App.E: Programming of differential equations

2

Hans Petter Langtangen!? Joakim Sundnes!?

Simula Research Laboratory?!

University of Oslo, Dept. of Informatics®

Nov 10, 2017

Plan for the rest of the fall (1)

@ Friday November 10:
e Short quiz
o Exer 9.4, 9.6 (inheritance, OOP)
e How to solve any scalar ODE

o Wednesday November 15:
o Exer E.21, E.22, 8.x
o Vector ODEs (Systems of ODEs)
e Random numbers and games

o Friday November 17:

e More on vector ODEs
o Disease modeling (final project)

Plan for the rest of the fall (2)

o November 20 - November 27:

e Final project on disease modeling
o No ordinary lectures
o Time for questions about the project ("orakel") will be

announced
o Lectures "on demand" Nov 22 and Nov 24 (project relevant)
o November 27 - Exam:
o Repetition lectures ("on demand")

Quiz (special methods)

What is printed by the following code? Why?

from numpy import *

class MyList:
def init__(self,values):

self.values = values

def __add__(self,other):
result = []
for i in range(len(self.values)):
result.append(str(self.values[i])+'+' \
+str(other.values[i]))
return result

11 = [2,3,4]; 12 = [5,6,1]

al = array(l1); a2 = array(12)
ml = MyList(11); m2 = MyList(12)
print(11+12)

print (al+a2)

print (m1+m2)

@ How to solve any ordinary scalar differential equation

How to solve any ordinary scalar differential equation

Logistic growth: alpha=0.2, R=1, dt=0.1

0.9
0.8
0.7

u'(t) = au(t)(1 — R™*u(t)) .

U(O) - UO 0.4

0.3

0.1

Examples on scalar differential equations (ODEs)

Terminology:

@ Scalar ODE: a single ODE, one unknown function

o Vector ODE or systems of ODEs: several ODEs, several
unknown functions

u' = au exponential growth

u = au (1 - %) logistic growth

v + blulu =g falling body in fluid

We shall write an ODE in a generic form: v’ = f(u, t)

@ Our methods and software should be applicable to any ODE

@ Therefore we need an abstract notation for an arbitrary ODE

u'(t) = f(u(t), 1)

The three ODEs on the last slide correspond to

f(u,t) = au, exponential growth

u 0
f(u,t)=au (1 - §> , logistic growth
f(u,t) = —blulu+ g, body in fluid

Our task: write functions and classes that take f as input and
produce u as output

Such abstract f functions are widely used in mathematics

We can make generic software for:

o Numerical differentiation: f’(x)

o Numerical integration: fab f(x)dx
@ Numerical solution of algebraic equations: f(x) =0

Applications:

O Zxsin(wx): f(x) = x?sin(wx)
Q f_ll(x2 tanh~! x — (1 + x2)"1)dx:

f(x) =x’tanh ™ Ix —(1+x?)"t a=-1b=1
4

© Solve x*sinx = tanx: f(x) = x*sinx — tan x

\

\We use finite difference approximations to derivatives to
turn an ODE into a difference equation

u = f(u,t)
Assume we have computed v at discrete time points tg, t1, ..., tk.
At t, we have the ODE

ul(tk) = f(u(tk), t‘k)

Approximate u/(tx) by a forward finite difference,

u(ter1) — u(te)
At

u'(ty) ~
Insert in the ODE at t = t;:

u(tm)A; 48 _ £yt 1)

Terms with u(tx) are known, and this is an algebraic (difference)
equation for u(txy1)

The Forward Euler (or Eule

25 L) T T — T ﬂ\—]
DIFFERENTIAL EQUATIONS ' = f(u,t)

ARE HARD TO SOLVE.

20 BUT NOT WITH PROGRAMMING!

HERE WE KNOW THE SLOPE:

u/ = f(ut):

LET THE SOLUTION CONTINOE T
ALONG THAT SLOPE.

/ EXACT SOLOTION .

os -

THIS IS THE NEXT
PREDICTED POINT
1 1

0.0 05 10 5 2.0 25 3.0 35 y.0

The Forward Euler

25 T T T N T ﬂ\—]
TOST REDUCE THE TIME STEP

TO MAKE MORE ACCURATE
PREDICTIONS.

HERE WE KNOW THE SLOPE:

u' = f(u,t)

LET THE SOLUTION CONTINOE T
ALONG THAT SLOPE.

EXACT SOLUTION

os -~ -
THIS IS THE NEXT
PREDICTED POINT

0.0 1 L 1 1 1 1

0.0 05 10 5 2.0 25 3.0 35 y.0

The Forward Euler (or Euler's) method; mathematics

Solving with respect to u(tx41)

u(teyr) = u(te) + Atf(u(t), te)

This is a very simple formula that we can use repeatedly for u(t1),
u(t2), u(ts) and so forth.

| A

Difference equation notation:

Let vy, denote the numerical approximation to the exact solution
u(t) at t = ty.

Ugy1 = Uk + Atf(uk, tk)

This is an ordinary difference equation we can solve!

