] + dt
u[k+1] = u[k] + dt*f(u[k], t[k])

return u, t

Magic:

This simple function can solve any ODE (!)



Example on using the function

Mathematical problem:

Solve u′ = u, u(0) = 1, for t ∈ [0, 4], with ∆t = 0.4
Exact solution: u(t) = et .

Basic code:
def f(u, t):

return u

U0 = 1
T = 3
n = 30
u, t = ForwardEuler(f, U0, T, n)

Compare exact and numerical solution:
from scitools.std import plot, exp
u_exact = exp(t)
plot(t, u, 'r-', t, u_exact, 'b-',

xlabel='t', ylabel='u', legend=('numerical', 'exact'),
title="Solution of the ODE u'=u, u(0)=1")



Now you can solve any ODE!

Recipe:

Identify f (u, t) in your ODE
Make sure you have an initial condition U0

Implement the f (u, t) formula in a Python function f(u, t)

Choose ∆t or no of steps n
Call u, t = ForwardEuler(f, U0, T, n)

plot(t, u)

Warning:
The Forward Euler method may give very inaccurate solutions if ∆t
is not sufficiently small. For some problems (like u′′ + u = 0) other
methods should be used.



Let us make a class instead of a function for solving ODEs

Usage of the class:
method = ForwardEuler(f, dt)
method.set_initial_condition(U0, t0)
u, t = method.solve(T)
plot(t, u)

How?
Store f , ∆t, and the sequences uk , tk as attributes
Split the steps in the ForwardEuler function into four
methods:

the constructor (__init__)
set_initial_condition for u(0) = U0
solve for running the numerical time stepping
advance for isolating the numerical updating formula
(new numerical methods just need a different advance
method, the rest is the same)



The code for a class for solving ODEs (part 1)

import numpy as np

class ForwardEuler_v1:
def __init__(self, f, dt):

self.f, self.dt = f, dt

def set_initial_condition(self, U0):
self.U0 = float(U0)



The code for a class for solving ODEs (part 2)

class ForwardEuler_v1:
...
def solve(self, T):

"""Compute solution for 0 <= t <= T."""
n = int(round(T/self.dt)) # no of intervals
self.u = np.zeros(n+1)
self.t = np.zeros(n+1)
self.u[0] = float(self.U0)
self.t[0] = float(0)

for k in range(self.n):
self.k = k
self.t[k+1] = self.t[k] + self.dt
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
# Create local variables to get rid of "self." in
# the numerical formula
u, dt, f, k, t = self.u, self.dt, self.f, self.k, self.t

unew = u[k] + dt*f(u[k], t[k])
return unew



Using a class to hold the right-hand side f (u, t)

Mathematical problem:

u′(t) = αu(t)

(
1− u(t)

R

)
, u(0) = U0, t ∈ [0, 40]

Class for right-hand side f (u, t):
class Logistic:

def __init__(self, alpha, R, U0):
self.alpha, self.R, self.U0 = alpha, float(R), U0

def __call__(self, u, t): # f(u,t)
return self.alpha*u*(1 - u/self.R)

Main program:
problem = Logistic(0.2, 1, 0.1)
time_points = np.linspace(0, 40, 401)
method = ForwardEuler(problem)
method.set_initial_condition(problem.U0)
u, t = method.solve(time_points)



Figure of the solution

0 5 10 15 20 25 30 35 40 45
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
u

Logistic growth: alpha=0.2, R=1, dt=0.1



Numerical methods for ordinary differential equations
Forward Euler method:

uk+1 = uk + ∆t f (uk , tk)

4th-order Runge-Kutta method:

uk+1 = uk +
1
6

(K1 + 2K2 + 2K3 + K4)

K1 = ∆t f (uk , tk)

K2 = ∆t f (uk +
1
2
K1, tk +

1
2

∆t)

K3 = ∆t f (uk +
1
2
K2, tk +

1
2

∆t)

K4 = ∆t f (uk + K3, tk + ∆t)

And lots of other methods! How to program a wide collection of
methods? Use object-oriented programming!



A superclass for ODE methods

Common tasks for ODE solvers:
Store the solution uk and the corresponding time levels tk ,
k = 0, 1, 2, . . . , n
Store the right-hand side function f (u, t)

Set and store the initial condition
Run the loop over all time steps

Principles:
Common data and functionality are placed in superclass
ODESolver

Isolate the numerical updating formula in a method advance

Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance



A superclass for ODE methods

Common tasks for ODE solvers:
Store the solution uk and the corresponding time levels tk ,
k = 0, 1, 2, . . . , n
Store the right-hand side function f (u, t)

Set and store the initial condition
Run the loop over all time steps

Principles:
Common data and functionality are placed in superclass
ODESolver

Isolate the numerical updating formula in a method advance

Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance



A superclass for ODE methods

Common tasks for ODE solvers:
Store the solution uk and the corresponding time levels tk ,
k = 0, 1, 2, . . . , n
Store the right-hand side function f (u, t)

Set and store the initial condition
Run the loop over all time steps

Principles:
Common data and functionality are placed in superclass
ODESolver

Isolate the numerical updating formula in a method advance

Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance



The superclass code

class ODESolver:
def __init__(self, f):

self.f = f

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError # implement in subclass

def set_initial_condition(self, U0):
self.U0 = float(U0)

def solve(self, time_points):
self.t = np.asarray(time_points)
self.u = np.zeros(len(self.t))
# Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

# Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
raise NotImplemtedError # to be impl. in subclasses



Implementation of the Forward Euler method

Subclass code:
class ForwardEuler(ODESolver):

def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
unew = u[k] + dt*f(u[k], t)
return unew

Application code for u′ − u = 0, u(0) = 1, t ∈ [0, 3], ∆t = 0.1:
from ODESolver import ForwardEuler
def test1(u, t):

return u

method = ForwardEuler(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)



The implementation of a Runge-Kutta method

Subclass code:
class RungeKutta4(ODESolver):

def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
dt2 = dt/2.0
K1 = dt*f(u[k], t)
K2 = dt*f(u[k] + 0.5*K1, t + dt2)
K3 = dt*f(u[k] + 0.5*K2, t + dt2)
K4 = dt*f(u[k] + K3, t + dt)
unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)
return unew

Application code (same as for ForwardEuler):
from ODESolver import RungeKutta4
def test1(u, t):

return u

method = RungeKutta4(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)



The user should be able to check intermediate solutions and
terminate the time stepping

Sometimes a property of the solution determines when to stop
the solution process: e.g., when u < 10−7 ≈ 0.
Extension: solve(time_points, terminate)

terminate(u, t, step_no) is called at every time step, is
user-defined, and returns True when the time stepping should
be terminated
Last computed solution is u[step_no] at time t[step_no]

def terminate(u, t, step_no):
eps = 1.0E-6 # small number
return abs(u[step_no,0]) < eps # close enough to zero?


	How to solve any ordinary scalar differential equation

