
App.E: Systems of differential equations

Hans Petter Langtangen1,2 Joakim Sundnes1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Nov 16, 2017

Plan for Friday 17/11

A class hierarchy of ODE solvers
Vector ODEs (Systems of ODEs)
Disease modeling (final project)

Recall the different methods:
Forward Euler

uk+1 = uk + ∆t f (uk , tk)

4th-order Runge-Kutta

uk+1 = uk +
1
6

(K1 + 2K2 + 2K3 + K4)

K1 = ∆t f (uk , tk)

K2 = ∆t f (uk +
1
2
K1, tk +

1
2

∆t)

K3 = ∆t f (uk +
1
2
K2, tk +

1
2

∆t)

K4 = ∆t f (uk + K3, tk + ∆t)

And lots of other methods! How to program a wide collection of
methods? Use object-oriented programming!

A superclass for ODE methods

Common tasks for ODE solvers:
Store the solution uk and the corresponding time levels tk ,
k = 0, 1, 2, . . . , n
Store the right-hand side function f (u, t)

Set and store the initial condition
Run the loop over all time steps

Principles:
Common data and functionality are placed in superclass
ODESolver

Isolate the numerical updating formula in a method advance

Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance

A superclass for ODE methods

Common tasks for ODE solvers:
Store the solution uk and the corresponding time levels tk ,
k = 0, 1, 2, . . . , n
Store the right-hand side function f (u, t)

Set and store the initial condition
Run the loop over all time steps

Principles:
Common data and functionality are placed in superclass
ODESolver

Isolate the numerical updating formula in a method advance

Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance

A superclass for ODE methods

Common tasks for ODE solvers:
Store the solution uk and the corresponding time levels tk ,
k = 0, 1, 2, . . . , n
Store the right-hand side function f (u, t)

Set and store the initial condition
Run the loop over all time steps

Principles:
Common data and functionality are placed in superclass
ODESolver

Isolate the numerical updating formula in a method advance

Subclasses, e.g., ForwardEuler, just implement the specific
numerical formula in advance

The superclass code

class ODESolver:
def __init__(self, f):

self.f = f

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError # implement in subclass

def set_initial_condition(self, U0):
self.U0 = float(U0)

def solve(self, time_points):
self.t = np.asarray(time_points)
self.u = np.zeros(len(self.t))
Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
raise NotImplemtedError # to be impl. in subclasses

Implementation of the Forward Euler method

Subclass code:
class ForwardEuler(ODESolver):

def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
unew = u[k] + dt*f(u[k], t)
return unew

Application code for u′ − u = 0, u(0) = 1, t ∈ [0, 3], ∆t = 0.1:
from ODESolver import ForwardEuler
def test1(u, t):

return u

method = ForwardEuler(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)

The implementation of a Runge-Kutta method

Subclass code:
class RungeKutta4(ODESolver):

def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
dt2 = dt/2.0
K1 = dt*f(u[k], t)
K2 = dt*f(u[k] + 0.5*K1, t + dt2)
K3 = dt*f(u[k] + 0.5*K2, t + dt2)
K4 = dt*f(u[k] + K3, t + dt)
unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)
return unew

Application code (same as for ForwardEuler):
from ODESolver import RungeKutta4
def test1(u, t):

return u

method = RungeKutta4(test1)
method.set_initial_condition(U0=1)
u, t = method.solve(time_points=np.linspace(0, 3, 31))
plot(t, u)

The user should be able to check intermediate solutions and
terminate the time stepping

Sometimes a property of the solution determines when to stop
the solution process: e.g., when u < 10−7 ≈ 0.
Extension: solve(time_points, terminate)

terminate(u, t, step_no) is called at every time step, is
user-defined, and returns True when the time stepping should
be terminated
Last computed solution is u[step_no] at time t[step_no]

def terminate(u, t, step_no):
eps = 1.0E-6 # small number
return abs(u[step_no,0]) < eps # close enough to zero?

Systems of differential equations (vector ODE)

u′ = v

v ′ = −u
u(0) = 1
v(0) = 0

0 2 4 6 8 10 12 14
1.0

0.5

0.0

0.5

1.0

u
v

Example on a system of ODEs (vector ODE)

Two ODEs with two unknowns u(t) and v(t):

u′(t) = v(t)

v ′(t) = −u(t)

Each unknown must have an initial condition, say

u(0) = 0, v(0) = 1

In this case, one can derive the exact solution to be

u(t) = sin(t), v(t) = cos(t)

Systems of ODEs appear frequently in physics, biology, finance, ...