Let's apply the method!
Problem: The world’s simplest ODE

u=u te(0,T]
Solve for wat t = t, = kAt, k=0,1,2,...,ty, to=0,t, =T

Forward Euler method:

Ugy1 = Uk + At f(uk, tk)

Solution by hand:

What is f? f(u,t) =u

Ukl = Uk + Atf(uk, tk) = uy + Atuy = (1 T At)uk

First step:
up = (]. I At)uo

but what is ug?

An ODE needs an initial condition: u(0) = Uy

Numerics:

Any ODE ' = f(u,t) must have an initial condition u(0) = Uy,
with known Up, otherwise we cannot start the method!

Mathematics:

| A

In mathematics: u(0) = Uy must be specified to get a unique
solution.

| \

Example:

/
u —=u

Solution: u = Ce® for any constant C. Say u(0) = Up: u = Upe'.

\

What about the general case v’ = f(u, t)?

Given any Up:

up = up + Atf(uo, to)
up = ug + Atf(uz, ty)
uz = up + Atf(up, t)
us = uz + Atf(us, t3)

We start with a specialized program for v’ = u, u(0) = U

Algorithm:

Given At (dt) and n

o Create arrays t and u of length n+ 1
@ Set initial condition: u[0] = Uy, t[0]=0
@ For k=0,1,2,....,n—1:

o t[k+1] = t[k] + dt

o ulk+1] = (1 + dt)*ul[k]

We start with a specialized program for v’ = u, u(0) = U

import numpy as np
import sys

dt = float(sys.argv[1])
U0 = 1

T =24

n = int(T/dt)

t = np.zeros(n+1)

u = np.zeros(n+1)

t[0] =0

ul0] = UO

for k in range(n):
tlk+1] = tlk] + dt
ulk+1] = (1 + dt)*ulk]

plot u against t

The solution if we plot u against t

At = 0.4 and At =0.2:

Solution of the ODE u'=u, u(0)=1 Solution of the ODE u'=u, u(0)=1

60 - 60
numerical

numerical

exact - - - exact - - - |

The algorithm for the general ODE v = f(u, t)

Algorithm:

Given At (dt) and n

o Create arrays t and u of length n+ 1

o Create array u to hold uy and

@ Set initial condition: u[0] = Uy, t[0]=0
@ For k=0,1,2,...,n—1:

o ulk+1] = ulk] + dt*f(ulkl, t[k]) (the only change!)
o tlk+1] = t[k] + dt

Implementation of the general algorithm for v' = f(u, t)

General function:

def ForwardEuler(f, UO, T, n):
"tiSolue u'=f(u,t), u(0)=U0, with n steps until t=T."""
import numpy as np
t = np.zeros(nt+1)
u = np.zeros(n+1) # u[k] %s the solution at time t[k]

=0
T/float (n)
for k in range(n):

t[k+1] t[k] + dt
ulk+1] ulk] + dtxf(ulk], tlk])

return u, t

This simple function can solve any ODE (!)

Example on using the function
Mathematical problem:

Solve v’ = u, u(0) =1, for t € [0,4], with At =0.4
Exact solution: u(t) = e’.

def f(u, t):
return u

T
n
u, t = ForwardEuler(f, UO, T, n)

nn
w
o

y

Compare exact and numerical solution

from scitools.std import plot, exp

u_exact = exp(t)

plot(t, u, 'r-', t, u_exact, 'b-',
xlabel='t', ylabel='u', legend=('numerical', 'exact'),
title="Solution of the ODE u'=u, u(0)=1")

Now you can solve any ODE!

o Identify f(u,t) in your ODE
@ Make sure you have an initial condition Uy

@ Implement the f(u, t) formula in a Python function £ (u, t)
@ Choose At or no of steps n

o Callu, t = ForwardEuler(f, UO, T, n)

@ plot(t, w

The Forward Euler method may give very inaccurate solutions if At
is not sufficiently small. For some problems (like u” + u = 0) other
methods should be used.

Let us make a class instead of a function for solving ODEs

Usage of the class:

method = ForwardEuler (f, dt)
method.set_initial_condition(UO, tO)
u, t = method.solve(T)

plot(t, w)

@ Store f, At, and the sequences uy, tx as attributes

@ Split the steps in the ForwardEuler function into four
methods:

o the constructor (__init__)

o set_initial_condition for u(0) = Uy

e solve for running the numerical time stepping

e advance for isolating the numerical updating formula
(new numerical methods just need a different advance

method, the rest is the same)

The code for a class for solving ODEs (part 1)

import numpy as np

class ForwardEuler_vil:
def __init__(self, f, dt):
self.f, self.dt = £, dt

def set_initial_condition(self, UO):
self.U0 = float(UO)

The code for a class for solving ODEs (part 2)

class ForwardEuler_v1l:

def solve(self, T):
"""Compute solution for 0 <=t <= T."""
n = int(round(T/self.dt)) # no of intervals
self.u = np.zeros(n+1)
self.t = np.zeros(n+1)
self.u[0] = float(self.U0)
self.t[0] = float(0)

for k in range(self.n):
self .k = k
self.t[k+1] = self.t[k] + self.dt
self.ul[k+1] = self.advance()
return self.u, self.t

def advance(self):
"""Jdvance the solution one time step.
Create local wvariables to get rid of "self." in
the numerical formula
u, dt, f, k, t = self.u, self.dt, self.f, self.k, self.t

nmn

unew = ulk] + dt*f(ulk], t[k])
return unew

Using a class to hold the right-hand side f(u, t)

Mathematical problem:

U (t) = au(t) (1 — %) , u(0)= Uy, te]Jo0,40]

A\

Class for right-hand side f(u, t):

class Logistic:
def init__(self, alpha, R, UO):

self.alpha, self.R, self.UO = alpha, float(R), UO

def __call__(self, u, t): # f(u,t)
return self.alpha*ux(l - u/self.R)

| A

Main program:

problem = Logistic(0.2, 1, 0.1)
time_points = np.linspace(0, 40, 401)
method = ForwardEuler (problem)
method.set_initial_condition(problem.U0)
u, t = method.solve(time_points)

A\

Figure of the solution

10 Logistic growth: alpha=0.2, R=1, dt=0.1

0.8f

0.7}

0.4F

0.31

0.1

Numerical methods for ordinary differential equations

Forward Euler method:

Ug+1 = Uk + At f(uk, tk)

4

4th-order Runge-Kutta method:

1
Ukl = Uk + ¢ (K1 + 2Kz + 2K3 + Ka)

Ki = At f(uk, tk)
1 1
Ky = At f(uk + =Ky, tx + *At)

2 2
1 1
K3 = At f(Uk + §K27 tk + EAt)

Ky = At f(ux + K3, t + At)

And lots of other methods! How to program a wide collection of
methods? Use object-oriented programming!

N

A superclass for ODE methods

A superclass for ODE methods
Common tasks for ODE solvers:

@ Store the solution uy and the corresponding time levels t,
k=0,1,2,...,n

o Store the right-hand side function f(u, t)

@ Set and store the initial condition

@ Run the loop over all time steps

A superclass for ODE methods
Common tasks for ODE solvers:

@ Store the solution uy and the corresponding time levels t,
k=0,1,2,...,n
o Store the right-hand side function f(u, t)

@ Set and store the initial condition

@ Run the loop over all time steps

v
Principles:

@ Common data and functionality are placed in superclass
ODESolver

@ Isolate the numerical updating formula in a method advance

@ Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance

The superclass code

class ODESolver:
def __init__(self, £f):
self.f = f

def advance(self):
"""jdvance solution one time step."""
raise NotImplementedError # implement in subclass

def set_initial_condition(self, UO):
self.U0 = float(UO)

def solve(self, time_points):
self.t = np.asarray(time_points)
self.u = np.zeros(len(self.t))
Assume that self.t[0] corresponds to self.U0
self.u[0] = self.UO

Time loop
for k in range(n-1):
self .k = k

self.u[k+1] = self.advance()
return self.u, self.t

def advance(self):
raise NotImplemtedError # to be impl. in subclasses

Implementation of the Forward Euler method
Subclass code:

class ForwardEuler (ODESolver) :
def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
unew = ulk] + dt*f(ulk], t)
return unew

Application code for v/ — u =0, u(0) =1, t € [0,3], At =0.1:

from ODESolver import ForwardEuler
def testi(u, t):
return u

method = ForwardEuler(testl)
method.set_initial_condition(U0=1)

u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, w)

The implementation of a Runge-Kutta method

Subclass code:

class RungeKutta4(ODESolver) :
def advance(self):
u, £, k, t = self.u, self.f, self.k, self.t

dt = tl[k+1] - t[k]
dt2 = dt/2.0

K1 = dt*f(ulk], t)

K2 = dt*f(ul[k] + 0.5%K1, t + dt2)
K3 = dt*f(ul[k] + 0.5%K2, t + dt2)
K4 = dt*f(ulk] + K3, t + dt)

unew = ulk] + (1/6.0)*(K1 + 2*K2 + 2*xK3 + K4)
return unew

Application code (same as for ForwardEuler):

from ODESolver import RungeKuttad
def testi(u, t):
return u

method = RungeKutta4(testl)
method.set_initial_condition(U0=1)

u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)

\

The user should be able to check intermediate solutions and

terminate the time stepping

@ Sometimes a property of the solution determines when to stop
the solution process: e.g., when u < 10~7 ~ 0.

o Extension: solve(time_points, terminate)

o terminate(u, t, step_no) is called at every time step, is

user-defined, and returns True when the time stepping should
be terminated

@ Last computed solution is u[step_no] at time t[step_no]

def terminate(u, t, step_no):

eps = 1.0E-6 # small number
return abs(u[step_no,0]) < eps # close enough to zero?

	How to solve any ordinary scalar differential equation