The ODE system that is the final project in the course

Model for spreading of a disease in a population:

S ′ = −βSI
I ′ = βSI − νR
R ′ = νI

Initial conditions:

S(0) = S0

I (0) = I0

R(0) = 0

Making a flexible toolbox for solving ODEs

For scalar ODEs we could make one general class hierarchy to
solve “all” problems with a range of methods
Can we easily extend class hierarchy to systems of ODEs?
Yes!
The example here can easily be extended to professional code
(Odespy)

https://github.com/hplgit/odespy

Vector notation for systems of ODEs: unknowns and
equations

General software for any vector/scalar ODE demands a general
mathematical notation. We introduce n unknowns

u(0)(t), u(1)(t), . . . , u(n−1)(t)

in a system of n ODEs:

d

dt
u(0) = f (0)(u(0), u(1), . . . , u(n−1), t)

d

dt
u(1) = f (1)(u(0), u(1), . . . , u(n−1), t)

... =
...

d

dt
u(n−1) = f (n−1)(u(0), u(1), . . . , u(n−1), t)

Vector notation for systems of ODEs: vectors

We can collect the u(i)(t) functions and right-hand side functions
f (i) in vectors:

u = (u(0), u(1), . . . , u(n−1))

f = (f (0), f (1), . . . , f (n−1))

The first-order system can then be written

u′ = f (u, t), u(0) = U0

where u and f are vectors and U0 is a vector of initial conditions

The magic of this notation:
Observe that the notation makes a scalar ODE and a system look
the same, and we can easily make Python code that can handle
both cases within the same lines of code (!)

How to make class ODESolver work for systems of ODEs

Recall: ODESolver was written for a scalar ODE
Now we want it to work for a system u′ = f , u(0) = U0,
where u, f and U0 are vectors (arrays)
What are the problems?

Forward Euler applied to a system:

uk+1︸︷︷︸
vector

= uk︸︷︷︸
vector

+∆t f (uk , tk)︸ ︷︷ ︸
vector

In Python code:
unew = u[k] + dt*f(u[k], t)

where

u is a two-dim. array (u[k] is a row)
f is a function returning an array (all the right-hand sides
f (0), . . . , f (n−1))

The adjusted superclass code (part 1)

To make ODESolver work for systems:
Ensure that f(u,t) returns an array.
This can be done be a general adjustment in the superclass!
Inspect U0 to see if it is a number or list/tuple and make
corresponding u 1-dim or 2-dim array

class ODESolver:
def __init__(self, f):

Wrap user's f in a new function that always
converts list/tuple to array (or let array be array)
self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, U0):
if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1 # no of equations
U0 = float(U0)

else: # system of ODEs
U0 = np.asarray(U0)
self.neq = U0.size # no of equations

self.U0 = U0

The superclass code (part 2)

class ODESolver:
...
def solve(self, time_points, terminate=None):

if terminate is None:
terminate = lambda u, t, step_no: False

self.t = np.asarray(time_points)
n = self.t.size
if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)
else: # systems of ODEs

self.u = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()
if terminate(self.u, self.t, self.k+1):

break # terminate loop over k
return self.u[:k+2], self.t[:k+2]

All subclasses from the scalar ODE works for systems as well

Example: ODE model for throwing a ball

Newton’s 2nd law for a ball’s trajectory through air leads to

dx

dt
= vx

dvx
dt

= 0

dy

dt
= vy

dvy
dt

= −g

Air resistance is neglected but can easily be added

4 ODEs with 4 unknowns:
the ball’s position x(t), y(t)
the velocity vx(t), vy (t)

Throwing a ball; code
Define the right-hand side:
def f(u, t):

x, vx, y, vy = u
g = 9.81
return [vx, 0, vy, -g]

Main program:
from ODESolver import ForwardEuler
t=0: prescribe x, y, vx, vy
x = y = 0 # start at the origin
v0 = 5; theta = 80*pi/180 # velocity magnitude and angle
vx = v0*cos(theta)
vy = v0*sin(theta)
Initial condition:
U0 = [x, vx, y, vy]

solver= ForwardEuler(f)
solver.set_initial_condition(u0)
time_points = np.linspace(0, 1.2, 101)
u, t = solver.solve(time_points)

u is an array of [x,vx,y,vy] arrays, plot y vs x:
x = u[:,0]; y = u[:,2]
plot(x, y)

Throwing a ball; results
Comparison of exact and Forward Euler solutions

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dt=0.01

numerical

exact

Summary
ODE solvers and OOP

Many different ODE solvers (Euler, Runge-Kutta, ++)
Most tasks are common to all solvers:

Initialization of solution arrays and right hand side
Overall for-loop for advancing the solution

Difference; how the solution is advanced from step k to k + 1
OOP implementation:

Collect all common code in a base class
Implement the different step (advance) functions in subclasses

Systems of ODEs
All solvers and codes are easily extended to systems of ODEs
Solution at one time step (uk) is a vector (one-dimensional
array), overall solution is a two-dimensional array
Slightly more book-keeping, but the bulk of the code is
identical as for scalar ODEs

